

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS **PRODUCT SPECIFICATION**

規格書

CUSTOMER :

(客戶):志盛翔

DATE: (日期): 2024-01-18

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: SK 25V1500μF(φ10X20)
VERSION (版本	: 01
Customer P/N	:
SUPPLIER	:

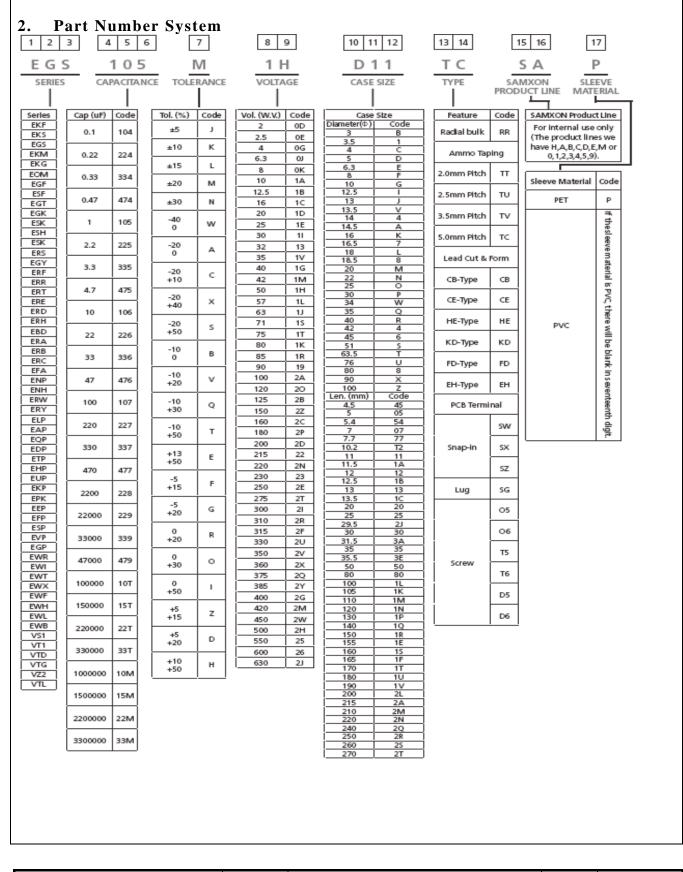
SUPPLI	ER	CUSTOMER				
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)			
梁文文	付婷婷					

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

	SPECIFICATION SK SERIES					ALTERNATION HISTORY RECORDS				
Rev.	Date	Mark		age	Contents	Purpose	Approver			
							Drafter			
		l						l		
	Version	C	1				Page 1			

	MAN YUE ELECTR COMPANY LIMI			ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES						S	АМХ	ON		
Tab	le 1 Product Dimen	sions a	nd Chai	racteristic	2S						Uni	t: mm		
Safety vent for $\geq \Phi 6.3$ $\downarrow \qquad \qquad$														
Table N	SAMXON	WV	Cap.	Cap	Temp.	tanδ (120Hz,	Leakage Current	Max Ripple Current at 105°C 100KHz	Impedance at 25°C	Load lifetime		ension (mm)	l	Sleeve
0.	Part No.	(Vdc)	(µF)	tolerance	range(°C)	20°C)	(µA,2min)	(mA rms)	100kHz (Ωmax)	(Hrs)	D×L	F	фd	
1 ESK158M1EG20RR**P-R 25 1500 -20% ~+20% -40~105 0.14 375 2500 0.028 10000 10X20 5.0 0.6 PET														
	Version	01					Page 2							

C O N T E N T S	
	Sheet
. Application	4
. Part Number System	4
. Construction	5
. Characteristics	5~10
.1 Rated voltage & Surge voltage	
2. Capacitance (Tolerance)	
L3 Leakage current	
$1.4 \tan \delta$	
1.5 Terminal strength	
.6 Temperature characteristic	
.7 Load life tes	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
1.16 Maximum permissible (ripple current)	
. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15

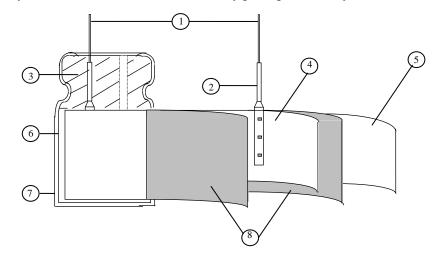

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.


