

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION

CUSTOMER :

DATE :

(客戶):

(日期):2018-11-01

CATEGORY (品名)	:	CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS
DESCRIPTION (型号)	•	ULR $6.3V220\mu F(\phi 5x7)$
VERSION (版本)	:	01
Customer P/N	:	
SUPPLIER	:	

SUPPL		CUSTOMER		
PREPARED (拟定)	CHECKED (审核)	AP:	PROVAL 批准)	SIGNATURE (签名)
杜焕	付婷婷			

X-CON Electronics Limited

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

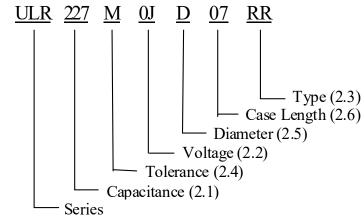
X-CON

SPECIFICATION ULR SERIES					ALTERN	ALTERNATION HISTORY RECORDS		
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approve	
Rev.	Date	IviaiK	1 age	Contents	1 urpose	Dialici		
							1	
							1	

Issued-date: 2018-11-01	Name	Specification Sheet – ULR			
Version	01		Page	1	
STANDARD MANUAL					

X-CON

C O N T E N T S	
	Sheet
1. Application	3
2. Part Number System	3
3. Construction	4
4. Characteristics	5~11
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)4.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Surge test	
4.9 Damp heat test4.10 Maximum permissible ripple current	
4.10 Maximum permissible upple current 4.11 Rapid change of temperature	
4.12 Lead strength	
4.13 Resistance to vibration	
4.14 Solderability	
4.15 Resistance to soldering heat	12
5. Product Marking 6. Product Dimensional Impedance & Maximum Permissible Pint	
6. Product Dimensions, Impedance & Maximum Permissible Ripp 7 Application Guidalina	14~15
7. Application Guideline 7-1 Circuit design	14~13
7-2 Voltage	
7-3 Sudden charge and discharge restricted	
7-4 Ripple current	
7-5 Leakage current	
7-6 Failure rate	
7-7 Capacitor insulation 7-8 Precautions for using capacitors	
8. Mounting Precautions	15
9.Long Term Storage	10
10. List of "Environment-related Substances to be Controlled ('Controlled Su	bstances')" 16
	·


Issued-date: 2018-11-01	Name	Specification Sheet – ULR		
Version	01		Page	2
STANDARD MANUAL				

X-CON

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	227
Capacitance (µF)	220

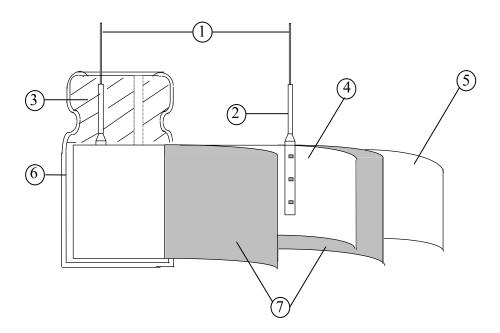
2.2 <u>Rated voltage code</u>

Code	0J
Voltage (W.V.)	6.3

2.3 Type

Ī	Code	RR
	Туре	Bulk

- 2.4 <u>Capacitance tolerance</u> "M" stands for $-20\% \sim +20\%$
- 2.5 <u>Diameter</u>


Code	D
Diameter	5

 $\begin{array}{c} 2.6 \qquad \underline{\text{Case length}} \\ 07 = 07 \text{mm} \end{array}$

Issued-date: 2018-11-01	Name	Specification Sheet – ULR			
Version	01		Page	3	
STANDARD MANUAL					

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
		Tinned Copper Line
1	Lead Line	or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issued-date: 2018-11-01	Name	Specification Sheet – ULR		
Version	01		Page	4
	STA	ANDARD MANUAL		

