

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION

規格書

CUSTOMER: DATE:

(客戶): 志盛翔 (日期):2024-05-30

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : GT $63V560\mu F(\phi 12.5X20)$

VERSION (版本) : 01

Customer P/N :

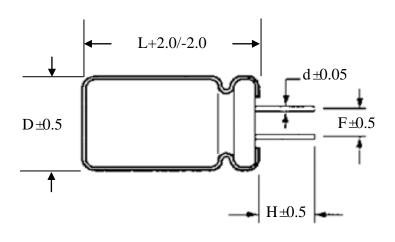
SUPPLIER :

SUPPL	IER
PREPARED (拟定)	CHECKED (审核)
莫璐瑶	付婷婷

OMER
SIGNATURE
(签名)

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT			ALTERN.	ATION HIS ECORDS	TORY
Dani	Data	GT SERIE		Contonto			A
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver


Version	01		Page	1
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

Table 1 Product Dimensions and Characteristics

Unit: mm

Shape Code	D	12.5
Shape Code	L	20
	F	5.0
CB Type	Н	3.5
	d	0.6

Table 1:

]		SAMXON Part No.	WV (Vdc)	Cap. (μF)	Cap. tolerance	Temp. range(°C)	tan δ (120Hz, 20°C)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Impedance at 25°C 100KHz (Ωmax)	Load lifetime (Hrs)		nsion nm) F	фd	Sleev e
	1	EGT567M1JI20CB**P-R	63	560	-20%~+20%	-40~105	0.09	353	690	0.128	10000	12.5X20	5.0	0.6	PET

Version 01 Page 2	01
-------------------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

CONTENTS	
	Sheet
1. Application	4
2. Part Number System	4
3. Construction	5
4. Characteristics	5~10
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 $\tan \delta$	
4.5 Terminal strength	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
4.16 Maximum permissible (ripple current)	
5. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15

