

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION

CUSTOMER :

(客戶):志盛翔

DATE :

(日期):2020-08-24

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GT $50V10\mu F(\phi 5x11)$
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	PROVAL 批准)	SIGNATURE (签名)
邓文文	付婷婷		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT	ALTERNATION HISTORY RECORDS				
		GT SERIE					
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver
			I		I	1	1

Version	01		Page	1
---------	----	--	------	---

ELECTROLYTICMAN YUE ELECTRONICSCAPACITORCOMPANY LIMITEDSPECIFICATIONGT SERIES

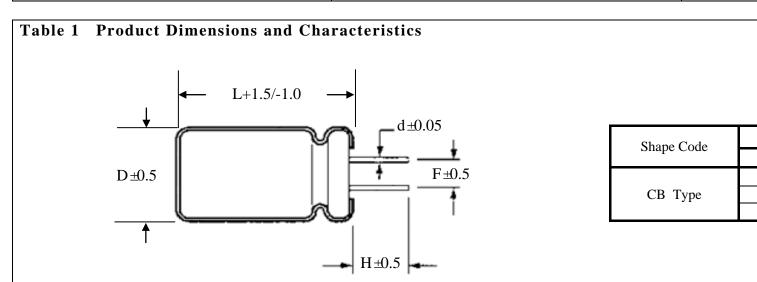


Table 1:

N o.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tan δ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Impedanc at 20℃ 100kHz (Ωmax)
1	EGT106M1HD11CB**P	50	10	-20%~+20%	-40~105	0.10	5	100	1.500

|--|

C O N T E N T S	Sheet
. Application	4
	4
2. Part Number System	4
3. Construction	5
4. Characteristics	5~10
1.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 tanδ	
4.5 Terminal strength	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
4.16 Maximum permissible (ripple current)5. List of "Environment-related Substances to be Controlled ('Controlled)	
Substances')"	11
Attachment: Application Guidelines	12~15
**	

Version	01		Page	3
---------	----	--	------	---

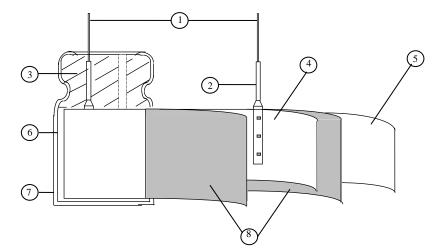
ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System

