

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶):志盛翔

DATE: (日期):2023-05-05

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: KM $450V39\mu F(\varphi 16x20)$
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPLI	ER	CUSTOMER					
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)				
周园	付婷婷						

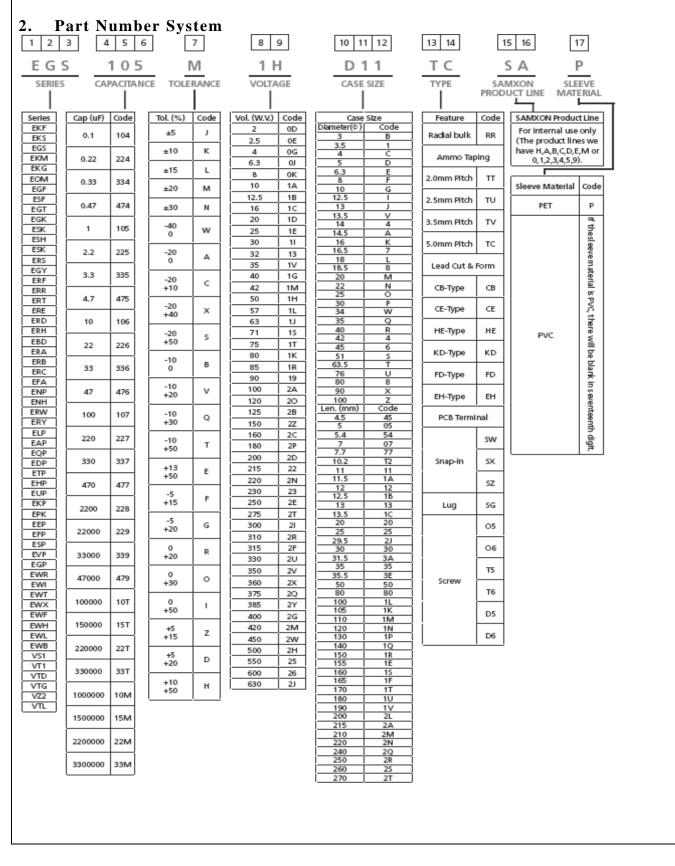
ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	SPECIFICATION KM SERIES						ALTERNATION HISTORY RECORDS			
Rev.	Date	Mark		Page	Contents	Purpose	Drafter	Approver		
			•							
	Version		01				Page	1		

		ΓΕΟ		ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES					SAMXON					
	1 Product Dimens	sions an	nd Char	acteristics							Unit: mm			
7	afety vent for $\geq \phi$ 6.3 L+ α /-2.0	15 min		d±0.05	$\Phi \mathbf{D} + \beta$		£0.5	α β * lf it is flat ru surface.	ΦD<20:	$\beta = 0.5; \Phi I$	≥20 : α=2.0 D≥20 : β =1.		rubber	
Table 1:	SAMXON	WV	Cap.	Cap	Temp.	tanδ (120Hz,	Leakage Current	Max Ripple Current at 105°C 120Hz	ESR at 25℃ 100kHz	Load lifetime		ension (mm)		
0.	Part No. M396M2WK20RR**A1	(Vdc) 450	(μF) 39	tolerance	range(°C)	20°C)	(µA,2min) 567	(mA rms) 229	(Ω) 1.2	(Hrs) 2000	D×L 16X20	F 7.5	фd 0.8	

Varcian	01	Daga	0
Version	01	Page	2

	C O N T E N T S	Sheet
l.	Application	4
2.	Part Number System	4
3.	Construction	5
1.	Characteristics	5 10
4.1	Rated voltage & Surge voltage	5~10
4.2	Capacitance (Tolerance)	
4.3	Leakage current	
1.4	tan δ	
4.5	Terminal strength	
.6	Temperature characteristic	
.7	Load life test	
.8	Shelf life test	
1.9	Surge test	
.10) Vibration	
4.1	l Solderability test	
4.12	2 Resistance to solder heat	
	3 Change of temperature	
	4 Damp heat test	
	Vent test	
	Maximum permissible (ripple current) ist of "Environment-related Substances to be Controlled ('Controlled	
	ibstances')"	11
	Attachment: Application Guidelines	12~15


Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

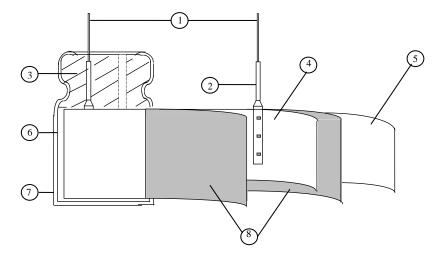
SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Version

01


4

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material			
1	Lead line	Tinned CP wire (Pb Free)			
2	2 Terminal Aluminum wire				
3	Sealing Material	Rubber			
4	Al-Foil (+)	Formed aluminum foil ≧ 590VF			
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil			
6	Case	Aluminum case			
7	Sleeve	PET			
8	Separator	Electrolyte paper			

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Varian	01		5
version	01		3
V CI SIOII	01		5

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Tabl	e 2										
	ITEM				Р	ERFOR	MANC	E			
	Rated voltage (WV)	WV (V.DC) SV (V.DC)								63 79	100 125
4.1			1.00	200				100			
	Surge voltage (SV)	WV (V.DC) SV (V.DC)	160 200	200 250	220 270		350 400	400 450	420 470	450 500	
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	$<$ Condition>Measuring Frequency: 120Hz±12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$ $<$ Criteria>Shall be within the specified capacitance tolerance.								
4.3	Leakage current	Connecting t minutes, and <criteria></criteria>	<condition></condition> Connecting the capacitor with a protective resistor $(1k \Omega \pm 10 \Omega)$ in series for 2 minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1								
4.4	tan δ	See 4.2, Nor < Criteria >	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. <criteria> Refer to Table 1</criteria></condition>								
		Condition> Tensile Str Fixed the or seconds. Bending Str Fixed the ca 90° within f seconds.	ength or capacito rength o pacitor 2~3 seco	r, appli f Term , applie onds, a	ed fo inals. d fore nd the	to ber to bent	t the ter	minal (1 ° to its o	l∼4 mm original	from the	rubber) for
4.5	Terminal strength		er of lea nm and 5mm to	less		(k 5 ((1.0)		(k 2.5 ((0.25) (0.51)	
		<criteri< td=""><td>a></td><td></td><td></td><td></td><td><u> </u></td><td>eakage (</td><td></td><td></td><td>e terminal.</td></criteri<>	a>				<u> </u>	eakage (e terminal.

