

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶): (日期):2017-08-12

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : KM 400V68μF(φ18x25)

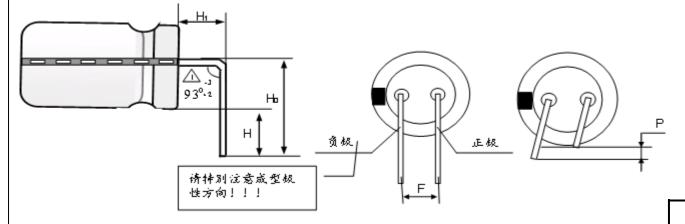
VERSION (版本) : 01

Customer P/N :

SUPPLIER :

SUPPLIER								
PREPARED (拟定)	CHECKED (审核)							
李婷	刘渭清							

CUSTOMER								
APPROVAL (批准)	SIGNATURE (签名)							


ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		SPECIFICAT		ALTERN.	ATION HIS ECORDS	TORY			
D	D :	KM SERII	ES	G	Purpose Drafter Approver				
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver		

Version	01		Page	1
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Table 1 Product Dimensions and Characteristics

Shape Co

NC Typ

N o.	SAMXON Part No.	WV (Vdc)	Cap. (μF)	Cap. tolerance	Temp. range($^{\circ}$ C)	tanδ (120Hz, 20℃)	Leakage Current (μΑ,2min)	Max Ripple Current at 105°C 120Hz (mA rms)	Load lifetime (Hrs)
1	EKM686M2GL25NC**P	400	68	-20%~+20%	-25~105	0.24	856	390	2000

Version 01	Page	2
------------	------	---

Attachment: Application Guidelines

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

12~15

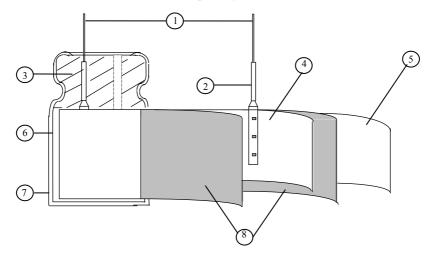
CONTENTS Sheet 4 1. Application 2. Part Number System 4 3. Construction 5 4. Characteristics 5~10 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 $\tan \delta$ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384. 2. Part Number System 1 2 3 4 5 6 7 8 9 101112 1314 1516 17 EGS 1 0 5 M 1 H D 1 1 TC SA P SERIES CAPACITANCE TOL. VOLTAGE CASE SIZE TYPE PRODUCT LINE MATERIAL Series Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Line For internal use only (The product lines we have H.A.B.C.D. EKS 0.22 224 ±10 K 6.3 0 W 6.3 E We have H.A.B.C.D. E.M or 0,1,2,3,4,5,9).

