

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶): 志盛翔 (日期):2017-06-08

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : GT 50V220μF(φ8X16)

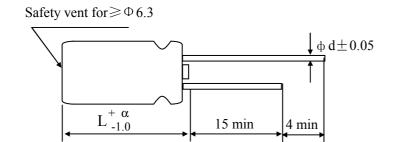
VERSION (版本) : 01

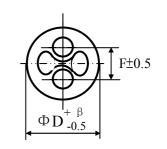
Customer P/N :

SUPPLIER :

SUPPLIER						
PREPARED (拟定)	CHECKED (审核)					
李婷	王国华					

CUSTOMER					
APPROVAL (批准)	SIGNATURE (签名)				


ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES


		SPECIFICAT			ALTERN. R	ATION HIS	ΓORY
Rev.	Date	GT SERIE Mark	Page	Contents	Purpose Drafter Approv		
			8				

Name		Specification Sheet – GT			
Version	01		Page	1	
STANDARD MANUAL					

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES SAM

Table 1 Product Dimensions and Characteristics

α	L<20 :
β	ΦD<2

* If it is flat r rubber su

Table 1

N o.	SAMXON Part No.	WV (Vdc)	Cap. (μF)	Cap. tolerance	Temp. range (°C)	tan δ (120H z, 20 °C)	Leakage Current (μΑ,2mi n)	Max Ripple Current at 105℃ 100kHz (mA rms)	Impedance at 20°C 100kHz (Ωmax)	Loa lifeti (Hr
1	EGT227M1HF16RR**P	50	220	-20%~+20%	-40~105	0.10	110	730	0.120	700

Issued-date: 2017-06-08		Specification Sheet – GT		
Version	01		Page	2
STANDARD MANUAL				

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

CONTENTS **Sheet** Application 4 1. 2. Part Number System 4 3. Construction 5 4. Characteristics 6~13 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 $tan \delta$ 4.5 Impedance 4.6 Terminal strength 4.7 Temperature characteristic 4.8 Load life test 4.9 Shelf life test 4.10 Surge test 4.11 Vibration 4.12 Solderability test 4.13 Resistance to solder heat 4.14 Change of temperature 4.15 Damp heat test 4.16 Vent test 4.17 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 14 Substances')" **Attachment: Application Guidelines** 15~20