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition< th=""><th></th><th></th><th></th><th>- [</th><th></th><th></th><th></th><th></th><th></th></condition<>				- [
				ng Tempe			Time				
			1	20 ± 2		Tim		ch therma			
			2	-40(-25)				h thermal			
			3	20 ± 2	2	Time	to reac	h thermal	equilibr	ium	
			4	$105\pm$	2	Time	to reac	h thermal	equilibr	ium	
			5	20 ± 2	2	Time	t rea	ch therma	equilib	rium	
		<criteria< td=""><td>ı></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></criteria<>	ı>								
		a. In step	o 4, tan δ sha	ll be with	in the limi	t of Item	4.4Th	e leakage	current i	neasure	ed
		shall not	more than 8	times of it	ts specifie	d value.					
	Temperature		p 5, tan δ sha		nin the lin	nit of Iter	n 4.4T	he leakage	e current	shall ı	not
4.6	characteristi		n the specifie								
4.0	cs		o 2,At-40℃ ((-25℃), ir	npedance	(z) ratio	shall n	ot exceed	the valu	e of the	•
		following		1	r - 1				T	1	
			Voltage (V)	6.3	10	16	25	35	50	63	
			/Z+20℃	5	4	3	2	2	2	2	
		Z-40°C.	/Z+20℃	10	8	6	4	3	3	3	
		Working V	Voltage ()	100	160~220) 250~	350	400~420	45		
			$/Z+20^{\circ}C$	2	3	2304		6	15		
			/Z+20°C /Z+20°C	3							
			titance value							°C	
		For capac	mance value								
				/ 10001		-					
		Capacitanc	ce, tan δ , and		Add 1.0) per anot	ther 10	00 µ F for			
		Capacitano			Add 1.0) per anot	ther 10	00 µ F for			
		<condition< td=""><td></td><td>d impedar</td><td>Add 1.0 nce shall b</td><td>) per anot e measur</td><td>her 10 ed at 1</td><td>00 µ F for 20Hz.</td><td>Z-40℃</td><td>/Z+20°0</td><td>C.</td></condition<>		d impedar	Add 1.0 nce shall b) per anot e measur	her 10 ed at 1	00 µ F for 20Hz.	Z-40℃	/Z+20°0	C.
		<condition< td=""><td>on></td><td>d impedar 34-4No.4.</td><td>Add 1.0 ace shall b 13 methoo</td><td>) per anot e measur</td><td>her 10 ed at 1</td><td>00 µ F for 20Hz. r is stored</td><td>Z-40°C</td><td>Z+20[°](peratur</td><td>C.</td></condition<>	on>	d impedar 34-4No.4.	Add 1.0 ace shall b 13 methoo) per anot e measur	her 10 ed at 1	00 µ F for 20Hz. r is stored	Z-40°C	Z+20 [°] (peratur	C.
		Conditi According $105 \ C \pm 2$ hours. (The second seco	on> g to IEC6038 2 with DC bi he sum of D	d impedan 34-4No.4. as voltage C and rip	Add 1.0 ace shall b 13 method plus the r pple peak	b per anot e measur ls, The ca ated rippl voltage s	her 10 ed at 1 pacito e curre shall n	00 µ F for 20Hz. r is stored ent for Tal ot exceed	Z-40°C. at a temp ble 1 loa the rate	Z+20°C	C. e of ime
		Conditional According 105 $\ \mathbb{C} \pm 2$ hours. (The voltage)	on> g to IEC6038 2 with DC bi he sum of D Then the p	d impedar 34-4No.4. as voltage C and rip roduct sh	Add 1.0 nce shall b 13 method plus the r ople peak could be	s, The ca ated rippl voltage s	her 10 ed at 1 pacito le curre shall ne fter 16	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r	Z-40°C. at a temp ble 1 loa the rate ecoverin	Z+20°C	C. e of ime
	Load	<ConditionAccording105 °C ±2hours. (The voltage)atmosphere	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition	d impedar 34-4No.4. as voltage C and rip roduct sh	Add 1.0 nce shall b 13 method plus the r ople peak could be	s, The ca ated rippl voltage s	her 10 ed at 1 pacito le curre shall ne fter 16	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r	Z-40°C. at a temp ble 1 loa the rate ecoverin	Z+20°C	C. e of ime
4.7	Load life	$<$ ConditionAccording $105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a>	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should	s, The ca ated rippl voltage s tested at meet the	her 10 ed at 1 pacito e curre shall no fter 16 e follow	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table	Z-40°C. at a temp ble 1 loa the rate ecoverin	Z+20°C	C. e of ime