EGS	<u> </u>	U	<u> </u>	_	1 [ווע		_	<u> 5 A</u>	\mathbf{P}
SERIES	CAPA	CITAN	CE TOI		VOLTAGE		CASE SIZE	TYP		SAMXON PRODUCT LINE N	SLEE
- 1		1	- 1		- 1		- 1	- 1		I	L
	O (MED.)	<u> </u>	T-1(0)	0.1	N-4 04/X	0-1-	0 0				_
Series ESM	Cap(MFD)	Code	Tolerance (%)	Code	Voltage (W.V.)	0D	Case Size	Feature C	ode	SAMXON Product	
EKF	0.1	104	±5	J	2.5	0E	3 B	Radial bulk	RR	For internal use onl (The product lines	У
ESS EKS					4	0G	3.5 1 4 C	Ammo Ton	ina	we have H,A,B,C,D).
EGS	0.22	224	±10	ĸ	6.3	OJ	5 D 6.3 E	Ammo Tap	ıı ıg	E,M or 0,1,2,3,4,5,9	
EKM EKG	0.33	334			8	0K	8 F	2.0mm Pitch	тт		´
EOM	0.55	354	. 45	L	10	1A	10 G 12.5 I			L	
EZM EZS	0.47	474	±15	-	12.5	1B	13 J	2.5mm Pitch	TU	_	
EGF ESF		_			16	1C	14 14 1	11 1			
EGT	1	105	±20	м	20 25	1D 1E	14.5 A	3.5mm Pitch	TV	Sleeve Material	Cod
EGK EGE					30	11	16 K 16.5 7	5.0mm Pitch	тс	PET	_P
EGD	2.2	225	±30	N	32	13	18 L	5.0mm Filan	10	""	"
EGC ERS	3.3	335	-40		35	1V	18.5 8 20 M	Lead Cut & F	-orm		-
ERF	5.5	333	-40	w	40	1G	22 N			PVC	₹
ERL ERR	4.7	475			42	1M	20 M 22 N 25 O 30 P 34 W	CB-Type	СВ		8 90
ERT			-20 0	A	50	1H	18.5 8 20 M 22 N 25 O 30 P 34 W 35 Q	05.5			the sleeve
ERE ERD	10	106			57	1L	1 40 I K	CE-Type	CE		6
ERH			-20 +10	С	63	1J	42 4 45 6	HE-Type	HE		material
EBD ERA	22	226			71	18	51 S	TIE-Type			<u>a</u>
ERB	33	336	-20 +40	×	75 80	1T 1K	63.5 T 76 U 80 8	KD-Type	KD		N 52.
ERC EFA	33	336			85	1R	76 U 80 8		\vdash		PVC,
ENP	47	476	-20 +50	s	90	19	90 X 100 Z	FD-Type	FD		'≢
ERW				_	100	2A	Len.(mm) Code				there will
ERY ELP	100	107	-10 0	В	120	20	4.5 45 5 05	EH-Type	EH		
EAP					125	2B	5.4 54 7 07	PCB Term	ial		beb
EQP	220	227	-10 +20	V	150	2Z	7.7 77	T OB TOTAL			blank in
ETP	330	337	-10		160	2C	10.2 T2 11 11		sw		ŝ
EUP	330	337	+30	Q	180	2P	11.5 1A		\vdash		Sev
EKP	470	477	-10		200	2D 22	11.5 1A 12 12 12.5 1B 13 13	Snap-in	sx		a
EEP EFP		-	+50	T	220	2N	13 13		67		seventeenth
ESP	2200	228	-5	_	230	23	13.5 1C 20 20 25 25 29.5 2J		sz		h digit
EGP			+10	E	250	2E	20 20 25 25 29.5 2J 30 30	Lug	sg		°E
EWR	22000	229	-5	F	275	2T	30 (30)	-			
EWT	33000	339	+15	<u> </u>	300	21	31.5 3A 35 35		05		
EWX	33000	339	-5 +20	G	310	2R	35.5 3E				
EWS	47000	479			315	2F	35.5 3E 50 50 80 80		O6		
EWH EWL			0 +20	R	330	2U	100 1L		T5		
EWB	100000	10T	0		350 360	2V 2X	105 1K 110 1M	Screw			
VSS			+30	0	375	2Q	120 1N 130 1P		Т6		
VKS	150000	15T	0		385	2Y	140 I1Q		\vdash		
VKM VRL	220000	22T	+50	'	400	2G	150 1R 155 1E 160 1S		D5		
VNH	220000	221	+5	z	420	2M	160 1S		D.C		
VZS VRF	330000	33T	+15		450	2W	165 1F 170 1T		D6		
		-	+5 +20	D	500	2H	180 I1U				
	1000000	10M	+10		550	25	190 1V 200 2L 215 2A				
ŀ		4.000	+50	Y	600	26	215 2A				
	1500000	15M	+10	н	630	2J	210 2M 220 2N 240 2Q 250 2R				
	2200000	22M	+30		l		240 2Q 250 2R				
ļ	2200000	ZZIVI					260 2S 270 2T				
		33M					270 2T	l			
- 1	3300000	SSIVI									


Version	01	Page	4

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature :15°C to 35°C
Relative humidity : 45% to 85%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Page	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	ITEM				PI	ERFOR	MANC	Е				
	Rated voltage	WV (V.DC)	6.3	10		16	25	35	50	63	100	
	(WV)	SV (V.DC)	8	13		20	32	44	63	79	125	
4.1	Surge	WV (V.DC)	160	200	220	250	350	400	420	450		
	voltage (SV)	SV (V.DC)	200	250	270	300	400	450	470	500		
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	Condition> Measuring Frequency : 120Hz±12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : 20±2℃ Criteria> Shall be within the specified capacitance tolerance.									
4.3	Leakage current	<condition></condition> Connecting the capacitor with a protective resistor $(1k\Omega \pm 10\Omega)$ in series for 2 minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1										
4.4	tan δ	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. <criteria> Refer to Table 1</criteria></condition>										
4.5	Terminal strength		ength o capacitor rength o apacitor	or, applied of Term of, applied onds, and wire	ed for inals. d forc	e to bent n bent Tensile (1	nt the tent it for 90 te force 1 cgf)	rminal (1	l~4 mm original Bendin (l	from the position g force N	rubber) within 2	
		0.51 Over 0.			1		$\frac{(0.51)}{(1.0)}$			(0.25) (0.51)		
		<criteri No notio</criteri 		hanges	shall	oe four	id, no bi	eakage (or loose	eness at th	ne termin	