Version 01 Page 4

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Varian	01		5
version	01		3
V CI SIOII	01		5

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

	e 2											
	ITEM	PERFORMANCE										
	Rated voltage											
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100		
4.1		SV (V.DC)	8	13	20	32	44	63	79	125		
	Surge voltage (SV)											
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requency oltage 'emperat	: N ure : 20	0 Hz ± 12 ot more t $0\pm 2^{\circ}C$	han 0.5V						
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	he capao then, me				istor (1	$k \Omega \pm 10$)Ω) in s	eries for 2		
4.4	tan δ	<condition> See 4.2, Norr <criteria> Refer to Tabl</criteria></condition>	m Capac	itance, fo	or measur	ing frequ	iency, vo	oltage and	d tempera	ature.		
4.5	Terminal strength	0.51 Over 0.	ength of capacitor rength of apacitor, 2~3 seco cer of lea nm and l 5mm to a >	, applied Termina applied f nds, and d wire less 0.8mm	force to b dls. orce to b then ben Tens 1	ent the te t it for 9 ile force (kgf) 5(0.51) 0(1.0)	erminal (1 0° to its o N	1~4 mm 1 original p Bending (kg 2.5 (0 5 (0	from the position y force N gf) 0.25) 0.51)	rubber) for		

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

		<con< th=""><th>ndition></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></con<>	ndition>								
		-	STEP	Testing Tem	-	(°C)			Time		
		-	1	20:					h thermal		
		-	2	· · · · · · · · · · · · · · · · · · ·	$(5) \pm 3$				h thermal	-	
		-	3		± 2				h thermal	-	
		-	4	105 ± 2					h thermal	*	
	Temperature		5	20	± 2		Tin	ne to reac	h thermal	equilibri	um
	characteristi		teria>								
4.6	CS	a.	-	4, $\tan \delta$ shal						C 14	· C' 1
			value.	akage current	measured	i sna	li no	t more th	ian 8 time	es of its	specified
		h		5, tan δ shall	he within	the li	imit d	of Item 4	4		
			-	At-25°C,						d the val	lue of the
			following		mpedan) Iuu	io shan i	IOT EXCEC	u ine vu	
				Voltage (V)	6.3	1	0	16	25	35	50
		-		C/Z+20°C	2	2	2	2	2	2	2
		Capac		1^{δ} , and imped	dance sha	ll be	meas	sured at 1	20Hz.		
		-		· · ·							
		<condi< td=""><td></td><td></td><td></td><td></td><td></td><td>1 (77)</td><td></td><td></td><td></td></condi<>						1 (77)			
				ng to IEC6038					1		
		at a temperature of 105 °C ± 2 with DC bias voltage plus the rated ripple current for Table 1 load life time hours. (The sum of DC and ripple peak voltage shall									
		for Table1 load life time hours. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16									
	Load	hours recovering time at atmospheric conditions.									
. –		The result should meet the following table:									
	lifa		The resu	It should meet	the follo	wing	table	e:			
4.7	life test		<criteri< td=""><td></td><td>the follo</td><td>wing</td><td>table</td><td>e:</td><td></td><td></td><td></td></criteri<>		the follo	wing	table	e:			
4.7	test		< Criteri The char	a> acteristic shal	l meet the	e follo	owing	g requirer			
4.7	-		<criteri The char Leakag</criteri 	a> acteristic shal e current	l meet the Value	e follo in 4.3	owing shal	g requirer Il be satis	fied		
4.7	-		<criteri The char Leakag Capacit</criteri 	a> acteristic shal	l meet the Value	e follo in 4.3 ± 25	owing shal 5% of	g requiren 11 be satis f initial v	fied value(6.3,		30%)
4.7	-		< Criteri The char Leakag Capacit tan δ	a> acteristic shal e current tance Change	l meet the Value i Within Not mo	e follo in 4.3 ± 25 ore th	owing shal 5% o an 20	g requiren Il be satist f initial v 20% of th	fied value(6.3, le specifie	ed value.	30%)
4.7	-		< Criteri The char Leakag Capacit tan δ Appear	a> acteristic shal e current tance Change	l meet the Value i Within Not mo	e follo in 4.3 ± 25 ore th	owing shal 5% o an 20	g requiren Il be satist f initial v 20% of th	fied value(6.3,	ed value.	:30%)