Name		Specification Sheet – GT			
Version	01		Page	3	
STANDARD MANUAL					

3300000

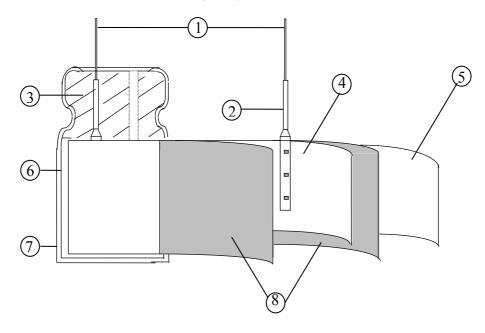
\$

33M

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

1. **Application** This specification applies to polar aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384. 2. Part Number System 1 2 3 4 5 6 7 8 9 101112 13 14 1516 17 EGS 1 TC P 0 5 М 1 1 CAPACITANCE SAMXON SLEEVE PRODUCT LINE MATERIAL VOLTAGE CASE SIZE SERIES Cap(MFD) Tolerance (%) Code Voltage (W.V.) Code Code 8 F 10 G 2.5 I 13 J 3.5 V 4 C 5 D 6.3 E 8 F 10 G 2.5 I 0D For internal use only Radial bulk RR 0.1 104 ±5 J 2.5 0E (The product lines 4 0G we have H,A,B,C,D, 0.22 224 Ammo Taping ĸ 6.3 OJ E,M or 0,1,2,3,4,5,9). ±10 8 0K TT 0.33 334 2.0mm Pitch 10 1A L ±15 12.5 1B 0.47 474 2.5mm Pitch TU 16 1C ±20 M 20 1D 3.5mm Pitch TV 1 105 Sleeve Material Code 25 1E 16.5 7 18 L 18.5 8 20 M 22 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 63.5 T 76 U 80 8 90 X 21.0 N 22.0 N 23.0 N 24.0 N 25.0 O 36.0 N 37.0 N 38.0 N 38 30 11 PET Ρ 5.0mm Pitch 2.2 225 Ν ±30 32 13 35 1V Lead Cut & Form 3.3 335 -40 0 ERF ERL ERR ERT ERE w PVC 40 1G ₽ CB-Type СВ 42 1M 4.7 475 sleeve -20 0 Α 1H 50 CE-Type CE 57 1L 106 10 material -20 +10 63 1J С HE-Type 226 71 18 22 75 1**T** -20 +40 I is PVC, there will be blank in seventeenth × KD-Type KD 33 336 80 1K 1R 85 -20 +50 s FD-Type FD 47 90 19 100 2A 4.5 -10 0 EH-Type EΗ 100 107 В 120 20 2B 125 PCB Termial 220 227 -10 +20 ٧ 150 2Z 160 2C sw 330 337 -10 +30 Q 180 2P 200 2D Snap-in sx 477 470 -10 +50 т 215 22 220 2N sz 2200 228 digit -5 +10 230 23 Е 250 2F Lug SG 22000 229 -5 +15 275 2T F 05 300 21 33000 339 310 2R -5 +20 G 06 315 2F 47000 +20 330 2U R Т5 350 2V 100000 10T Screw +30 360 2X 0 Т6 375 2Q 150000 15T 385 2Y +50 1 D5 400 2G 220000 22T 420 2M +5 +15 z D6 450 2W 33T 330000 +5 +20 500 D 2H 550 25 1000000 10M +10 +50 Υ 600 26 15M 630 1500000 +10 +30 2200000 22M


Name		Specification Sheet – GT			
Version	01		Page	4	
STANDARD MANUAL					

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead Line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Rubber seal	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

Name		Specification Sheet – GT				
Version	01		Page	5		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is

as follows:

Ambient temperature :15°C to 35°C Relative humidity : 45% to 85% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2

Name		Specification Sheet – GT				
Version	01		Page	6		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

	ITEM			P	ERFOR	MANCE	3			
4.1	Rated voltage (WV)	WV (V.DC) SV (V.DC)	6.3	10	16 20	25 32	35 44	50	63 79	100
	Surge voltage (SV)	()								
4.2	Nominal capacitance (Tolerance)	<condition> Measuring frequence Measuring volta Measuring temp <criteria> Shall be within to</criteria></condition>	ige perature	: Not m : 20±2°	\mathbb{C}	n 0.5Vrm				
4.3	Leakage current	<condition> Connecting the minutes, and the <criteria> Refer to table 1</criteria></condition>	-		-		stor (1k	Ω ± 10	Ω) in s	eries for
4.4	Tan δ	<condition> See 4.2, Norm ca <criteria> Refer to table 1</criteria></condition>	 ipacitanc	ee, for m	easuring	frequen	cy, volta	age and	temperat	ure.

Name		Specification Sheet – GT		
Version	01		Page	7
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.6	Terminal strength	Fixed the ca 1 seconds. Bending str Fixed the ca for 90° with 2~3 seconds Diamete 0.5m Over 0.5 Criteria> No noticeab	ength of terminals apacitor, applied for terminal pacitor, applied for in 2~3 seconds, and seconds are of lead wire and less form to 0.8mm	s. orce to bent nd then ben Tensile for 5	the terminal (t it for 90° to it orce N (kgf) (0.51) (1.0)	ad out direction for 10± 1~4 mm from the rubber) soriginal position within Bending force N (kgf) 2.5 (0.25) 5 (0.51) ooseness at the terminal.
4.7	Temperature characteristics	The leaka value. b. In step 5, 7	Testing temper 20 ± 2 $-40 (-25)$ 20 ± 2 105 ± 2 20 ± 2 > If be within the line	±3 mit of Item ared shall number the limit of the limit	Time to reac Time to reac Time to reac Time to reac 4.4 ot more than	Time h thermal equilibrium