4.7		$<$ ConditionAccording $105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res <u>Il meet th</u>	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin	ls, The ca ated rippl voltage s tested at meet the g require	her 10 ed at 1 pacito e curre shall no fter 16 follow ments.	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table	Z-40°C. at a temp ble 1 loa the rate ecoverin	Z+20°C	C. e of ime
4.7	life	$<$ ConditionAccording $105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren	d impedar 34-4No.4. as voltage PC and rip roduct sh s. The res Il meet the t	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in	s, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall	her 10 ed at 1 pacito: e curre shall ne fter 16 follow ments. be sati	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied	Z-40°C. at a temp ble 1 loa the rate ecoverin	Z+20°C	C. e of ime
4.7	life	$<$ ConditionAccording $105 \ \ C \pm 2$ hours. (The voltage)atmosphere $<$ CriteriaThe charaLeeCa	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch	d impedar 34-4No.4. as voltage PC and rip roduct sh s. The res Il meet the t	Add 1.0 ace shall b 13 method plus the r pple peak ould be ult should <u>e followin</u> Value in Within <u>-</u>	ls, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall	her 10 ed at 1 pacito e curre shall no fter 16 follow <u>ments.</u> be sati initial	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value.	Z-40°C. at a tempole 1 loa the rate ecoverin	/Z+20°C peraturn id life t d work g time	C. e of ime
4.7	life	$<$ ConditionAccording $105 \ C \pm 2$ hours. (The construction of the construct	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch h δ	d impedar 34-4No.4. as voltage PC and rip roduct sh s. The res Il meet the t	Add 1.0 nce shall b 13 method plus the r pple peak ould be ult should e followin Value in Within <u>-</u> Not more	s, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall <u>20% of</u> than 200	her 10 ed at 1 pacito: e curre shall no fter 16 e follow ments. be sati initial 0% of t	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. he specifi	Z-40°C. at a temp ble 1 loa the rate ecoverin	/Z+20°C peraturn id life t d work g time	C. e of ime
4.7	life	$<$ ConditionAccording $105 \ C \pm 2$ hours. (The construction of the construct	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch	d impedar 34-4No.4. as voltage PC and rip roduct sh s. The res Il meet the t	Add 1.0 nce shall b 13 method plus the r pple peak ould be ult should e followin Value in Within <u>-</u> Not more	s, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall <u>20% of</u> than 200	her 10 ed at 1 pacito: e curre shall no fter 16 e follow ments. be sati initial 0% of t	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value.	Z-40°C. at a temp ble 1 loa the rate ecoverin	/Z+20°C peraturn id life t d work g time	C. e of ime
4.7	life	$<$ ConditionAccording $105 \ C \pm 2$ hours. (The charas)atmosphere $<$ CriteriaThe charasLeeCatamAp	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance	d impedar 34-4No.4. as voltage PC and rip roduct sh s. The res Il meet the t	Add 1.0 nce shall b 13 method plus the r pple peak ould be ult should e followin Value in Within <u>-</u> Not more	s, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall <u>20% of</u> than 200	her 10 ed at 1 pacito: e curre shall no fter 16 e follow ments. be sati initial 0% of t	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. he specifi	Z-40°C. at a temp ble 1 loa the rate ecoverin	/Z+20°C peraturn id life t d work g time	C. e of ime
4.7	life	$<$ ConditionAccording $105 \ C \pm 2$ hours. (The characterized of the characterized of t	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange	Add 1.0 nce shall b 13 method plus the r pple peak ould be ult should e followin Value in Within = Not more There sha	s, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> than 200 all be no	her 10 ed at 1 pacito: e curre shall no fter 16 e follow ments. be sati initial <u>0% of t</u> leakag	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr	Z-40°C. at a tempole 1 loa the rate ecoverin	/Z+20°C perature d life t d work g time	C.