Version 01	Page	6
------------	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>							
		STEP Test	ing Tempe	$\operatorname{erature}(^{\circ}\mathbb{C})$ Time					
		1	20 ± 2	2	Time	to reac	h thermal e	quilibriu	m
		2	-40(-25)	±3	Time	to reac	h thermal e	- quilibriu	m
		3	20±2		_		h thermal e	•	
		4	105±		_		thermal e	•	
		5	$\frac{103 \pm 20}{20 \pm 2}$		_		ch thermal e	•	
		<criteria></criteria>	20 - 1		Tillic	to reac	ii tiiciiiai c	quiiioiiu	111
		a. $\tan \delta$ shall be with	hin the lim	it of Itam	1 /Tho 1	alzaga	current mag	eurad el	vall not
		more than 8 times of			7.7 I IIC IC	Jakage	current mea	isuicu si	iaii iiot
	Temperature	b. In step 5, $\tan \delta$ sh	-		it of Iter	n <i>4 4</i> T	he leakage i	current s	hall not
	characteristi	more than the specifi		ini the ini	it of iter	11 7,71	ne reakage v	current s	nan not
4.6	cs	c. At-40°C (-25°C), i		(z) ratio s	hall not o	exceed	the value o	f the foll	owing
		table.	прешинес	(L) Idilo s	nan not	0710000	the value o	1 1110 1011	owing
		Working Voltage (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+20°C	5	4	3	2	2	2	2
		Z-40°C/Z+20°C	10	8	6	4	3	3	3
		E-40 C/E+20 C	10	0			3	3	<u> </u>
		Working Voltage (V)	100	160~220	250~	-350	400~420	450	
		Z-25°C/Z+20°C	2	3	4	ļ	6	15	
		Z-40°C/Z+20°C	3						
		For capacitance value > 1000 μ F, Add 0.5 per another 1000 μ F for Z-25/Z+20°C,							
		-					00 μ F for Z		
		Capacitance, tan δ , ar	ıd impedar	nce shall b	e measur	ed at 1	20Hz.		
		<condition></condition>							
		According to IEC60384-4No.4.13 methods, The capacitor is stored at a temperature of							
		According to 12Co0534-4No.4.13 methods, The capacitor is stored at a temperature of $105^{\circ}\text{C} \pm 2$ with DC bias voltage plus the rated ripple current for Table 1. (The sum of							
		-				-		_	
		$105^{\circ}\text{C} \pm 2 \text{ with DC b}$	ias voltage	e plus the r	ated ripp	le curr	ent for Tabl	le 1. (Th	e sum of
		105°C ±2 with DC b DC and ripple peak	ias voltage voltage sl	e plus the r	ated ripp aceed the	le curr e rated	ent for Tabl working v	le 1. (Tholage)	e sum of Γhen the
	Load	$105^{\circ}\text{C} \pm 2 \text{ with DC b}$	ias voltage voltage sl ted after 10	e plus the r nall not ex 6 hours rec	ated ripp aceed the	le curr e rated	ent for Tabl working v	le 1. (Tholage)	e sum of Γhen the
4.7	Load life	105°C ±2 with DC b DC and ripple peak product should be tes result should meet the < Criteria >	ias voltage voltage sl ted after 10 e following	e plus the r nall not ex 6 hours rec g table:	ated ripp sceed the overing	le curr e rated time at	ent for Table working veratmospheric	le 1. (Tholage)	e sum of Γhen the
4.7		105°C ±2 with DC b DC and ripple peak product should be test result should meet the	ias voltage voltage sl ted after 10 e following	e plus the r nall not ex 6 hours rec g table:	ated ripp sceed the overing	le curr e rated time at	ent for Table working veratmospheric	le 1. (Tholage)	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be tes result should meet the < Criteria >	ias voltage voltage slated after 10 e following	e plus the r nall not ex 6 hours rec g table:	ated ripp acceed the overing	le curre rated time at	ent for Table working veratmospheric	le 1. (Tholage)	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be tes result should meet the <criteria> The characteristic should</criteria>	ias voltage voltage slated after 10 e following all meet that	e plus the r nall not ex 6 hours rec g table: e followin	ated ripp acced the overing grequire 4.3 shall	le curre rated time at ments be sat	ent for Table working veratmospheric	le 1. (Tholage)	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be tes result should meet the <criteria> The characteristic should be the Leakage current</criteria>	ias voltage voltage slated after 10 e following all meet that	e plus the real not exo hours record table: e following Value in the within ±	ated ripp acced the overing g require 4.3 shall 20% of	le curre rated time at ments be sat initial	ent for Table working veratmospheric	le 1. (Tholtage)	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the <criteria> The characteristic shall Leakage curret Capacitance C</criteria>	ias voltage voltage slated after 10 e following all meet that	e plus the reconstruction of hours reconstruction of the plus the	ated ripp acced the overing g require 4.3 shall 20% of than 200	le curre rated time at ments be sat initial 0% of	ent for Table working very atmospherical series.	