Name		Specification Sheet – GT		
Version	01		Page	8
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		table. Working Voltage (V)	6.3	10	16	25	35	50	63	100
4.7		Z-25°C/Z+20°C	4	3	2	2	2	2	2	2
4.7		Z-40°C/Z+20°C	8	6	4	3	3	3	3	3
		Capacitance, Tan δ , and]	<u> </u>
4.8	Load life test	Condition> According to IEC60384 is stored at a temperature rated ripple current for voltage shall not exceed tested after 16 hours recement the following table Criteria> The characteristic shall in Leakage current Capacitance Change Tan δ Appearance	the rate overing the rate overing the rate overing the rate overing the rate over the value of the rate over the value over th	$5 \pm 2^{\circ}$ +48/0 : ed wor time at follow lue in 4 thin \pm t more	C with hours. king vo	DC bi (The soltage) pheric of uiremental be sat finitial	as volta um of Then to condition ents. tisfied I value the spe	DC and the property of the pro	nd ripp duct sh he resul	ould b
	Shelf life test	Condition> The capacitors are then store for 1000+48/0 hours. Following this period the allowed to stabilized at rown Next they shall be connearted voltage applied for 3 then, tested the characteriates. Criteria> The characteristic shall to Leakage current	capacito om tem cted to 0min. A stics.	ors shal peratur a serie after where	l be ren re for 4 es limiti nich the	noved in ~8 hou ing resection capac	from th rs. istor(1) itors sh ents.	te test c ± 100	hambe	r and b

Name		Specification Sheet – GT		
Version	01		Page	9
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.10	Surge test	<condition> Applied a surge voltage to the capacitor connected with a $(100 \pm 50)/C_R$ (kΩ) resistor. The capacitor shall be submitted to 1000 cycles, each consisting of charge of 30 $\pm 5s$, followed discharge of 5 min 30s. The test temperature shall be $15\sim35^{\circ}C$. C_R: Nominal Capacitance (μ F) <criteria> Leakage current Not more than the specified value. Capacitance Change Within $\pm 15\%$ of initial value. Appearance There shall be no leakage of electrolyte.</criteria></condition>
		Attention: This test simulates over voltage at abnormal situation only. It is not applicable to such over voltage as often applied. *Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range: 10Hz ~ 55Hz Peak to peak amplitude: 1.5mm Sweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket.
4.11	Vibration test	4mm or less To be soldered

Name		Specification Sheet – GT		
Version	01		Page	10
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<criteria></criteria>	
		After the test, the follow	ing items shall be tested:
		Inner construction	No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance	No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
4.12	Solderability test	Soldering temperature Dipping depth Dipping speed Dipping time <criteria> Coating quality</criteria>	ed under the following conditions: : 245±3°C : 2mm : 25±2.5mm/s : 3±0.5s A minimum of 95% of the surface being immersed
4.13	Resistance to solder heat test	260 ± 5 °C for 10 ± 1.5~2.0mm from the Then the capacitor sh normal humidity for <criteria></criteria>	citor shall be immersed into solder bath at 1 seconds or 400 ± 10 °C for 3^{+1}_{-0} seconds to body of capacitor. hall be left under the normal temperature and $1 \sim 2$ hours before measurement. Not more than the specified value. Within $\pm 10\%$ of initial value. Not more than the specified value. There shall be no leakage of electrolyte.