4. Characteristics

 Standard atmospheric conditions

 Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

 Ambient temperature: 15°C to 35°C

 Relative humidity
 : 45% to75%

 Air Pressure
 : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issued-date: 2018-11-01	Name	Specification Sheet – ULR		
Version	01		Page	5
	STA	ANDARD MANUAL		

X-CON

٦

	ITEM				Р	ERFOI	RMANC	ΈE		
4.1	Rated voltage (WV) Surge voltage (SV)		VV (V.DC) SV (V.DC)	6.3 7.2						
4.2	Nominal capacitance (Tolerance)	Measu Measu <crite< b=""></crite<>	ring Freque ring Voltag ring Tempe	e : erature :	Not $20\pm$	2°C	an 0.5Vri			
4.3	Leakage current	$\Omega \pm 10$ when r In case	DC Voltage) Ω) so that neasured aft e leakage cu e treatment t ria>	terminal ter 2 min urrent val	volta utes s lue e	ige may shall not sceed th	reach the exceed the e value s	gh the series rated voltag he values of shown in Ta own in 4.1 fo	ge .The leak the followin ble 3, remo	age current ag equation. easure after
4.4	tan δ	<crite Worl</crite 	2, for measu			y, voltaş 6.3).10	ge and ter	nperature.		
4.5	ESR	Measur Measu <crite< b=""></crite<>	ring frequen ring tempera ring point	ature:20± : 1m	:2°C 1m m	ax from	the surfac	e of a sealing	g resin on th	e lead wire.
Issue	ed-date: 2018-1	1-01	Name	Specif	icati	on She	et – ULI	2		
	Version		01	-r					Page	6

STANDARD MANUAL

		<conditio< th=""><th>Temperature(°C)</th><th>Item</th><th>Characteristics</th></conditio<>	Temperature(°C)	Item	Characteristics			
		1	20±2	Measure: Capacitance tanð ر Impedance				
		2	-55+3	Z-55°C / 20°C	≤1.25			
	The second se	3	Keep at 15 to 35°C fo 15 minutes or more	r				
4.6	Temperature characteristic	4	105±2	Z105°C / 20°C	≤1.25			
	characteristic			Δ C/C 20°C	Within $\pm 5\%$ of step1			
		5	20±2	tanð	Less than or equal to the value of item 4.4			
		The C	e for 2000 +48/0 hours. eria>	mperature of 105 \pm 2 °C The result should meet				
		Item	Per	Performance				
		Capa tan δ	Le	Within $\pm 20\%$ of initial capacitanceLess than or equal to 1.5 times of the value of item 4.4				
	Load	ESR	Le	Less than or equal to 1.5 times of the value of item 4.5				
4.7	life	Leak	age current Le	Less than or equal to the value of item 4.3				
	test	Appe	earance No	Notable changes shall not be found.				

Issued-date: 2018-11-01	Name	Specification Sheet – ULR		
Version	01		Page	7
	STA	ANDARD MANUAL		

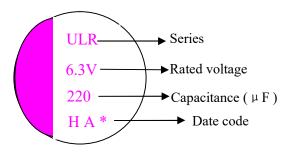
		11 0 0	l be 15~35°C.					
	Surge	Item	Performance					
4.8	test	Capacitance Change	Within $\pm 20\%$ of initial capacitance					
		tan δ	Less than or equal to 1.5 times of the value of item 4.4					
		ESR	Less than or equal to 1.5 times of the value of item 4.5					
		Leakage current Less than or equal to the value of item 4.3						
		hypothesizing that over v Condition> Humidity Test:	nulates over voltage at abnormal situation, and not be oltage is always applied.					
		-	xposed for 1000 ± 48 hours in an atmosphere of $90 \sim 95\%$ RH at istic change shall meet the following requirement. Performance					
		Capacitance Change	Within $\pm 20\%$ of initial capacitance					
		tan δ	Less than or equal to 1.5 times of the value of item 4.4					
4.9	Damp heat test	ESR	Less than or equal to 1.5 times of the value of item 4.5					
	test	Leakage current	Less than or equal to the value of item 4.3					
		Appearance	Notable changes shall not be found.					