4.7	-	<condit< td=""><td></td><td>a> racteristic shall e current tance Change rance</td><td>l meet the Value i Within Not mo There</td><td>$\frac{\text{e follo}}{\text{in 4.3}}$ $\frac{\pm 25}{\text{ore th}}$ shall</td><td>owing shal 5% o an 20 be n</td><td>g requirer Il be satis: f initial v D0% of th o leakage</td><td>fied value(6.3, e specifie e of electro</td><td>ed value. olyte.</td><td></td></condit<>		a> racteristic shall e current tance Change rance	l meet the Value i Within Not mo There	$\frac{\text{e follo}}{\text{in 4.3}}$ $\frac{\pm 25}{\text{ore th}}$ shall	owing shal 5% o an 20 be n	g requirer Il be satis: f initial v D0% of th o leakage	fied value(6.3, e specifie e of electro	ed value. olyte.	
4.7	-]	$< Criteri The char The char Leakag Capacit tan \delta Appear$	a> acteristic shall e current tance Change ance itors are then s	I meet the Value i Within Not mo There	$\frac{\text{e follo}}{\text{in 4.3}}$ $\frac{\pm 25}{\text{ore th}}$ shall	owing shal 5% o an 20 be n	g requirer Il be satis: f initial v D0% of th o leakage	fied value(6.3, e specifie e of electro	ed value. olyte.	
4.7	-	ך ב	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capacc $2^{\circ}C$ for 100</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour	l meet the Value i Within Not mo There stored wit	e follo in 4.3 ± 25 ore th shall th no	owing shal 5% of an 20 be n volta	g requiren Il be satis: f initial v 00% of th o leakage age applie	fied value(6.3, e specifie of electro	ed value. olyte. nperature	e of 105±
4.7	test]	<pre><criteri appear="" capacit="" char="" leakag="" tan="" the="" tion="" δ=""> The capac 2°C for 10 Following</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th	l meet the Value i Within Not mo There stored wit s. e capacit	e follo in 4.3 ± 25 ore th shall th no ors sh	owing shal 5% o an 20 be n volta	g requiren Il be satis f initial v D0% of th o leakage age applie be remove	fied value(6.3, e specifie of electro ed at a ter ed from th	ed value. olyte. nperature	e of 105±
	test		<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe</criteri></pre>	a> racteristic shall e current tance Change rance itors are then s 000+48/0 hour g this period th d to stabilized	I meet the Value i Within Not mo There stored with s. ne capacit at room to	e follo in 4.3 ± 25 ore th shall th no ors sh tempe	owing shal 5% of an 20 be n volta nall b	g requirer Il be satist f initial v 20% of th o leakage age applie be remove re for 4~8	fied value(6.3, e specifie of electro ed at a ter ed from th 3 hours.	ed value. olyte. nperature e test cha	e of 105±
4.7	test Shelf life]	$<$ CriteriThe charLeakagCapacititan δ Appeartion>The capac2°C for 10Followingbe alloweNext they	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period the d to stabilized shall be conn	I meet the Value i Within Not mo There stored with s. te capacit at room t ected to at	e follo in 4.3 ± 25 ore th shall h no ors sh tempe a serie	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> racteristic shall e current tance Change rance itors are then s 000+48/0 hour g this period th d to stabilized	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: f initial v 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: <u>f initial v</u> 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C
	test Shelf life]	<pre><criteri <math="" capacit="" char="" leakag="" tan="" the="">\delta Appear tion> The capac 2°C for 10 Following be allowe Next they rated volt</criteri></pre>	a> acteristic shall e current tance Change ance itors are then s 000+48/0 hour g this period th d to stabilized shall be conn age applied fo	I meet the Value i Within Not mo There stored with s. the capacities at room to r 30min.	$\frac{1}{1}$ follo in 4.3 ± 25 ore th shall th no ors sh tempe a serie After	owing shal 5% of an 20 be n volta nall b eratur	g requirer ll be satis: <u>f initial v</u> 00% of th o leakage age applie be remove re for 4~8 miting res	fied value(6.3, e specifie of electro ed at a ter ed from th b hours. sistor(1k \leq	ed value. olyte. mperature e test cha $\pm 100 \Omega$)	e of 105± amber and with D.C