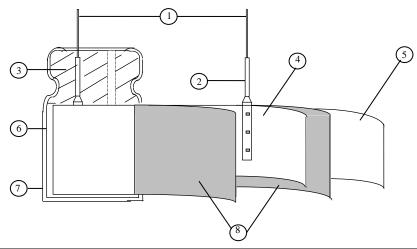
ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System	1 2				111								
Series Cap CutP Ode ToL (**) Code Exc Cap CutP Ode ToL (**) Code Cap CutP Ode ToL (**) Code Cap CutP Ca		3 4		_ ` _	_	8 9	9	10 1	1 12	13 14	1	5 16 1	7
Series Cap (uP) Code Tol. (%) Code a5	E G S	S .	105	ľ	/ I	1 H	I	D 1	1 1	TC		SA I	Р
Series Cap (uP) Ode	SERIES	CAF	ACITAN	ICE TOLE	RANCE	VOLTA	GE	CASE	SIZE	TYPE			
EKE Color										- 1	PROD	UCT LINE MATI	ERIAL
Second S		Cap (uF)	Code	Tol. (%)	Code					Feature	Code	SAMXON Produc	t Line
Control Cont		0.1	104	±5	J	·		3	В	Radial bulk	RR		
EGM 0.33 334		0.22	224	±10	к	4	0G	4	C	Ammo Tap	ina	have H,A,B,C,D,E	,M or
Company Comp	EKG	0.22	224	±15	L			6.3	E	{ 	$\overline{-}$	0,1,2,3,4,5,9	,.
EGY 0.47 474 230 N 16 C 13 J 13.5 V 15 15 15 15 15 15 15		0.33	334	±20	м	10	1A	10	G	2.0mm Pitch	-''-	Sleeve Material	Code
EGK SH SH SH SH SH SH SH S		0.47	474	±30	N			13	J	2.5mm Pitch	ΤU	PET	Р
Suppose Supp	EGK		105	-40		i——		14	4	3.5mm Pitch	TV		≖
BOP STATE	ESH	<u> </u>	100	0	w	:			K	5.0mm Pitch	тс		l se
Suppose Supp		2.2	225		А	:		18		 	\vdash		even
Suppose Supp	EGY	3.3	335	-20	\vdash			20	M	Lead Cut &	rorm		ıater
SCP SOCIED Soci	ERR	47	475		С	-		22 25	0	СВ-Туре	CB		8 8
SCP SOCIED Soci	ERE	4.7	4/5		x	i——		34	w	CE-Type	CE		3,0
Part		10	106		\vdash	:		40	R	HE-Type	HE		here
Suppose Supp	EBD	22	226		S	i——	1T				-	PVC	≦
Suppose Supp	ERB		226		В	i———		51	S	KD-Type	KD		be bi
Suppose Supp			330			90	19			FD-Type	FD		2
Suppose Supp		47	476		v	i——				EH-Type	EH		1 Se
Suppose Supp	ERW	100	107		0	125	2B	Len. (mm)	Code	PCB Termi	nal		inte
BOP STATE		220	227		\vdash			5	05		$\overline{}$		₹
Solution Signature Signa		220	221		т	180	2P	7	07		SW		lg.
Column C	EDP	330	337		F	:		10.2	T2	Snap-In	SX		
EKP	EHP	470	477	+50				11.5	1A	i	sz		
EPK EEP EEP EEP EEP EEP EEP EVP Same EEP EVP EGP EWR EWR					F			12.5	1B	Lug	sg		
FFP 22000 229 +20 310 28 25 25 25 25 25 25 25		2200	228			:		13.5	1C		\vdash		
Superior Superior	EFP	22000	229	+20		i———		25	25	i 	OS		
EWR		33000	339		R	:		30	30		06		
EWI EWT EWX 100000 10T		47000	470			I——	2V	35	35		T5		
Tour Color	EWI	47000	4/9	+30				50	50	Screw	Т6		
Main	EWX	100000	10T		1	385	2Y	100	1L	}	\vdash		
EWL EWB 220000 22T	EWH	150000	15T	-				110	1M]	\vdash		
VS1 VT1 330000 33T		220000	22T			450	2W	130	1P		D6		
330000 33T	VS1	220000	221		D	i — — — — — — — — — — — — — — — — — — —		150	1R]			
V72	VTD	330000	33T	-	 	·		160	15] 			
150000 15M 200 2L 215 2A 210 2M 220 2N 240 2Q 20 2R 330000 33M 250 250 25		1000000	10M		н	630	23			[]			
215 2A 210 2M 2200000 22M 220 2N 240 2Q 3300000 33M 250 2R 250 2R	VTL	1500000	1514					190	1V				
220 2N 240 2Q		1330000	1,5141					215	2A	j I			
3300000 33M 250 2R 260 2S		2200000	22M					220	2N				
		3300000	33M					250	2R	i I			
										j			


Version 01 Page 4

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature :15°C to 35°C
Relative humidity : 45% to 85%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version 01	Page	5
------------	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

Table	ITEM				PERF	ORMAN	CE			
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)									
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requency oltage emperat	: N ure : 20)±2℃	han 0.5V				
4.3	Leakage current	<condition> Connecting the and then, measured <criteria> Refer to Table</criteria></condition>	ne capac asure Le		-	ive resisto	or (1kΩ	±10Ω)	in series	for 2 min
4.4	tan δ	<condition> See 4.2, Norn <criteria> Refer to Table</criteria></condition>	m Capac	itance, fo	or measur	ring frequ	ency, vo	oltage and	l tempera	ature.
4.5	Terminal strength	0.5r Over 0.	rength of capacitor, rength of apacitor, seconds, rer of lead mm and leads to be seconds.	r, applied f Termina applied f and then d wire less 0.8mm	d force talls. Force to be bent it forces	ent the ter or 90° to sile force 1 (kgf) 5 (0.51) 0 (1.0)	rminal (1 its origir N	~4 mm final position Bending (kg 2.5 (0	rom the rom within force N gf) 0.25)	ubber) fo