1 2 E G S	<u>s</u> 1	5 6 0 5	5 M	ĺ	89 1H VOLTAGE	ľ	10 11 12 D 1 1 CASE SIZE	<u> </u>	C	1516 SA SAMXON PRODUCT LINE M	17 P
Series ESM EKF	Cap(MFD) 0.1	Code 104	Tolerance (%) ± 5	Code J	Voltage (W.V.) 2 2.5	0D	Case Size	Feature (Radial bulk	Code RR	SAMXON Product	
ESS EKS EGS	0.22	224			4 6.3	0E 0G 0J	3.5 1 4 C 5 D	Ammo Tap	ing	(The product lines we have H,A,B,C,D	
EKM EKG EOM	0.33	334	±10	к	8 10	05 0K 1A	6.3 E 8 F 10 G	2.0mm Pitch	тт	E,M or 0,1,2,3,4,5,9	»).
EZM EZS EGF	0.47	474	±15	L	12.5 16	1B 1C	12.5 I 13 J 13.5 V	2.5mm Pitch	τu		
ESF EGT	1	105	±20	м	20	1D 1E	14 4 14.5 A 16 K 16.5 7 18 L	3.5mm Pitch	тν	Sleeve Material	Code
EGK EGE EGD	2.2	225	±30	м	30 32	11	16.5 7 18 L	5.0mm Pitch	тс	PET	P
EGC ERS ERF	3.3	335	-40 0	w	35 40	10 1V 1G	18.5 8 20 M 22 N	Lead Cut &	Form		
ERL ERR ERT	4.7	475	-20 0	A	42	1M 1H	20 M 22 N 25 O 30 P 34 W 35 Q	СВ-Туре	СВ		
ERE ERD ERH	10	106	-20	с	57 63	1L 1J	40 R	СЕ-Туре	CE		
EBD ERA	22	226	+10		71 75	1S 1T	42 4 45 6 51 S 63.5 T	НЕ-Туре	HE		
ERB ERC EFA	33	336	-20 +40	×	80	1K 1R	63.5 T 76 U 80 8 90 X	КД-Туре	KD		
ENP ENH ERW	47	476	-20 +50	s	90 100	19 2A	Len.(mm) Code	FD-Type	FD		
ERY ELP EAP	100	107	-10 0	в	120 125	20 2B	4.5 45 5 05 5.4 54	EH-Type	EH		
EQP EDP	220	227	-10 +20	×	150 160	2Z 2C	5.4 54 7 07 7.7 77 10.2 T2	PCB Term			
ETP EHP EUP	330	337	-10 +30	Q	180 200	2P 2D	11 11 11.5 1A	Snap-in	sw sx		
EKP EEP EFP	470	477	-10 +50	т	215 220	22 2N	12 12 12.5 1B 13 13	Shap-in	sz		
ESP EVP EGP	2200	228	-5 +10	E	230 250	23 2E	13 13 13.5 1C 20 20 25 25 29.5 2J	Lug	SG		
EWR EWU EWT	22000	229	-5 +15	F	275 300	2T 2I	29.5 2J 30 30 31.5 3A 35 35		05		
EWX	33000	339	-5 +20	G	310 315	2R 2F	35.5 3E		06		
EWS EWH EWL	47000	479	0 +20	R	330 350	2U 2V	50 50 80 80 100 1L 105 1K		т5		
EWB VSS VNS	100000	10T	0 +30	0	360 375	2X 2Q	110 1M 120 1N 130 1P	Screw	тө		
VNS VKS VKM VRL	150000 220000	15T 22T	0 +50	I	385 400	2Y 2G	140 1Q 150 1R 155 1E		D5		
VNH VZS VRF	330000	33T	+5 +15	z	420 450	2M 2W	160 1S 165 1F 170 1T		D6		
114	1000000	10M	+5 +20	D	500 550	2H 25	180 1U				
	1500000	15M	+10 +50	Y	600 630	26 2J	190 1V 200 2L 215 2A 210 2M				
	2200000	22M	+10 +30	н			210 2M 220 2N 240 2Q 250 2R 260 2S 270 2T				
	3300000	33M					260 2S 270 2T				
	L										


Version 01 Page 4

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version 01	Р	'age	5
------------	---	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

	ITEM				PERFC	RMANO	CE			
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	31	44	63	79	125
	Surge voltage (SV)									
4.2	Nominal capacitance (Tolerance)	Condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria>	requency oltage emperat	: No ure : 20)±2℃	han 0.5V				
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Table</criteria></condition>	he capao then, me		-		istor (1	$k\Omega \pm 10$	Ω) in s	eries for 2
4.4	tanδ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	n Capac	itance, fo	or measur	ing frequ	iency, vo	oltage and	l tempera	ature.
4.5	Terminal strength	0.5r Over 0. < Criteri	ength of capacitor rength of pacitor, $2 \sim 3 \sec 0$ er of lea <u>nm and l</u> 5mm to $\frac{1}{2}$	r, applied Termina applied f onds, and d wire less 0.8mm	force to lls. orce to b then ber Tens	ent the te t it for 9 ile force (kgf) 5 (0.51) 0 (1.0)	erminal (0° to its N	1~4 mm t original Bending (kj 2.5 (t 5 (0	from the position v force N gf) 0.25) .51)	rubber) for