le 1. (Tholtage) condition	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shall Leakage curred Capacitance C tan δ	ias voltage voltage slated after 10 e following all meet that	e plus the reconstruction of hours reconstruction of the plus the	ated ripp acced the overing g require 4.3 shall 20% of than 200	le curre rated time at ments be sat initial 0% of	ent for Table working very atmospherical sisfied value.	le 1. (Tholtage) condition	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shall Leakage curred Capacitance C tan δ	ias voltage voltage slated after 10 e following all meet that	e plus the reconstruction of hours reconstruction of the plus the	g require 4.3 shall 20% of than 200	le curre rated time at ments be sat initial 0% of	ent for Table working very atmospherical sisfied value.	le 1. (Tholtage) condition	e sum of Γhen the
4.7	life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the <criteria> The characteristic shall Leakage curred Capacitance C tan δ Appearance</criteria>	ias voltage voltage sl ted after 10 e following all meet th nt hange	e plus the record nall not exo hours record table: e following Value in Within ± Not more	g require 4.3 shall 20% of than 200 ill be no	ments be sat initial 0% of leakag	ent for Table working very atmospherical series with the specified end of electrol	le 1. (Tholtage) of condition	e sum of Γhen the ons. The
4.7	life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the <criteria> The characteristic shade a curred Capacitance C tan δ Appearance Condition> The capacitors are then 1000+48/0 hours. For</criteria>	ias voltage voltage slad after 10 e following all meet that hange	e plus the real not explored the real not ex	g require 4.3 shall 20% of than 200 ill be no	e rated time at ments be sat initial 2% of leakage ed at a stors shape to the control of the con	ent for Table working versions atmospheric street walue. the specified end of electrol temperature all be remo	d value. yte.	e sum of Γhen the ons. The
4.7	life test	105°C ±2 with DC b DC and ripple peak product should be test result should meet the <criteria> The characteristic shade a curred Capacitance C tan δ Appearance <condition> The capacitors are then 1000+48/0 hours. For chamber and be allow</condition></criteria>	ias voltage voltage slated after 10 e following all meet that hange	e plus the real not explored the real not ex	g require 4.3 shall 20% of than 200 all be no	e rated time at ments be sat initial 0% of leakage ed at a stors shaperature.	ent for Table working very atmospheric strict walue. the specified e of electrol temperature hall be remoure for 4~8	d value. yte. e of 105 - ved from hours. N	E sum of Γhen the ons. The
	life test	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shade a current capacitance Compositions The capacitors are then 1000+48/0 hours. For chamber and be allow shall be connected to	ias voltage voltage slated after 10 e following all meet that hange a stored willowing this wed to stale a series	e plus the record and not explored to hours record table: e following Value in the within ± Not more There shads period the bilized at a limiting record.	g require 4.3 shall 20% of than 200 all be no ge applie accom ten sistor(1k	ments be sat initial 0% of leakag	ent for Table working versions atmospherical serions working versions atmospherical serions working versions working versions atmospherical serions at the specified temperature all be removed at the specified temperature and be removed at the specified at the specified value.	d value. yte. of 105 = ved from hours. N.C. rateo	E sum of Γhen the ons. The ±2°C for a the test lext they I voltage