Issued-date: 2018-11-01	Name	Specification Sheet – ULR		
Version	01		Page	8
	STA	ANDARD MANUAL		

4.10	Maximum permissible (ripple current)	At 100kHz and Table 3	can b value o nd sha tipliers	e applied at of D.C voltag ll not reverse	maximum oper ge and the peak	naximum A.C cu ating temperatur a A.C voltage sha a A.C voltage s	re see all not	exceed the 0kHz≤ 500kHz 1.00
4.11	Rapid change	Applied voltage: Cycle number: 5 Test diagram: Fi Performance: Th Item	cycles g.1 ae capa	s acitors shall Performan	meet the follow	Roo Roo 30±3 min n or less le ving specificatio	±3℃	erature
4.11	of temperature	Capacitance ch	ange		10% of initial	-		
		tan δ Leakage curr	ent			value of item 4.3	3 (after	
Issu	ued-date: 2018-11	-01 Name	Spe	cification S	Sheet – ULR			
	Version	01				F	Page	9
		ST	AND	ARD MAN	IUAL			

X-CON

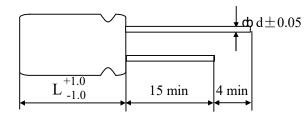
		a) Lead pul	•							
					pplied to the		the axial d	direction a	and acting	
		in a d	lirection a	way from the	e body for 10	± 1 s.			1	
			Lead v	wire diameter	r (mm)	L	oad force	(N)		
			d ≤0.5							
		b) Lead ber	•					1		
		When the capacitor is placed in a vertical position and the weight specified in the table above is explicitly and the specific data								
4.10	T 1	table above is applied to one lead and then the capacitor is slowly rotated 90^0 to a horizontal position and then returned to a vertical position thus completing bends								
4.12	Lead strength	for 2~3seconds.							ing benus	
				oends are ma	de in the opp	osite direct	tion			
				ire diameter (d force (N)		
			($d \leq 0.5$			2.5			
		Perform	mance: Th	ne characteris	stic shall mee	t the follow	wing value	after a) o	or b) test.	
		Item			Performan		U	//	, in the second se	
		Leaka	age curren	nt	Less than o	or equal to	the value	of item4.3	3	
		Outw	ard Appea	arance	No cutting	and slack	of lead ter	minals		
		Direction :2	: 0.75mm(X、 Y、 .	(Total excurs Z (3 axes)	,	- 33 -	• 10Hz			
4.13	Resistance to vibration	Direction :2 Duration: 2	: 0.75mm(X、Y、2 2hours/ ax	(Total excurs Z (3 axes) ial (Total 6 h apported as th	ion 1.5mm)	Fig2	0. 3mm			
4.13		Direction :2 Duration: 2 The capacit	: 0.75mm(X、Y、 2hours/ ax tors are su	(Total excurs) Z (3 axes) ial (Total 6 h apported as the second s	ion 1.5mm) tours) ne following	Fig2 ↓ ≤	0. 3mm	mared to 1	the initial	
4.13		Direction :2 Duration: 2 The capacit	: 0.75mm(X \ Y \ 2 Phours/ ax tors are su tors are su [(Total excurs Z (3 axes) ial (Total 6 h apported as the ported as the construction of the ported as the construction of the ported as the port	ion 1.5mm) tours) ne following	Fig2 $ \begin{array}{c} \downarrow \\ \downarrow \\$	0.3mm hange com es. Prior to	the comp	pletion of	
4.13		Direction :2 Duration: 2 The capacit	: 0.75mm(X \ Y \ 2 Phours/ ax tors are su tors are su [(Total excurs Z (3 axes) ial (Total 6 h apported as the ported as the construction of the ported as the construction of the ported as the port	ion 1.5mm) hours) he following Fig2 shall not show asured withir	Fig2 $ \begin{array}{c} \downarrow \\ \downarrow \\$	0.3mm hange com es. Prior to	the comp	pletion of	
		Direction :2 Duration: 2 The capacit	: 0.75mm(X \ Y \ 2 Phours/ ax tors are su tors are su [(Total excurs Z (3 axes) ial (Total 6 h apported as the ported as the itance value s itance value is me ifference sha	ion 1.5mm) hours) he following Fig2 shall not show asured withir	Fig2 \downarrow \leq w drastic cl h 30 minuto ± 5% comp	0.3mm hange com es. Prior to	the comp	pletion of	
	vibration	Direction :2 Duration: 2 The capacit Performanc capacitance exam, Capa exam.	: 0.75mm(X \ Y \ 2 Phours/ ax tors are su tors are su ce: Capaci e when the acitance d	(Total excurs Z (3 axes) ial (Total 6 h apported as the ported as the itance value s itance value is me ifference sha	ion 1.5mm) nours) ne following Fig2 shall not show asured within :	Fig2 \downarrow \leq w drastic cl h 30 minuto ± 5% comp	0.3mm hange com es. Prior to	the comp	pletion of	