Name		Specification Sheet – GT		
Version	01		Page	11
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

	oven, the condition acco		acitor shall be placed in an	
		(1)+20°C	1	≤3 Minutes
		(2)Rated low temperatu	ure (-40°C) (-25°C)	30 ± 2 Minutes
		(3)Rated high temperat	ture (+105°C)	30 ± 2 Minutes
	Change of	(1) to (3)=1 cycle, total	l 5 cycle	
4.14	temperature test	Criteria> The characteristic shall makage current	neet the following requi	
		Tan δ	Not more than the sp	•
		Appearance	There shall be no lea	•
		<condition></condition>		
			nere of 90~95%R H. at	acitor shall be exposed for 50 $40\pm2^{\circ}\mathrm{C}$, the characteristic
		Humidity Test: According to IEC60384 ±8 hours in an atmosph change shall meet the fo	nere of 90~95%R H. at	$40\pm2^{\circ}$ C, the characteristic
	Damp	Humidity Test: According to IEC60384 ±8 hours in an atmosph change shall meet the fo	nere of 90~95%R H. at ollowing requirement.	$40\pm2^{\circ}$ C, the characteristic cified value.
4.15	heat	Humidity Test: According to IEC60384 ±8 hours in an atmosph change shall meet the fo <criteria> Leakage current</criteria>	nere of 90~95%R H. at ollowing requirement. Not more than the spe	$40\pm2^{\circ}$ C, the characteristic cified value.
4.15	-	Humidity Test: According to IEC60384 ±8 hours in an atmosph change shall meet the fo <criteria> Leakage current Capacitance Change</criteria>	here of 90~95%R H. at ollowing requirement. Not more than the spe Within $\pm 20\%$ of init	cified value. ial value. of the specified value.

Name		Specification Sheet – GT		
Version	Version 01		Page	12
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

a current selected from Table 2 is applied. Vent test Table 3> Diameter (mm) DC Current (A) 22.4 or less 1 Criteria>			Condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test
The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case. Condition> The maximum permissible ripple current is the maximum A.C current at 100kHz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: Coefficient Freq. (Hz) 50 120 300 1k 100k Cap. (μF) 15~33 0.45 0.55 0.70 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.0	4.16		<table 3=""> Diameter (mm) DC Current (A)</table>
The maximum permissible ripple current is the maximum A.C current at 100kHz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: Coefficient Freq.			<criteria> The vent shall operate with no dangerous conditions such as flames or dispersion</criteria>
4.17 cripple current, temperature 15~33 0.45 0.55 0.70 0.90 1.00 0.65 0.70 0.85 0.95 1.00 0.65 0.75 0.90 0.98 1.00 0.65 0.75 0.90 0.98 1.00 0.90		permissible (ripple	The maximum permissible ripple current is the maximum A.C current at 100kHz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: Coefficient Freq. (Hz) 50 120 300 1k 100k
temperature 390~1000 0.65 0.75 0.90 0.98 1.00	4.17		15~33 0.45 0.55 0.70 0.90 1.00
coefficient) 1200~3900 0.75 0.80 0.95 1.00 1.00		· ·	390~1000 0.65 0.75 0.90 0.98 1.00
		coefficient)	1200~3900 0.75 0.80 0.95 1.00 1.00

Name		Specification Sheet – GT					
Version	01		Page	13			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