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition></condition>									
		STEP	Testin	g Temper	rature(°C)		Time				
	1	1 20 ± 2		Time	Time to reach thermal equilibrium						
	2		-40(-25)	±3	Time	to reach t	hermal e	quilibri	ım		
	3		20±			to reach t					
	4		105 ± 2).		to reach t					
	5		20 ± 2			to reach t		•			
		<criteria></criteria>		20 - 2	'	Time	to reacti t	inerman e	quinori	4111	
		a. In step 4, tan	ıδ shall	l be withi	n the limi	of Item	4 4The le	eakage ci	irrent m	easured	
		shall not more t						Junuge e.		cusurcu	
	Temperature	b. In step 5, ta			-		n 4.4The	leakage	current	shall not	
	characteristi	more than the s						C			
4.6	cs	c. In step 2,At-	-		npedance	(z) ratio s	shall not e	exceed th	ne value	of the	
		following table.			•						
		Working Voltage	ge (V)	6.3	10	16	25	35	50	63	
		Z-25°C/Z+20)°C	4	3	2	2	2	2	2	
	Z-40°C/Z+20)°C	8	6	4	3	3	3	3		
		For capacitance									
		•		impedan							
		<condition></condition>							ot a tamp	nove ture o	
		According to IE		4-4No.4.1	3 method	s, The ca	pacitor is	s stored a	-		
		According to IE $105 \% \pm 2$ with	DC bia	4-4No.4.1	3 method	s, The ca	pacitor is	s stored a	le 1 Ioa	d life tim	
		According to IE $105 \text{C} \pm 2 \text{with}$ hours. (The sum	DC bia n of D0	4-4No.4.1 s voltage C and rip	3 method plus the r	s, The ca ated ripp voltage	pacitor is le current	s stored a for Tab exceed	le 1 loa	d life time	
	Lord	According to IE $105 \% \pm 2$ with hours. (The sun voltage) Then	DC bian of DC the pro	4-4No.4.1 as voltage C and rip oduct sh	3 method plus the r pple peak ould be	s, The ca ated ripp voltage a tested a	pacitor is le current shall not fter 16 l	s stored a for Tab exceed hours re	le 1 loa	d life time	
47	Load	According to IE $105 \text{C} \pm 2 \text{with}$ hours. (The sum	DC bian of DC the pro	4-4No.4.1 as voltage C and rip oduct sh	3 method plus the r pple peak ould be	s, The ca ated ripp voltage a tested a	pacitor is le current shall not fter 16 l	s stored a for Tab exceed hours re	le 1 loa	d life time	
4.7	life	According to IE $105 ^{\circ}\text{C} \pm 2 \text{ with}$ hours. (The sun voltage) Then atmospheric con	DC bia m of DC the pro nditions	4-4No.4.1 as voltage C and rip oduct shown. The resu	3 method plus the r pple peak ould be ult should	s, The ca ated ripp voltage a tested as meet the	pacitor is le current shall not fter 16 l followin	s stored a for Tab exceed hours re	le 1 loa	d life time d working	
4.7		According to IE $105 ^{\circ}\text{C} \pm 2 \text{ with}$ hours. (The sun voltage) Then atmospheric con < Criteria>	DC bia m of DC the pro nditions tic shall	4-4No.4.1 as voltage C and rip oduct shown. The result in the the	3 method plus the r pple peak ould be ult should	s, The ca ated ripp voltage tested as meet the g require	pacitor is le current shall not fter 16 l followin ments.	s stored a for Tab exceed hours re g table:	le 1 loa	d life time	
4.7	life	According to IE $105 ^{\circ}\text{C} \pm 2 ^{\circ}\text{with}$ hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist	DC bia m of DC the pro nditions tic shall current	4-4No.4.1 as voltage C and rip oduct shown. The result meet the	3 method plus the r pple peak ould be alt should	s, The ca ated ripp voltage s tested as meet the g require 4.3 shall	pacitor is le current shall not fter 16 l followin ments. be satisfi	s stored a for Tab exceed hours re g table:	le 1 loa	d life time d working	
4.7	life	According to IE $105 \text{C} \pm 2 \text{with}$ hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage	DC bia m of DC the pro nditions tic shall current	4-4No.4.1 as voltage C and rip oduct show. The result meet the mange	3 method plus the r ple peak ould be alt should c following Value in	s, The ca ated ripp voltage tested at meet the g require 4.3 shall 25% of	pacitor is le current shall not fter 16 l followin ments. be satisfi initial va	s stored a for Tab exceed hours re g table: ed lue.	le 1 loa the rated covering	d life time d working	
4.7	life	According to IE $105 \text{C} \pm 2 \text{with}$ hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage Capacitan δ	DC bia m of DC the pro- nditions tic shall current nce Cha	4-4No.4.1 as voltage C and rip oduct shown. The result meet the lange	3 method plus the reple peak ould be alt should be following Value in the within ±	s, The ca ated ripp voltage tested at meet the g require 4.3 shall 25% of than 200	pacitor is le current shall not fter 16 l followin ments. be satisfi initial va	s stored at for Tab exceed hours reg table:	le 1 loa the rated covering d value.	d life time d working	
4.7	life	According to IE $105 \% \pm 2$ with hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage Capacitan	DC bia m of DC the pro- nditions tic shall current nce Cha	4-4No.4.1 as voltage C and rip oduct shown. The result meet the lange	3 method plus the reple peak ould be alt should be following Value in the Within ± Not more	s, The ca ated ripp voltage tested at meet the g require 4.3 shall 25% of than 200	pacitor is le current shall not fter 16 l followin ments. be satisfi initial va	s stored at for Tab exceed hours reg table:	le 1 loa the rated covering d value.	d life time	
4.7	life	According to IE $105 \text{C} \pm 2 \text{with}$ hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage Capacitan δ	DC bia m of DC the pro- nditions tic shall current nce Cha	4-4No.4.1 as voltage C and rip oduct shown. The result meet the lange	3 method plus the reple peak ould be alt should be following Value in the Within ± Not more	s, The ca ated ripp voltage tested at meet the g require 4.3 shall 25% of than 200	pacitor is le current shall not fter 16 l followin ments. be satisfi initial va	s stored at for Tab exceed hours reg table:	le 1 loa the rated covering d value.	d life time	
4.7	life	According to IE $105 ^{\circ}\text{C} \pm 2 ^{\circ}\text{with}$ hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage Capacitan $\tan \delta$ Appearar	DC bia m of DC the pro- nditions tic shall current nce Cha	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the	3 method plus the rople peak ould be all should be following Value in ± Not more There sha	s, The ca ated ripp voltage tested at meet the g require 4.3 shall 225% of than 200 Il be no	pacitor is le current shall not feer 16 l followin ments. be satisfi initial va 10% of the eakage o	s stored a for Tab exceed hours reg table: ed lue. specifie f electro	d value.	d life time d working g time a	
4.7	life	According to IE $105 \% \pm 2$ with hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage Capacitat $\tan \delta$ Appearar <condition></condition> The capacitors at $1000+48/0$ hour	DC bia m of DC the pro- nditions tic shall current nce Cha- nce	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange	a method plus the reple peak ould be alt should be alt should be alt should be following. Value in a Within ± Not more. There shall the no voltage of the period the speriod the speriod the speriod the plus the period the speriod the plus the period the plus the properties the period the plus the period	s, The caracted rippy voltage stested as meet the grequire 4.3 shall 1.25% of than 200 ll be no line capacitate.	pacitor is le current shall not feer 16 le followin ments. be satisfi initial va 10% of the eakage o	s stored a for Tab exceed hours reg table: ed lue. specifie f electro	d value. lyte.	d life time a discourse when the test	