4.7	life	<condition< th="">According$105 \ C \pm 2$hours. (The constraints)voltage)atmosphe<criteria< td="">The charaLeaCatanAppendix<condition< td="">The capacity</condition<></criteria<></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ pearance	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi	Add 1.0 nce shall b 13 method plus the r pple peak ould be ult should e followin Value in Within <u>d</u> Not more There shall th no volta	s, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 200</u> <u>all be no</u>	her 10 ed at 1 pacito: e curre shall ne fer 16 e follow <u>ments.</u> be sati initial <u>0% of t</u> leakag	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu	Z-40°C. at a tempole 1 loa the rate ecovering ed value olyte. re of 10:	$(Z+20)^{\circ}$	C. e of ime cing e at
4.7	life	<condition< th=""><math>According$105 \ C \pm 2$hours. (The charase)<math>atmosphese$<$CriteriaseThe charaseLeeCatamAppendix$<$ConditionThe capacity$1000+48/2$</math></math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res <u>Il meet the</u> t nange stored wi lowing thi	Add 1.0 ace shall b 13 method plus the r pple peak iould be ult should <u>e followin</u> Value in Within <u>=</u> Not more There sha th no volta s period t	ls, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall <u>20% of</u> than 200 all be no	her 10 ed at 1 pacito: e curre shall ne fer 16 follow <u>ments.</u> be sati initial 0% of t leakag	00 µ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. he specifi e of electr temperatu all be rem	Z-40°C. at a tempole 1 loa the rate ecovering ed value olyte. re of 10: oved fro	$(Z+20)^{\circ}$	C. e of ime cing e at for test
	life	<condition< th=""><math>According$105 \ C \pm 3$hours. (Thevoltage)atmosphere<criteria< td="">The charaLeaCatamAppendix<condition< td="">The capacity$1000+48/$chamber ashall be contact</condition<></criteria<></math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then 0 hours. Foll and be allow connected to	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi lowing thi a series I	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in Within <u>1</u> Not more There sha th no volta s period t bilized at limiting re	ls, The ca ated rippl voltage s tested at meet the <u>g require</u> 4.3 shall <u>20% of</u> than 200 all be no all be no all be no be capaci room ten esistor(1k	her 10 ed at 1 pacito: e curres shall ne chall	$00 \ \mu$ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu all be rem r for 4~1 Ω) with	Z-40°C. at a temp ole 1 loa the rate ecoverin ed value olyte. re of 10: oved fro 3 hours. D.C. rat	$(Z+20)^{\circ}$	C. e of ime inge at for test hey age
4.7	life test Shelf life	<condition< th=""><math>According$105 \ C \pm 2$hours. (Thevoltage)atmosphet$<$CriteriaThe charaLeaCatanApplied$<$ConditionThe capacity$1000+48/$chamber as shall be coapplied for</math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi lowing thi a series I	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in Within <u>1</u> Not more There sha th no volta s period t bilized at limiting re	b per anot e measur e measur ls, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>all be no</u> all be no all be no he capaci room ten esistor(1k	her 10 ed at 1 pacito: e curres shall ne chall	$00 \ \mu$ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu all be rem r for 4~1 Ω) with	Z-40°C. at a temp ole 1 loa the rate ecoverin ed value olyte. re of 10: oved fro 3 hours. D.C. rat	$(Z+20)^{\circ}$	C. e of ime inge at for test hey age