Heavy metals Cadmium and cadmium compounds		Substances					
Heavy metals Mercury and mercury compounds Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Polybrominated biphenyls (PBB) Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)		Cadmium and cadmium compounds					
Mercury and mercury compounds Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Chloinated organic Polychlorinated terphenyls (PCT) Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Polybrominated biphenyls (PBB) Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Heavy metals	Lead and lead compounds					
Chloinated organic Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Polybrominated biphenyls (PBB) Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Ticavy metais	Mercury and mercury compounds					
Chloinated organic Polychlorinated naphthalenes (PCN) Polychlorinated terphenyls (PCT) Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Brominated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)		Hexavalent chromium compounds					
organic compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Brominated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)		Polychlorinated biphenyls (PCB)					
compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Chloinated	Polychlorinated naphthalenes (PCN)					
Other chlorinated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	organic	Polychlorinated terphenyls (PCT)					
Brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	compounds	Short-chain chlorinated paraffins(SCCP)					
Brominated organic compounds Polybrominated diphenylethers(PBDE) (including decabromodiphenyl ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)		Other chlorinated organic compounds					
Polybrominated diphenylethers(PBDE) (including decabromodiphenylethers(PBDE)) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	D	Polybrominated biphenyls (PBB)					
compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)		Polybrominated diphenylethers(PBDE) (including decabromodiphenyl					
Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	_	ether[DecaBDE])					
Triphenyltin compounds(TPT) Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)		Other brominated organic compounds					
Asbestos Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Tributyltin comp	ounds(TBT)					
Specific azo compounds Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Triphenyltin com	pounds(TPT)					
Formaldehyde Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Asbestos						
Polyvinyl chloride (PVC) and PVC blevds Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Specific azo com	pounds					
Beryllium oxide Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorooctane sulfonates (PFOS)	Formaldehyde						
Beryllium copper Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluoroctane sulfonates (PFOS)	Polyvinyl chlorid	le (PVC) and PVC blevds					
Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP) Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluoroctane sulfonates (PFOS)	Beryllium oxide						
Hydrofluorocarbon (HFC), Perfluorocarbon (PFC) Perfluorocarbon (PFOS)	Beryllium copp	er					
Perfluorooctane sulfonates (PFOS)	Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
	Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)					
Specific Benzotriazole	Perfluorooctane s	sulfonates (PFOS)					
eperme ermoniment	Specific Benzotr	iazole					

Name		Specification Sheet – GT				
Version	01		Page	14		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

Name		Specification Sheet – GT					
Version	01		Page	15			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements.

Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3) Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

Name		Specification Sheet – GT						
Version	01		Page	16				
	STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ 6.3~ φ 16mm:2mm minimum, φ 18~ φ 35mm:3mm minimum, φ 40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (3) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Name		Specification Sheet – GT				
Version	01		Page	17		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k \Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 - (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Name		Specification Sheet – GT					
Version	01		Page	18			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried.
 - The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
- Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- . Alkali solvents : could attack and dissolve the aluminum case.
- . Petroleum based solvents: deterioration of the rubber seal could result.
- . Xylene : deterioration of the rubber seal could result.
- . Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers.

After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.

Name		Specification Sheet – GT						
Version	01		Page	19				
STANDARD MANUAL								

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail.

After one year, a capacitor should be reconditioned by applying rated voltage in series with a $1000 \,\Omega$, current limiting resistor for a time period of 30 minutes .

If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

- * Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.
- * Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Name		Specification Sheet – GT					
Version	01		Page	20			
STANDARD MANUAL							

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminum Electrolytic Capacitors - Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 MAL203125221E3 MAL204216159E3 ESMG101ETD100MF11S RBC-25V-10UF-4X7 RE3-35V222MJ6# RFO100V471MJ7P# B41041A2687M8 B41041A7226M8 B41044A7157M6 EKRG250ELL100MD07D EKXG201EC3101ML20S

EKXG351ETD6R8MJ16S EKZM160ETD471MHB5D EPA-201ELL151MM25S NCD681K10KVY5PF NRLF103M25V35X20F

KM4700/16 KME50VB100M-8X11.5 RXJ222M1EBK-1625 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B MAL211929479E3

40D506F050DF5A TE1202E 36DA273F050BB2A KME25VB100M-6.3X11 511D336M250EK5D 511D337M035CG4D

515D477M035CG8PE3 052687X EKMA500ELL4R7ME07D EKRG100ETC221MF09D NRE-S560M16V6.3X7TBSTF

ERZA630VHN182UP54N MAL214099813E3 MAL211990518E3 MAL204281229E3 NEV680M35EF 686KXM050M ERS1VM222L30OT

EGW2GM150W16OT EGS2GM6R8G12OC EHS2GM220W20OT ERF1VM222L30OT ERF1KM151G20OT EKZE500ELL101MHB5D

EKMM251VSN221MP25S RGA221M1HBK-1016G