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition> STEP</condition>	Testir	ng Tempe	rature(℃)			Time		
		1	restri	20 ± 2			to reach		auilibri	um
		2		-40(-25)			to reach			
		3		$\frac{10(23)}{20\pm 2}$		_	to reach		<u> </u>	
		4		$105\pm$		-	to reach		•	
		5		$\frac{105 \pm 1}{20 \pm 2}$			to reach		•	
		<criteria></criteria>							1	
	Temperature characteristi	 a. tanδ shall more than 8 tin b. In step 5, t 	mes of i anδ sha	ts specifie all be with	ed value.		-			
1.6	cs	more than the c. At-40°C (-2 table.			(z) ratio s	hall not e	exceed th	e value o	of the fol	lowing
		Working Volta	ge (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+2		4	3	2	2	2	2	2
		Z-40°C/Z+2		8	6	4	3	3	3	3
		XX7 1 X7 1		100						
		Working Voltag	<u> </u>	100 2						
		Z-23 C/Z+20 Z-40°C/Z+20	-	3						
		For capacitance		-	 E 14404		thar 1000)u F for	7-25/7+	20°C
					F AUUU					
		1		1000		-	her 1000	•		
		Capacitance, tar			Add 1.0	per anot	her 1000	μ F for 2		
		Capacitance, tar Condition >	nδ, and	l impedan	Add 1.0 ace shall be	per anot e measur	her 1000 ed at 120	μ F for Z Hz.	Z-40°C/2	Z+20℃.
		Capacitance, tar <condition> According to I</condition>	nδ , and EC6038	l impedan	Add 1.0 ace shall be	per anot e measur s, The ca	her 1000 ed at 120 pacitor is	Hz.	Z-40°C/Z	Z+20℃.
		Capacitance, tar Condition >	nδ , and EC6038 h DC bia	l impedan 4-4No.4. as voltage	Add 1.0 ace shall be 13 method plus the r	per anot e measur s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren	Hz. s stored a	Z-40°C/Z	Z+20°C.
		Capacitance, tan Condition > According to II $105 \ C \pm 2$ with DC and ripple product should	nδ, and EC6038 h DC bia e peak v l be teste	l impedan 4-4No.4 as voltage voltage sh ed after 16	Add 1.0 ace shall be 13 method plus the r nall not ex 5 hours rec	per anot e measur s, The ca ated ripp cceed the	her 1000 ed at 120 pacitor is le curren e rated w	μ F for Z Hz. s stored a t for Tab yorking v	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
	Load	Capacitance, tan Condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m	nδ, and EC6038 h DC bia e peak v l be teste	l impedan 4-4No.4 as voltage voltage sh ed after 16	Add 1.0 ace shall be 13 method plus the r nall not ex 5 hours rec	per anot e measur s, The ca ated ripp cceed the	her 1000 ed at 120 pacitor is le curren e rated w	μ F for Z Hz. s stored a t for Tab yorking v	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7	Load life	Capacitance, tan <condition> According to II 105 ℃ ±2 with DC and ripple product should result should m <criteria></criteria></condition>	nδ, and EC6038 h DC bia e peak v l be teste neet the	l impedan 4-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 ace shall be 13 method e plus the r hall not ex 6 hours rec g table:	s, The ca ated ripp cceed the overing t	her 1000 ed at 120 pacitor is le curren e rated w ime at at	μ F for Z Hz. s stored a t for Tab yorking v	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7		Capacitance, tan Condition > According to II $105 \ C \pm 2$ with DC and ripple product should result should m Criteria > The characteri	$n\delta$, and EC6038 h DC bise peak v l be testen neet the istic shal	1 impedan 4-4No.4. as voltage voltage sh ed after 16 following Il meet the	Add 1.0 ace shall be 13 method e plus the r hall not ex 5 hours rec g table: e following	s, The ca ated ripp ceed the overing t	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments.	μ F for Z Hz. s stored a t for Tab zorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7	life	Capacitance, tan Condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m Criteria> The characterin Leakage	$n\delta$, and EC6038 h DC bia e peak v l be testen neet the <u>istic shal</u> e curren	l impedan 4-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> t	Add 1.0 ace shall be 13 method e plus the r nall not ex 5 hours rec g table: e following Value in	per anot e measur s, The ca ated ripp acceed the overing t g require 4.3 shall	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisfi	μ F for Z Hz. s stored a t for Tab yorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7	life	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita</criteria></condition>	$n\delta$, and EC6038 h DC bia e peak v l be testen neet the <u>istic shal</u> e curren	l impedan 4-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> t	Add 1.0 ace shall be 13 method e plus the r hall not ex 6 hours rec g table: e following Value in e Within ±	s, The ca ated ripp ceed the overing t g require 4.3 shall 225% of	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va	μ F for Z Hz. s stored a t for Tab yorking w mospher ded	Z-40°C/2 at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita tanδ</criteria></condition>	$n\delta$, and EC6038 h DC bise peak w l be tester neet the <u>astic shall</u> e current ance Ch	l impedan 4-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> t	Add 1.0 ace shall be 13 method plus the r nall not ex 5 hours rec 5 table: e following Value in 4 Not more	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall :25% of than 200	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab yorking v mospher ded due. specifie	Z-40°C/2 at a temp ole 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita</criteria></condition>	$n\delta$, and EC6038 h DC bise peak w l be tester neet the <u>astic shall</u> e current ance Ch	l impedan 4-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> t	Add 1.0 ace shall be 13 method e plus the r hall not ex 6 hours rec g table: e following Value in e Within ±	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall :25% of than 200	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab yorking v mospher ded due. specifie	Z-40°C/2 at a temp ole 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita tanδ</criteria></condition>	$n\delta$, and EC6038 h DC bise peak w l be tester neet the <u>astic shall</u> e current ance Ch	l impedan 4-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> t	Add 1.0 ace shall be 13 method plus the r nall not ex 5 hours rec 5 table: e following Value in 4 Not more	per anot e measur s, The ca ated ripp ceed the overing t g require 4.3 shall :25% of than 200	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab yorking v mospher ded due. specifie	Z-40°C/2 at a temp ole 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should r</condition>	$n\delta$, and EC6038 h DC bise peak v l be testen neet the astic shall e current ance Ch	l impedan 4-4No.4. as voltage voltage sh ed after 16 following ll meet the t ange	Add 1.0 ace shall be 13 method plus the r nall not ex bours rec table: <u>e following</u> Value in a <u>Within ±</u> Not more There sha	per anot e measur s, The ca ated ripp ceed the overing t <u>g