4.7	life test Shelf life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shadeled a current and be allow shall be connected to applied for 30min. At	ias voltage voltage slated after 10 e following all meet that hange a stored willowing this wed to stale a series	e plus the record and not explored to hours record table: e following Value in the Within ± Not more There shads period the bilized at a limiting record.	g require 4.3 shall 20% of than 200 all be no ge applie accom ten sistor(1k	ments be sat initial 0% of leakag	ent for Table working versions atmospherical serions working versions atmospherical serions working versions working versions atmospherical serions at the specified temperature all be removed at the specified temperature and be removed at the specified at the specified value.	d value. yte. of 105 = ved from hours. N.C. rateo	E sum of Γhen the ons. The ±2°C for a the test lext they I voltage
	life test	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shade a current capacitance Compositions The capacitors are then 1000+48/0 hours. For chamber and be allow shall be connected to	ias voltage voltage slated after 10 e following all meet that hange a stored willowing this wed to stale a series	e plus the record and not explored to hours record table: e following Value in the Within ± Not more There shads period the bilized at a limiting record.	g require 4.3 shall 20% of than 200 all be no ge applie accom ten sistor(1k	ments be sat initial 0% of leakag	ent for Table working versions atmospherical serions working versions atmospherical serions working versions working versions atmospherical serions at the specified temperature all be removed at the specified temperature and be removed at the specified at the specified value.	d value. yte. of 105 = ved from hours. N.C. rateo	E sum of Γhen the ons. The ±2°C for a the test lext they I voltage
	life test Shelf life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shadeled a current and be allow shall be connected to applied for 30min. At	ias voltage voltage slated after 10 e following all meet that hange a stored willowing this wed to stale a series	e plus the record and not explored to hours record table: e following Value in the Within ± Not more There shads period the bilized at a limiting record.	g require 4.3 shall 20% of than 200 all be no ge applie accom ten sistor(1k	ments be sat initial 0% of leakag	ent for Table working versions atmospherical serions working versions atmospherical serions working versions working versions atmospherical serions at the specified temperature all be removed at the specified temperature and be removed at the specified at the specified value.	d value. yte. of 105 = ved from hours. N.C. rateo	E sum of Γhen the ons. The ±2°C for a the test lext they I voltage
	life test Shelf life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shadeled a current and be allow shall be connected to applied for 30min. At	ias voltage voltage slated after 10 e following all meet that hange a stored willowing this wed to stale a series	e plus the record and not explored to hours record table: e following Value in the Within ± Not more There shads period the bilized at a limiting record.	g require 4.3 shall 20% of than 200 all be no ge applie accom ten sistor(1k	ments be sat initial 0% of leakag	ent for Table working versions atmospherical serions working versions atmospherical serions working versions working versions atmospherical serions at the specified temperature all be removed at the specified temperature and be removed at the specified at the specified value.	d value. yte. of 105 = ved from hours. N.C. rateo	E sum of Γhen the ons. The ±2°C for a the test lext they I voltage
	life test Shelf life	105°C ±2 with DC b DC and ripple peak product should be test result should meet the < Criteria> The characteristic shadeled a current and be allow shall be connected to applied for 30min. At	ias voltage voltage slated after 10 e following all meet that hange a stored willowing this wed to stale a series	e plus the record and not explored to hours record table: e following Value in the Within ± Not more There shads period the bilized at a limiting record.	g require 4.3 shall 20% of than 200 all be no ge applie ae capaci coom ten sistor(1k	ments be sat initial 0% of leakag	ent for Table working versions atmospherical serions working versions atmospherical serions working versions working versions atmospherical serions at the specified temperature all be removed at the specified temperature and be removed at the specified at the specified value.	d value. yte. of 105 = ved from hours. N.C. rateo	E sum of Γhen the ons. The ±2°C for a the test lext they I voltage