4.7	life test	According to IE $105 ^{\circ}\mathrm{C} \pm 2$ with hours. (The sun voltage) Then atmospheric con <criteria></criteria> The characterist Leakage Capacitan $\tan \delta$ Appearar <condition></condition> The capacitors at $1000+48/0$ hour chamber and be	n of DC the productions tic shall current nce Channee	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange	a 3 method plus the reple peak ould be alt should be alt should be following. Walue in a Within ± Not more There shauth no voltage period the property of the period the property of the period the property of the period t	s, The ca ated ripp voltage stested as meet the g require 4.3 shall (25% of than 200 Ill be no lange applied age applied the capacitroom ten	pacitor is le current shall not fter 16 le followin ments. be satisfi initial va 10% of the leakage of the leak	s stored a for Tab exceed hours reg table: ed lue. specifie f electro mperatural be reme for 4~8	d value. lyte. re of 105 oved fro hours.	d life time a working time a s±2°C form the tess Next the	
	life test	According to IE $105 ^{\circ}\mathrm{C} \pm 2$ with hours. (The sum voltage) Then atmospheric consciences a constant $1000+48/0$ hour chamber and be shall be connected $105 ^{\circ}\mathrm{C}$	n of DC the productions tic shall current nce Character then see allowed to a second to the production of DC the p	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange stored with the body as the series I	and method plus the reple peak ould be alt should be alt should be following Value in a Within ± Not more There shall be period the period the following representation of the period the period the following representation of the period the period the following representation of the period the per	s, The ca ated ripp voltage a tested at meet the g require 4.3 shall 225% of than 200 Il be no	pacitor is le current shall not fter 16 le followin ments. be satisfi initial value of the leakage of the tors shall apperature s ± 100 Ω	s stored a for Tab exceed hours reg table: ed lue. specifie f electro mperatural be reme for 4~8) with I	d value. lyte. re of 105 oved fro hours. D.C. rate	d life time a discovery with the test working time a discovery dis	
4.7	life test Shelf life	According to IE $105 ^{\circ}\mathrm{C} \pm 2$ with hours. (The sun voltage) Then atmospheric con $<$ Criteria> The characterist Leakage Capacitate $\tan \delta$ Appearar $<$ Condition> The capacitors at $1000+48/0$ hour chamber and be shall be connect applied for 30m	n of DC the productions tic shall current nce Character then see allowed to a second to the production of DC the p	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange stored with the body as the series I	and method plus the reple peak ould be alt should be alt should be following Value in a Within ± Not more There shall be period the period the following representation of the period the period the following representation of the period the period the following representation of the period the per	s, The ca ated ripp voltage a tested at meet the g require 4.3 shall 225% of than 200 Il be no	pacitor is le current shall not fter 16 le followin ments. be satisfi initial value of the leakage of the tors shall apperature s ± 100 Ω	s stored a for Tab exceed hours reg table: ed lue. specifie f electro mperatural be reme for 4~8) with I	d value. lyte. re of 105 oved fro hours. D.C. rate	d life time a discovery with the test working time a discovery dis	
	life test	According to IE $105 ^{\circ}\mathrm{C} \pm 2$ with hours. (The sum voltage) Then atmospheric conscience (Criteria) The characterist Leakage Capacitantan δ Appearance (Condition) The capacitors at $1000+48/0$ hour chamber and be shall be connected.	n of DC the productions tic shall current nce Character then see allowed to a second to the production of DC the p	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange stored with the body as the series I	and method plus the reple peak ould be alt should be alt should be following Value in a Within ± Not more There shall be period the period the following representation of the period the period the following representation of the period the period the following representation of the period the per	s, The ca ated ripp voltage a tested at meet the g require 4.3 shall 225% of than 200 Il be no	pacitor is le current shall not fter 16 le followin ments. be satisfi initial value of the leakage of the tors shall apperature s ± 100 Ω	s stored a for Tab exceed hours reg table: ed lue. specifie f electro mperatural be reme for 4~8) with I	d value. lyte. re of 105 oved fro hours. D.C. rate	d life timed working time a state of the test of the t	
	life test Shelf life	According to IE $105 ^{\circ}\mathrm{C} \pm 2$ with hours. (The sun voltage) Then atmospheric con $<$ Criteria> The characterist Leakage Capacitate $\tan \delta$ Appearar $<$ Condition> The capacitors at $1000+48/0$ hour chamber and be shall be connect applied for 30m	n of DC the productions tic shall current nce Character then see allowed to a second to the production of DC the p	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange stored with the body as the series I	and method plus the reple peak ould be alt should be alt should be following Value in a Within ± Not more There shall be period the period the following representation of the period the period the following representation of the period the period the following representation of the period the per	s, The ca ated ripp voltage a tested at meet the g require 4.3 shall 225% of than 200 Il be no	pacitor is le current shall not fter 16 le followin ments. be satisfi initial value of the leakage of the tors shall apperature s ± 100 Ω	s stored a for Tab exceed hours reg table: ed lue. specifie f electro mperatural be reme for 4~8) with I	d value. lyte. re of 105 oved fro hours. D.C. rate	d life timed working time a state of the test of the t	
	life test Shelf life	According to IE $105 ^{\circ}\mathrm{C} \pm 2$ with hours. (The sun voltage) Then atmospheric con $<$ Criteria> The characterist Leakage Capacitate $\tan \delta$ Appearar $<$ Condition> The capacitors at $1000+48/0$ hour chamber and be shall be connect applied for 30m	n of DC the productions tic shall current nce Character then see allowed to a second to the production of DC the p	4-4No.4.1 as voltage C and rip oduct sh . The resu I meet the ange stored with the body as the series I	and method plus the reple peak ould be alt should be alt should be following Value in a Within ± Not more There shall be period the period the following representation of the period the period the following representation of the period the period the following representation of the period the per	s, The ca ated ripp voltage a tested at meet the g require 4.3 shall 225% of than 200 Il be no	pacitor is le current shall not fter 16 le followin ments. be satisfi initial value of the leakage of the tors shall apperature s ± 100 Ω	s stored a for Tab exceed hours reg table: ed lue. specifie f electro mperatural be reme for 4~8) with I	d value. lyte. re of 105 oved fro hours. D.C. rate	d life time a discovery with the test working time a discovery dis	