require</u> 4.3 shall 25% of than 200 Ill be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va be satisfi initial va leakage c	μ F for Z Hz. s stored a t for Tab orking v mospher ied ilue. specifie of electro	Z-40°C/2 at a temp ole 1. (Tr voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should m <criteria> The characterit Leakage Capacita tanδ Appeara <condition> The capacitors a 1000+48/0 hou</condition></criteria></condition>	$n\delta$, and EC6038 h DC bia e peak w l be testeneet the <u>istic shal</u> e current ance Ch ance are then urs. Foll	l impedan 4-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> t ange stored wir owing thi	Add 1.0 ace shall be 13 method e plus the r nall not ex 5 hours rec g table: <u>e followin</u> Value in 4 Within <u>±</u> Not more There sha th no volta s period th	per anot e measur s, The ca ated ripp acceed the overing t <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>than 200</u> Ill be no ge applic ne capaci	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisfi initial va 0% of the leakage of ed at a te tors shal	μ F for Z Hz. s stored a t for Tab corking v mospher ded dlue. specifie of electro	Z-40°C/2 at a temp ole 1. (Tr voltage) ic condit ic condit d value. lyte.	$\pm 2^{\circ}C$ for the term of the sum of the s
4.7	life test	Capacitance, tan <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should rest should result should result should rest should resul</condition>	$n\delta$, and EC6038 h DC bia e peak v l be testeneet the astic shal e current ance Ch ance are then urs. Foll be allow	l impedan 4-4No.4. as voltage voltage sh ed after 16 following ll meet the t ange stored win owing thi ed to stat	Add 1.0 ace shall be 13 method plus the r hall not ex 6 hours rec g table: <u>e following</u> Value in 4 Within ± Not more There sha th no volta s period th pilized at p	per anot e measur s, The ca ated ripp ceed the overing t <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>than 200</u> <u>ll be no</u> ge applie ne capaci oom ten	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> <u>be satisfi</u> <u>initial va</u> <u>0% of the</u> <u>leakage c</u> ed at a te tors shal perature	μ F for Z Hz. s stored a t for Tab corking v mospher ded due. specifie of electro mperatur l be remo	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 poved from hours. 1	$\pm 2^{\circ}C$ for mathematical formula for the sum of the
	life test Shelf	Capacitance, tar <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita tanδ Appeara <condition> The capacitors a 1000+48/0 how chamber and b shall be conne</condition></criteria></condition>	nδ , and EC6038 h DC bia e peak v l be teste neet the astic shal e curren ance Ch ance are then urs. Foll be allow ected to	l impedan 4-4No.4. as voltage voltage sh ed after 16 following ll meet the t ange stored wir owing thi a series l	Add 1.0 ace shall be 13 method a plus the r hall not ex 6 hours rec g table: e following Value in a Within \pm Not more There sha th no volta s period th pilized at p	per anot e measur s, The ca ated ripp ceed the overing t 25% of than 200 Ill be no ge applic te capaci coom ten sistor(1k	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va $\frac{1}{200}$ of the leakage of tors shall perature $\pm 100\Omega$	μ F for Z Hz. s stored a t for Tab yorking v mospher ied ilue. specifie of electro mperatur l be remo for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the te Next the d voltag
	life test Shelf life	Capacitance, tan <condition> According to II 105 $\mbox{C} \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita tan\mbox{d} Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conne applied for 30r</condition></criteria></condition>	nδ , and EC6038 h DC bia e peak w l be tester neet the astic shall e current ance Ch ance are then urs. Foll be allow ected to min. Aft	l impedan 4-4No.4. as voltage voltage sh ed after 16 following ll meet the t ange stored wir owing thi a series l	Add 1.0 ace shall be 13 method a plus the r hall not ex 6 hours rec g table: e following Value in a Within \pm Not more There sha th no volta s period th pilized at p	per anot e measur s, The ca ated ripp ceed the overing t 25% of than 200 Ill be no ge applic te capaci coom ten sistor(1k	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va $\frac{1}{200}$ of the leakage of tors shall perature $\pm 100\Omega$	μ F for Z Hz. s stored a t for Tab yorking v mospher ied ilue. specifie of electro mperatur l be remo for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the te Next the d voltag
4.7	life test Shelf	Capacitance, tar <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita tanδ Appeara <condition> The capacitors a 1000+48/0 how chamber and b shall be conne</condition></criteria></condition>	nδ , and EC6038 h DC bia e peak w l be tester neet the astic shall e current ance Ch ance are then urs. Foll be allow ected to min. Aft	l impedan 4-4No.4. as voltage voltage sh ed after 16 following ll meet the t ange stored wir owing thi a series l	Add 1.0 ace shall be 13 method a plus the r hall not ex 6 hours rec g table: e following Value in a Within \pm Not more There sha th no volta s period th pilized at p	per anot e measur s, The ca ated ripp ceed the overing t 25% of than 200 Ill be no ge applic te capaci coom ten sistor(1k	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va $\frac{1}{200}$ of the leakage of tors shall perature $\pm 100\Omega$	μ F for Z Hz. s stored a t for Tab yorking v mospher ied ilue. specifie of electro mperatur l be remo for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the te Next the d voltag
	life test Shelf life	Capacitance, tan <condition> According to II 105 $\mbox{C} \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacita tan\mbox{d} Appeara <condition> The capacitors a 1000+48/0 hou chamber and b shall be conne applied for 30r</condition></criteria></condition>	nδ , and EC6038 h DC bia e peak w l be tester neet the astic shall e current ance Ch ance are then urs. Foll be allow ected to min. Aft	l impedan 4-4No.4. as voltage voltage sh ed after 16 following ll meet the t ange stored wir owing thi a series l	Add 1.0 ace shall be 13 method a plus the r hall not ex 6 hours rec g table: e following Value in a Within \pm Not more There sha th no volta s period th pilized at p	per anot e measur s, The ca ated ripp ceed the overing t 25% of than 200 Ill be no ge applic the capaci coom ten sistor(1k	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va $\frac{1}{200}$ of the leakage of tors shall perature $\pm 100\Omega$	μ F for Z Hz. s stored a t for Tab yorking v mospher ied ilue. specifie of electro mperatur l be remo for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the te Next the d voltag