	life test Shelf	<condition< th=""><math>According$105 \ C \pm 3$hours. (Thevoltage)atmosphere<criteria< td="">The charaLeaCatamAppendix<condition< td="">The capacity$1000+48/$chamber ashall be contact</condition<></criteria<></math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi lowing thi a series I	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in Within <u>1</u> Not more There sha th no volta s period t bilized at limiting re	b per anot e measur e measur ls, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>all be no</u> all be no all be no he capaci room ten esistor(1k	her 10 ed at 1 pacito: e curres shall ne chall	$00 \ \mu$ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu all be rem r for 4~1 Ω) with	Z-40°C. at a temp ole 1 loa the rate ecoverin ed value olyte. re of 10: oved fro 3 hours. D.C. rat	$(Z+20)^{\circ}$	C. e of ime inge at for test hey age
	life test Shelf life	<condition< th=""><math>According$105 \ C \pm 2$hours. (Thevoltage)atmosphet$<$CriteriaThe charaLeaCatanApplied$<$ConditionThe capacity$1000+48/$chamber as shall be coapplied for</math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi lowing thi a series I	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in Within <u>1</u> Not more There sha th no volta s period t bilized at limiting re	b per anot e measur e measur ls, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>all be no</u> all be no all be no he capaci room ten esistor(1k	her 10 ed at 1 pacito: e curres shall ne chall	$00 \ \mu$ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu all be rem r for 4~1 Ω) with	Z-40°C. at a temp ole 1 loa the rate ecoverin ed value olyte. re of 10: oved fro 3 hours. D.C. rat	$(Z+20)^{\circ}$	C. e of ime inge at for test hey age
	life test Shelf life	<condition< th=""><math>According$105 \ C \pm 2$hours. (Thevoltage)atmosphet$<$CriteriaThe charaLeaCatanApplied$<$ConditionThe capacity$1000+48/$chamber as shall be coapplied for</math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi lowing thi a series I	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in Within <u>1</u> Not more There sha th no volta s period t bilized at limiting re	b per anot e measur e measur ls, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>all be no</u> all be no all be no he capaci room ten esistor(1k	her 10 ed at 1 pacito: e curres shall ne chall	$00 \ \mu$ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu all be rem rr for 4~1 Ω) with	Z-40°C. at a temp ole 1 loa the rate ecoverin ed value olyte. re of 10: oved fro 3 hours. D.C. rat	$(Z+20)^{\circ}$	C. e of ime inge at for test hey age
	life test Shelf life	<condition< th=""><math>According$105 \ C \pm 2$hours. (Thevoltage)atmosphet$<$CriteriaThe charaLeaCatanApplied$<$ConditionThe capacity$1000+48/$chamber as shall be coapplied for</math></condition<>	on> g to IEC6038 2 with DC bi he sum of D Then the p ric condition a> acteristic sha akage curren pacitance Ch δ opearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	d impedar 34-4No.4. as voltage C and rip roduct sh s. The res Il meet the t nange stored wi lowing thi a series I	Add 1.0 ace shall b 13 method plus the r ople peak ould be ult should e followin Value in Within <u>1</u> Not more There sha th no volta s period t bilized at limiting re	b per anot e measur e measur ls, The ca ated rippl voltage s tested at meet the <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>all be no</u> all be no all be no he capaci room ten esistor(1k	her 10 ed at 1 pacito: e curres shall ne chall	$00 \ \mu$ F for 20Hz. r is stored ent for Tal ot exceed 5 hours r ving table sfied value. the specifi e of electr temperatu all be rem rr for 4~1 Ω) with	Z-40°C. at a temp ole 1 loa the rate ecoverin ed value olyte. re of 10: oved fro 3 hours. D.C. rat	$(Z+20)^{\circ}$	C. e or ima cinge a for tes hey cage