Version 01	Page 7
------------	--------

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<criteria></criteria>	
		The characteristic shall meet the	he following requirements.
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 20\%$ of initial value.
4.8	life	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
			stored more than 1 year, the leakage current may
			through about 1 k Ω resistor, if necessary.
		<condition></condition>	
			e capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor
		•	ted to 1000 cycles, each consisting of charge of 30 ± 5 s
		followed discharge of 5 min 3	
		The test temperature shall be	
		C _R :Nominal Capacitance (µ <criteria></criteria>	(F)
4.9	Surge		Not more than the angelfied value
4.9	test	Leakage current	Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	
			ge at abnormal situation only. It is not applicable to such
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency rar Peak to peak amplitude Sweep rate Mounting method:	: 1.5mm : $10\text{Hz} \sim 55\text{Hz} \sim 10\text{Hz}$ in about 1 minute reater than 12.5mm or longer than 25mm must be fixed Within 30°
		Inner construction N	To be soldered ems shall be tested: To intermittent contacts, open or short circuiting. To damage of tab terminals or electrodes. To mechanical damage in terminal. No leakage

Version 01	Page	8
------------	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		Condition> The capacitor shall be test Soldering temperature Dipping depth	: 245±3°C : 2mm	
4.11	Solderability test	Dipping speed Dipping time <criteria></criteria>	: 25±2.5m : 3±0.5s	nm/s
		Coating quality	A minim immerse	um of 95% of the surface being d
		•		nto solder bath at 260 ± 5 °C for 10 ± 0 .0mm from the body of capacitor.
4.12	Resistance to solder heat		e left under the norma	al temperature and normal humidity
7,1∠	test	Leakage current	Not more than	n the specified value.
		Capacitance Change	Within ±10%	6 of initial value.
		tan δ		n the specified value.
		Appearance	There shall be	e no leakage of electrolyte.
4.13	Change of temperature test	placed in an oven, the con	atture (-40°C) (-25°C) atture (+105°C) at 5 cycle eet the following required Not more than the	Time ≤ 3 Minutes 30 ± 2 Minutes 30 ± 2 Minutes irrement e specified value.
4.14	Damp heat test		$^{\circ}$ 90~95%R H .at 40± ement. Not more than the space within ±20% of in	hitial value. 6 of the specified value.

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.15	Vent test	with vent. D.C. test The capacitor is current selected is current selected in the selected in	s 1	arity re	versed	to a DC	power	source. T	Γhen a
The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed rated voltage and shall not reverse voltage. Frequency Multipliers: Rated Voltage (V) Coefficient Freq. (Hz) 50 120 300 1k 10k~							ed the		
4.16	Maximum permissible (ripple current)	6.3~100	~47 68~470 ≥560 0.47~220 ≥270	0.75 0.80 0.85 0.80 0.90	1.00 1.00 1.00 1.00 1.00	1.35 1.23 1.10 1.25 1.10	1.57 1.34 1.13 1.40 1.13	2.00 1.50 1.15 1.60 1.15	
			2210	0.50	1.00	1.10	1.13	1.10	

Version	01		Page	10
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
Ticavy metais	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
D : 1	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	ounds(TBT)			
Triphenyltin com	apounds(TPT)			
Asbestos				
Specific azo com	pounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	er			
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)			
Perfluorooctane :	sulfonates (PFOS)			
Specific Benzotr	iazole			

Version	01		Page	11
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Attachment: Application Guidelines

1. Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanδ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).

1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

1.4 Using Two or More Capacitors in Series or Parallel

(1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals

(2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3) Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \sim\!\! \phi 16mm;\! 2mm\ minimum,\ \phi 18 \sim\!\! \phi 35mm;\! 3mm\ minimum,\ \phi 40mm\ or\ greater;\! 5mm\ minimum.$

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01		Page	12
------------	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

(6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

	l		
Version	01	Page	13

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

Alkali solvents : could attack and dissolve the aluminum case.

Petroleum based solvents: deterioration of the rubber seal could result.

Xylene : deterioration of the rubber seal could result.

Acetone : removal of the ink markings on the vinvl sleeve could result.

- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Vargion	01	Dogo	15
version	01	Page	13

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminum Electrolytic Capacitors - Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 MAL203125221E3 MAL204216159E3 ESMG101ETD100MF11S RBC-25V-10UF-4X7 RE3-35V222MJ6# RFO100V471MJ7P# B41041A2687M8 B41041A7226M8 B41044A7157M6 EKRG250ELL100MD07D EKXG201EC3101ML20S

EKXG351ETD6R8MJ16S EKZM160ETD471MHB5D EPA-201ELL151MM25S NCD681K10KVY5PF NRLF103M25V35X20F

KM4700/16 KME50VB100M-8X11.5 RXJ222M1EBK-1625 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B MAL211929479E3

40D506F050DF5A TE1202E 36DA273F050BB2A KME25VB100M-6.3X11 511D336M250EK5D 511D337M035CG4D

515D477M035CG8PE3 052687X EKMA500ELL4R7ME07D EKRG100ETC221MF09D NRE-S560M16V6.3X7TBSTF

ERZA630VHN182UP54N MAL214099813E3 MAL211990518E3 MAL204281229E3 NEV680M35EF 686KXM050M ERS1VM222L30OT

EGW2GM150W16OT EGS2GM6R8G12OC EHS2GM220W20OT ERF1VM222L30OT ERF1KM151G20OT EKZE500ELL101MHB5D

EKMM251VSN221MP25S RGA221M1HBK-1016G