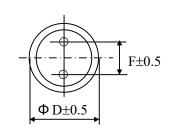

4.14	Solderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall be covered with new solder.
4.15	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : $260 \pm 5^{\circ}$ C Immersing time : $10\pm1s$ Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : $400 \pm 10^{\circ}$ C Application time : $3\pm1/-0$ s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item Performance Capacitance Change Within $\pm 5\%$ of initial capacitance tan δ Less than or equal to the value of item 4.4 ESR Less than or equal to the value of item 4.3 (after voltage treatment) Appearance Notable changes shall not be found.

Issued-date: 2018-11-01	Name	Specification Sheet – ULR		
Version	01		Page	11
	STA	ANDARD MANUAL		

X-CON

5. Product Marking


Marking Sample:



Code Year	E 2015	F 2016	G 2017	H 2018			-	esents th ured we			
Table 2		2010	2017	2010				d year:			
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	С	D	Е	F	G	Н	Ι	J	K
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	М	Ν	0	Р	Q	R	S	Т	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	Х	Y	Ζ	<u>A</u>	B	<u>C</u>	<u>D</u>	E	F	G
Week	34	35	36	37	38	39	40	41	42	43	44
Code	H	Ī	<u>J</u>	<u>K</u>	L	M	N	<u>0</u>	<u>P</u>	Q	<u>R</u>
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	<u>T</u>	U	V	W	<u>X</u>	Y	<u>Z</u>			

Issued-date: 2018-11-01	Name	Specification Sheet – ULR			
Version	01		Page	12	
STANDARD MANUAL					

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	5
L	7
F	2.0
Φd	0.5

Table3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 20°C100kHz to300kHz (mΩ)	Leakage current (µA) 2min
6.3	220	5X7	3700	11	280

Issued-date: 2018-11-01	Name	Specification Sheet – ULR				
Version	01		Page	13		
STANDARD MANUAL						

7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

- 7-1Circuit design
 - Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.
- 7-2. Voltage
 - 1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

② When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tunid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issued-date: 2018-11-01	Name	Specification Sheet – ULR				
Version	01		Page	14		
STANDARD MANUAL						

7-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the

PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

5) Acid or alkaline environments.