Version	01	Page	7

	<criteria></criteria>	
	The characteristic shall meet t	
	Leakage current	Value in 4.3 shall be satisfied
Shelf	Capacitance Change	Within $\pm 20\%$ of initial value.
4.8 life	tan δ	Not more than 200% of the specified value.
test	Appearance	There shall be no leakage of electrolyte.
		stored more than 1 year, the leakage current may
	increase. Please apply voltage	e through about 1 k Ω resistor, if necessary.
4.9 Surge test	<condition>Applied a surge voltage to the The capacitor shall be submitt followed discharge of 5 min 3 The test temperature shall be C_R :Nominal Capacitance (I <r (="" :nominal="" capacitance="" i<br=""></r>Capacitance Change tan δ AppearanceAttention:</br></condition>	e capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor. ted to 1000 cycles, each consisting of charge of 30 ± 5 s, 30s. e 15~35°C. μ F) Not more than the specified value. Within $\pm 15\%$ of initial value. Not more than the specified value. There shall be no leakage of electrolyte. ge at abnormal situation only. It is not applicable to such
4.10 Vibration test	<pre>criteria> After the test, the following in </pre>	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°

Version	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.11	Solderability test	<condition> The capacitor shall be tested Soldering temperature Dipping depth Dipping speed Dipping time <criteria> Coating quality <condition></condition></criteria></condition>	: 250±3°C : 2mm : 25±2.5mm : 3±0.5s	
4.12	Resistance to solder heat test	1 seconds or $400 \pm 10^{\circ}$ C for 3	+1 -0 seconds to 1.5~2.0 left under the normal trement. Not more than the Within $\pm 10\%$ of Not more than the Not more the	b solder bath at $260 \pm 5^{\circ}$ C for $10 \pm$ mm from the body of capacitor . temperature and normal humidity he specified value. of initial value. he specified value. o leakage of electrolyte.
4.13	Change of temperature test	placed in an oven, the condi	ition according as belo perature ure $(-40^{\circ}C)$ $(-25^{\circ}C)$ ure $(+105^{\circ}C)$ 5 cycle t the following require Not more than the s Not more than the s	Time \leq 3Minutes 30 ± 2 Minutes 30 ± 2 Minutesementpecified value.
4.14	Damp heat test	<condition>Humidity Test:According to IEC60384-4Nhours in an atmosphere of 9meet the following requirem<criteria>Leakage currentNCapacitance ChangeNtan δN</criteria></condition>	0.4.12 methods, capac 0~95%R H .at 40±2	citor shall be exposed for 500 ± 8 °C, the characteristic change shall cified value. al value.

Version 01 Page 9	Version	01		Iage	9
-------------------	---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.15	Vent test	<condition> The following tes with vent. D.C. test The capacitor is current selected <table 3=""> Diameter (m 22.4 or les Over 22.4 <criteria></criteria></table></condition>	connected from belo	l with its p	olarity re applied.		-			
		Criteria> The vent shall operate with no dangerous conditions such as flames or dispersi pieces of the capacitor and/or case. Condition>					sion o			
		The maximum at 120Hz and c Table-1 The combined rated voltage a Frequency M Rated Voltage (V)	can be app value of I nd shall n ultipliers: Coefficie	D.C voltage ot reverse	kimum op e and the voltage. q.	erating	temper	ature		ed th
		(*)	Cap.(µ)	-47	0.75	1.00	1.35	1.57	2.00	
	Maximum	6.3~100		~470 560	0.80 0.85	1.00 1.00	1.23 1.10	1.34 1.13	1.50 1.15	
4.16	permissible (ripple current)	160~450	0.4	7~220 270	0.80	1.00 1.00	1.25 1.10	1.40 1.13	1.60 1.15	
		Ter Temperatu Facto	re (°C)	e Coeffici ≤85 1.73	ent: 95 1.41	105 1.00				

Version 01 Page 10

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (SW-WI-QA-343).

	Substances					
	Cadmium and cadmium co pounds					
Heavy metals	Lead and lead compounds					
Theavy metals	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
	Polybrominated biphenyls (PBB)					
Brominated .	Polybrominated diphenylethers(PBDE) (including					
organic	decabromodiphenyl ether[DecaBDE])					
compounds	Other brominated organic compounds					
Tributyltin comp	oounds(TBT)					
Triphenyltin con	npounds(TPT)					
Asbestos						
Specific azo com	pounds					
Formaldehyde						
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane	sulfonates (PFOS)					
Specific Benzotr	iazole					

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters

 At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12
---------	----	--	------	----

KM SERIES
 (6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
 2.Capacitor Handling Techniques 2.1 Considerations Before Using Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately 1kΩ. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
 2.2 Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

	Version	01		Page	14
--	---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B 476CKH100MSA 477RZS050M UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 511D336M250EK5D 052687X ECE-A1CF471 EKXG451ELL820MM30S 686CKR050M NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC TER330M50GM 477KXM035MGBWSA B43827A1106M8