Version	01		Page	7
---------	----	--	------	---

1		<criteria></criteria>	
			eet the following requirements.
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$)
4.8	life	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
			stored more than 1 year, the leakage current may
		-	through about 1 k Ω resistor, if necessary.
		<pre><condition></condition></pre>	through about 1 K2 resistor, if necessary.
4.9	Surge test	Applied a surge voltage to the The capacitor shall be submitt followed discharge of 5 min 3 The test temperature shall be 	e 15~35°C.
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency rar Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter gr in place with a bracket. 4mm or less Image: After the test, the following it Inner construction N Appearance	: 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute reater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

			(
Version	01		8

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

	1						
		<condition></condition>					
		-	-	conditions: Sn-Cu solder			
		Soldering temperature	: 250±3°C				
	C - 1 - 1 - 1 - 1 - 1 - 1 - 1	Dipping depth	: 2mm	1			
4.11	Solderability	Dipping speed	: 25±2.5mr	m/s			
	test	Dipping time	: 3±0.5s				
		<criteria></criteria>		6050/ 6/1 6 1			
		Coating quality	immersed	m of 95% of the surface being			
			minerseu				
		<condition></condition>					
		Terminals of the capac	tior shall be immersed	into solder bath at			
		-		3^{+1}_{-0} seconds to 1.5~2.0mm from	the		
		body of capacitor .					
			ll be left under the nor	mal temperature and normal			
	Resistance to	humidity for 1~2 hour		that temperature and normal			
4.12	solder heat	<criteria></criteria>					
	test	Leakage current	Not more than	the specified value.			
		Capacitance Change		of initial value.			
		$\tan \delta$	N t more than	the specified value.			
		Appearance		no leakage of electrolyte.			
		<condition></condition>					
		Temperature Cycle:Accor	ding to IEC60384-4No	0.4.7 methods, capacitor shall be	•		
		placed in an oven, the cor	dition according as be	low:			
		Te	emperature	Time			
		(1)+20℃		≤ 3 Minutes			
	Change of	(2)Rated low tempera	ature (-40°C) (-25°C)	30 ± 2 Minutes			
4.13	temperature	(3)Rated high temper	cature $(+105^{\circ}C)$	30 ± 2 Minutes			
	test	(1) to (3)=1 cycle, tot		1			
		< <u>Criteria></u>					
		The characteristic shall m	rement				
		Leakage current		the specified value.			
		tan δ	Not more than the	•			
		Appearance		eakage of electrolyte.			
		<condition></condition>	There shall be no i	eakage of electrolyte.			
		Humidity Test:					
		-	No 4 12 methods can	acitor shall be exposed for $500 \pm$	+8		
		According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 5 hours in an atmosphere of 90~95% R H at 40 ± 2 °C, the characteristic change					
		meet the following requirement.					
4.1.4	Damp heat	<criteria></criteria>	ement.				
4.14	test	Leakage current	Not more than the spe	ecified value.			
		Capacitance Change	Within $\pm 20\%$ of ini				
		$\tan \delta$		of the specified value.			
			There shall be no leal	-			
		Appearance	There shall be no lead	rage of electrolyte.			
ļ							