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet	
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within ± 25 of initial value.
4.8	life	tanδ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		Remark: If the capacitors are	stored more than 1 year, the leakage current may
		increase. Please apply voltag	e through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submi followed discharge of 5 min The test temperature shall b C_R :Nominal Capacitance () <criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	 be 15~35°C. µ F) Not more than the specified value. Within ±15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte.
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter g in place with a bracket. 4mm or les 4mm or les	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30° set Within 30° To be soldered

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.11	Solderability test	<condition> The capacitor shall be tested un Soldering temperature Dipping depth Dipping speed Dipping time <criteria> Coating quality</criteria></condition>	: 245±3°C : 2mm : 25±2.5mm : 3±0.5s	
4.12	Resistance to solder heat test	1 seconds or $400 \pm 10^{\circ} \text{C} \text{ for 3}_{-0}^{+1}$	seconds to 1.5~2.0 under the normal thent. Not more than to Within ±10% of Not more than the	o solder bath at 260 ± 5 °C for $10\pm$ mm from the body of capacitor . temperature and normal humidity he specified value. of initial value. he specified value. o leakage of electrolyte.
4.13	Change of temperature test	tanδ I	n according as belo rature (-40°C) (-25°C) (+105°C) cycle the following require Not more than the solution that the solu	w: Time ≤ 3 Minutes 30 ± 2 Minutes 30 ± 2 Minutes 30 ± 2 Minutes ement ement pecified value.
4.14	Damp heat test	<condition> Humidity Test: According to IEC60384-4No.4 hours in an atmosphere of 90~ meet the following requirement <criteria> Leakage current Not Capacitance Change Witt tanδ Not</criteria></condition>	.12 methods, capace 95% R H .at $40\pm2^{\circ}$ t. more than the specthin $\pm 20\%$ of initi	citor shall be exposed for 500 ± 8 [°] C, the characteristic change shall cified value.