Version	01		Page	7	l
---------	----	--	------	---	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

Ţ		<criteria></criteria>
		The characteristic shall meet the following requirements.
		Leakage current Value in 4.3 shall be satisfied
4.0	Shelf	Capacitance Change Within $\pm 25\%$ of initial value.
4.8	life	tan δ Not more than 200% of the specified value.
	test	Appearance There shall be no leakage of electrolyte.
		Remark: If the capacitors are stored more than 1 year, the leakage current may increase
		Please apply voltage through about 1 k Ω resistor, if necessary.
		<condition></condition>
		Applied a surge voltage to the capacitor connected with a (100 \pm 50)/ C_R ($k\Omega$) resistor
		The capacitor shall be submitted to 1000 cycles, each consisting of charge of 30 ±5s
		followed discharge of 5 min 30s.
		The test temperature shall be 15~35°C.
		C _R :Nominal Capacitance (μ F) <criteria></criteria>
4.0	Surge	
4.9	test	Leakage current Not more than the specified value.
		Capacitance C ange Within $\pm 15\%$ of initial value.
		tan δ Not more than the specified value.
		Appearance There shall be no leakage of electrolyte.
		Attention:
		This test simulates over voltage at abnormal situation only. It is not applicable to suc
		over voltage as often applied.
4.10	Vibration test	The following conditions shall be applied for 2 hours in each 3 mutually perpendicula directions. Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed i place with a bracket. Within 30° 4mm or less
		To be soldered <criteria> After the test, the following items shall be tested: Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.</criteria>