Version	01	Page	9

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

		< Criteria> The vent shall operate with n pieces of the capacitor and/or] us condition	ns such as f	lames or o	dispersion o
per	aximum missible	<condition> The maximum permissible in at 120Hz and can be applied Table-1 The combined value of D.C rated voltage and shall not Frequency Multipliers: Coefficient (Hz) Cap. (µF) 33~270 330~680 820~1800 2200~8200</condition>	ed at maxin C voltage a	num operat	ing tempera	ature	bt exceed th
	(ripple urrent)	Temperature Coeffici Capacitor ambient temperature		75%	0.5%	05°0	105%
		Temperature coefficient Actural rms ripple Rated rms max.ripple	≤ 65°C 1.73	75°C	85°C	95°℃ 1.41	105°C

Version	01	Page	10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy me als	Lead and lead compounds
fleavy me als	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D	Polybrominated biphenyls (PBB)
Brominated organic	Polybrominated diphenylethers(PBDE) (including
	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	oounds(TBT)
Triphenyltin con	npounds(TPT)
Asbestos	
Specific azo com	pounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) decreases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

(5) Pulse Current

The pulse current cannot exceed 10 times the rated ripple current at 120Hz.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12	
---------	----	--	------	----	--

	S.	K SERIES	
 exceeding 100°C may be relea (7) Circuit Board patterns Under th Avoid circuit board runs unde (8) Screw Terminal Capacitor Mou Do not orient the capacitor wi 	high current wiring or circuit bo sed which could dissolve the v ne Capacitor er the capacitor as electrolyte le	vire insulation and ignite. eakage could cause an electric ne capacitor facing downward	ds.
 Electrical Isolation of the Cap Completely isolate the capac Between the cathode and the c Between the extra mounting te 	itor as follows. ase (except for axially leaded l		
1.7 The Product endurance should	d take the sample as the standa	rd.	
1.8 If conduct the load or shelf lif	e test, must be collect date co	de within 6 months product	s of sampling.
capacitor.			and is not meant to electrically insulate the nen exposed to high temperatures.
circuits which could occur d (1) Provide protection circuits	n designing equipment and cir- luring use. s and protection devices to allo	w safe failure modes.	ure modes such as short circuits and open in case of main circuit failure.
with a resistor with a value of(3) Capacitors stored for long per rated voltage in series with a r(4) If capacitors are dropped, the	Do not reuse or recycle capacito ay be generated in the capacitor about $1k\Omega$. iods of time may exhibit an incresistor of approximately $1k\Omega$. y can be damaged mechanically	due to dielectric absorption. crease in leakage current. Thi y or electrically. Avoid using	If required, this voltage can be discharged is can be corrected by gradually applying dropped capacitors. and loss of electrolyte / shortened life can
capacitor.	he capacitor before inserting. g before insertion (land pattern equipment lead clinching opera	size on chip type) to avoid a tion does not stress the capac	citor leads where they enter the seal of the ort circuit, or disconnection.
	meet terminal board hole spac removed and reinserted, avoid ldering iron to the capacitor, to	ing, avoid stress on the lead v excessive stress to the capaci p prevent melting of the vinyl	wire where it enters the capacitor seal. itor leads. l sleeve.
(2) Observe proper soldering condi	•	-	

- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

	Version	01		Page	14
--	---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B 476CKH100MSA 477RZS050M UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 511D336M250EK5D 052687X ECE-A1CF471 EKXG451ELL820MM30S 686CKR050M NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC TER330M50GM 477KXM035MGBWSA B43827A1106M8