Version 01 Page 9

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.15	Vent test	<condition> The following test only apply to those products with vent products at diameter $\ge \emptyset 6.3$ with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from below table is applied. <table 3=""> Diameter (mm) DC Current (A) 22.4 or less 1 Over 22.4 10 Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</table></condition>
4.16	Maximum permissible (ripple current)	Condition> The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: <u>Coefficient</u> <u>(Hz)</u> 50 120 300 1k 100k 10~33 0.45 0.55 0.70 0.90 1.00

Version 01 Page 10	Version	01			10
--------------------	---------	----	--	--	----

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Heavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D	Polybrominated biphenyls (PBB)
Brominated .	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	bounds(TBT)
Triphenyltin con	npounds(TPT)
Asbestos	
Specific azo con	pounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11
---------	----	--	------	----

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
 - Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12
---------	----	--	------	----

(6) Wiring Near the Pressure Relief Vent

- Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
- (7) Circuit Board patterns Under the Capacitor
- Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
- (8) Screw Terminal Capacitor Mounting
 - Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

- 1.6 Electrical Isolation of the Capacitor
 - Completely isolate the capacitor as follows.
- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
- 1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

(1) Provide protection circuits and protection devices to allow safe failure modes.

(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $lk\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

- 2.3 Manual Soldering
- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations
 - Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version 01		Page	13
------------	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminum Electrolytic Capacitors - Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 MAL203125221E3 MAL204216159E3 ESMG101ETD100MF11S RBC-25V-10UF-4X7 RE3-35V222MJ6# RFO-100V471MJ7P# B41041A2687M8 B41041A7226M8 B41044A7157M6 EKRG250ELL100MD07D EKXG201EC3101ML20S EKXG351ETD6R8MJ16S EKZM160ETD471MHB5D EPA-201ELL151MM25S NCD681K10KVY5PF NRLF103M25V35X20F KM4700/16 KME50VB100M-8X11.5 RXJ222M1EBK-1625 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B MAL211929479E3 40D506F050DF5A TE1202E 36DA273F050BB2A KME25VB100M-6.3X11 511D336M250EK5D 511D337M035CG4D 515D477M035CG8PE3 052687X EKMA500ELL4R7ME07D EKRG100ETC221MF09D NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N MAL214099813E3 MAL211990518E3 MAL204281229E3 NEV680M35EF 686KXM050M ERS1VM222L300T EGW2GM150W160T EGS2GM6R8G120C EHS2GM220W200T ERF1VM222L300T ERF1KM151G200T EKZE500ELL101MHB5D EKKM251VSN221MP25S RGA221M1HBK-1016G