6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

8.Long Term Storage

Store the X-CONs in sealed package bags after delivery per the table below;

X-CON Type	Before unsealing		
Radial lead type packed in bags	Must be used within 24~36 months after		
Radiai lead type packed ill bags	delivery(unsealed status)		
Dediel lead true neeled in tening method	Must be used within 24~36 months after		
Radial lead type packed in taping method	delivery(unsealed status)		

9. Mounting Precautions Mounting phase Things to note before mounting Disposal 1) Used X-CON capacitors Not reused 2) LC-increased X-CON capacitors Apply them with rated voltage in series with $1 \text{K} \Omega$ after long storage resistance for 1 hour at the range between 60 and 70° C Not reused 3) X-CON capacitors dropped to the floor Products without remarkable polar, capacitance and rated 4) Precautions on polar, capacitance Before mounting and rated voltage voltage shouldn't be available The products can be used only when said pitch is matched 5) Precautions on the pitch between lead terminal and PCB The products can be used for production only when lead 6) Precautions on the stress that lead terminal and body are not subject stress. terminal and body of X-CON capacitors enduring in mounting Both temperature and duration in mounting should meet 1) Soldering with a soldering iron the requirements of out-going SPEC; no stress should be allowed to occur in mounting; Don't let the tip of the soldering iron touch the X-CON itself. X-CON capacitor body should be prohibited to submerge Mounting 2) Flow soldering in melted solder; both temperature and duration in mounting should meet the requirements of out-going SPEC; The rosin is not allowed to adhere to any where other than lead terminal. Do not tilt, bend twists X-CON; Do not allow other matter 1) Precautions on mounting status touch X-CON. 2) Washing the PCB (available Used immersion or ultrasonic waves to clean for a total of cleaning agent 1) high quality less than 5 minutes and the temperature be less than 60° C; After mounting alcohol-based cleaning fluid such as The conductivity, PH, specific gravity and water cleaning, X-CON products should be dried with hot air (less than st-100s, 750L,750M;2) Detergents including substitute freon such as the maximum operating temperature). AK-225AES and IPA) Issued-date: 2018-11-01 Name Specification Sheet – ULR 01 Version Page 15 STANDARD MANUAL

10. It refers to the latest document of "Environment-related Substances standard"(WI-HSPM-QA-072).

	Substances				
Heavy metals	Cadmium and cadmium compounds				
	Lead and lead compounds				
	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
Brominated	Polybrominated biphenyls (PBB)				
	Polybrominated diphenylethers(PBDE) (including				
organic compounds	decabromodiphenyl ether[DecaBDE])				
	Other brominated organic compounds				
Tributyltin comp	oounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo com	npounds				
Formaldehyde					
Polyvinyl chlorid	de (PVC) and PVC blevds				
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				

Issued-date: 2018-11-01	Name	Specification Sheet – ULR			
Version	01		Page	16	
STANDARD MANUAL					

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Organic Polymer Capacitors category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

750-1809 SEAU0A0102G MPP104K6130714LC MPP223J5130508LC MPP104K6130612LC MPP684K4241219LC PPS333KD241017LC MPP472K4130408LC PCZ1V221MCL1GS HHXD500ARA470MHA0G NPXB1001B271MF NPXB1101B391MF NPXC0571B221MF NPXC0701B331MF NPXB0901B391MF NPXD0701A471MF HHXD630ARA330MJA0G HHXD350ARA270MF61G HHXD350ARA220ME61G HHXD350ARA101MHA0G HHXD350ARA680MF80G APXJ200ARA151MF61G RS81C271MDN1CG APSF6R3ELL821MF08S PM101M016E058PTR PM101M025E077PTR SPZ1EM221E10P25RAXXX APSE2R5ETD821MF08S SPZ1EM681F14000RAXXX SPZ1AM102F11000RAXXX SPV1VM471G13000RAXXX SPZ1VM821G18000RAXXX SPV1HM331G15000RAXXX SVZ1EM221E09E00RAXXX PM101M035E077PTR HV1A227M0605PZ HV1C107M0605PZ HV1C227M0607PZ HV1H107M0810PZ HV1E107M0607PZ HV1V106M0605PZ HV1V476M0605PZ HV1H227M1010PZ HV0J337M0607PZ HV1A477M0607PZ HV1E566M0605PZ HV1V227M0810PZ HV0J108M0810PZ M2101M035C070RT SVZ1EM471FBRE00RAXXX