Version	01		Page	8
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition></condition>					
		The capacitor shall be tes	ted under the following	conditions: Sn-Cu solder			
		Soldering temperature	: 250±3°C				
		Dipping depth	: 2mm				
1 1 1	Solderability	Dipping speed	: 25±2.5mm	n/s			
4.11	test	Dipping time	: 3±0.5s				
		<criteria></criteria>					
		C. C. 17	A minimu	m of 95% of the surface be	eing		
		Coating quality	immersed				
		<condition></condition>					
		Terminals of the capacito	or shall be immersed in	to solder bath at 260±5	5°Cfor10±		
		1seconds or $400 \pm 10^{\circ}\text{C}$ for					
		Then the capacitor shall b					
	Resistance to	1~2 hours before measure		temperature and normar in	annarty 10		
4.12	solder heat	<criteria></criteria>					
7.12	test	Leakage current	Not more than t	the specified value.			
test		Capacitance Change	Within ±10%				
		tan δ	No more than	the specified value.			
	Appearance		no leakage of electrolyte.				
		TT ····					
		<condition></condition>					
		Temperature Cycle:Accord			all be		
		placed in an oven, the cor					
			emperature	Time			
		(1)+20°C		≤3 Minutes			
	Change of	(2)Rated low tempera	ature (-40°C) (-25°C)	30±2 Minutes			
4.13	temperature	(3)Rated high temper	rature (+105°C)	30±2 Minutes			
	test	(1) to $(3)=1$ cycle, to	tal 5 cycle				
		<criteria></criteria>					
		The characteristic shall m					
			Not more than the	-			
		tan δ	Not more than the	•			
		Appearance	There shall be no le	eakage of electrolyte.			
		<condition></condition>					
		Humidity Test:	4NI 4.10 (1.1	1 11 1	500 L 0		
		According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 500 ± 8					
		hours in an atmosphere of 90~95% R H .at 40 ± 2 °C, the characteristic change shall					
		meet the following requirement.					
		<criteria></criteria>	Not ma ::- 41 41	oified vol			
4.14	Damp heat	Leakage current		Not more than the specified value.			
	test	Capacitance Change	Within $\pm 20\%$ of init				
		tan δ	Not more than 120 ^o value.	% of the pecified			
		Appearance	There shall be no leak	age of electrolyte.			
			1				

Version 01	Page 9
------------	--------

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.15	Vent test	<condition> The following test only apply with vent. D.C. test The capacitor is connected w current selected from below <table 3=""> Diameter (mm) DC C 22.4 or less Over 22.4 <criteria> The vent shall operate with no pieces of the capacitor and/or</criteria></table></condition>	vith its potable is apurrent (A) 1 10 o dangero	larity revoplied.	ersed to	a DC po	ower sou	rce. Then a
4.16	Maximum permissible (ripple current)	Condition> The maximum permissible at 120Hz and can be applie Table-1 The combined value of D.C rated voltage and shall not Frequency Multipliers: Coefficient Cap. (μF) 15~33 39~330 390~1000 1200~3900	ed at maxi	mum ope	rating te	mperatu	ire	
		Temperature Coeffici Capacitor ambient temperature	ent: ≤65°C	75°C	85°	C (95°C	105°C

Version	01		Page	10
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Heavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
	Polybrominated biphenyls (PBB)
Brominated .	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	ounds(TBT)
Triphenyltin com	npounds(TPT)
Asbestos	
Specific azo com	pounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane s	sulfonates (PFOS)
Specific Benzotr	iazole

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanδ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

(5) Pulse Current

The pulse current cannot exceed 10 times the rated ripple current at 120Hz.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

Alkali solvents : could attack and dissolve the aluminum case.

Petroleum based solvents: deterioration of the rubber seal could result.

Xylene : deterioration of the rubber seal could result.

Acetone : removal of the ink markings on the vinyl sleeve could result.

- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01		Page	14
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

SAMXON

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC

NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB

NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B 476CKH100MSA 477RZS050M

UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 511D336M250EK5D 052687X ECE-A1CF471 EKXG451ELL820MM30S 686CKR050M NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N UPL1A331MPH

NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF

NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC

TER330M50GM 477KXM035MGBWSA B43827A1106M8