

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶):志盛翔

DATE: (日期):2021-05-13

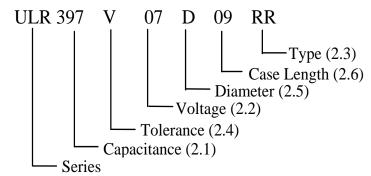
S	CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS JLR 7.5V390μF (φ5x9))1
---	---

SUPPLI	ER	CU	STOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
邓文文	付婷婷		

RECORDS Rev. Date Mark Page Contents Purpose Drafter App Image: Im	ALTERNATION HISTORY		
	orover		

Issue Date : 2021-05-13 Name Specification Sheet – ULR					
Version	01		Page	1	
STANDARD MANUAL					

	С	O N T E N T S	
 Application Part Number System Construction Characteristics Rated voltage & Surge vol Capacitance (Tolerance) Leakage current Leakage current Tangent of loss angle ESR Temperature characteristic Load life test Surge test Damp heat test 10 Maximum permissible rip 11 Rapid change of temp 	n tage ple current		Sheet 3 4 5~11
 4.12 Lead strength 4.13 Resistance to vibratio 4.14 Solderability 4.15 Resistance to solderin 5. Product Marking 	n g heat Impedanc restricted	e & Maximum Permissible Ripple Currer	12 nt 13 14~17 17
-	ted Substar	nces to be Controlled ('Controlled Substances')" Specification Sheet – ULR	18


Issue Date : 2021-05-13NameSpecification Sheet – ULRVersion01Page2STANDARD MANUAL

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	397
Capacitance (µ F)	390

2.2 Rated voltage code

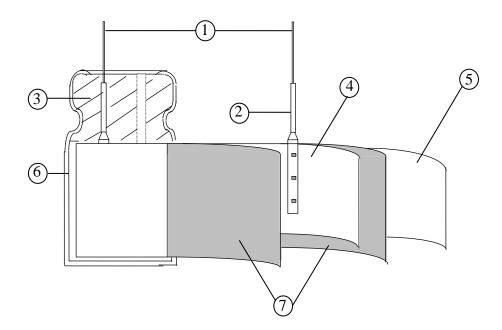
Code	07
Voltage (W.V.)	7.5

2.3 <u>Type</u>

Code	RR
Туре	Bulk

- 2.4 <u>Capacitance tolerance</u> "V" stands for -10% ~ +20%
- 2.5 Diameter

Code	D			
Diameter	5			


2.6 <u>Case length</u> 09=9mm

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	3	
STANDARD MANUAL					

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	4	
STANDARD MANUAL					

4. Characteristics

<u>Standard atmospheric conditions</u> Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows: Ambient temperature: 15°C to 35°C

Relative humidity: 45% to75%Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issue Date : 2021-05-13	Name	Specification Sheet – ULR		
Version	01		Page	5
	STA	ANDARD MANUAL		

	ITEM	PERFORMANCE
4.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 7.5 SV (V.DC) 8.6
4.2	Nominal capacitance (Tolerance)	$<$ Condition>Measuring Frequency: 120Hz±12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$ $<$ Criteria>Shall be within the specified capacitance tolerance.
4.3	Leakage current	<condition></condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10\Omega$) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105 °C <criteria></criteria> See Table 3
4.4	tanδ	<condition> See 4.2, for measuring frequency, voltage and temperature.<criteria>Working voltage (v)7.5 tanδ (max.)0.10</criteria></condition>
4.5	ESR	<condition> Measuring frequency : 100kHz to 300kHz; Measuring temperature:20±2°C Measuring point : 2mm max from the surface of a sealing resin on the lead wire. <criteria> (20°C)Less than the initial limit(See Table 3).</criteria></condition>
	e Date · 2021-0	5-13 Name Specification Sheet – ULR

Issue Date : 2021-05-13	Name	Specification Sheet – ULR		
Version	01		Page	6
	STA	ANDARD MANUAL		

		<conditio< th=""><th>Temperature(°C)</th><th>Item</th><th>Characteristics</th></conditio<>	Temperature(°C)	Item	Characteristics			
		1	20±2	Measure: Capacitanceς tanδς Impedance				
		2	-55+3	Z-55℃ / 20℃	≤1.25			
	T	3	Keep at 15 to 35°C for 15 minutes or more					
4.6	4.6 Temperature characteristic	4	105 ± 2	Z105°C / 20°C	≤1.25			
				Δ C/C 20°C	Within $\pm 5\%$ of step1			
		5	20±2	tanð	Less than or equal to the value of item 4.4			
		The C voltag	dition> apacitor is stored at a ten e for 2000 +48/0 hours .					
		<crit< td=""><td></td><td>ormance</td><td></td></crit<>		ormance				
				Within $\pm 20\%$ of initial capacitance				
		tanδ	Les	Less than or equal to 1.5 times of the value of item 4.4				
	Load	ESR		Less than or equal to 1.5 times of the value of item 4.5				
4.7	life	Leak		s than or equal to the v				
	test	Appe	earance Not	Notable changes shall not be found.				
4.7	test							

Issue Date : 2021-05-13	Name	Specification Sheet – ULR		
Version	01		Page	7
	STA	ANDARD MANUAL		

		Capacitor seconds i the capac	<condition> Capacitor shall be applied the surge voltage through 1kΩ resistor in series for 30±5 seconds in every 5minutes30S at 15~35°C. Procedure shall be repeated 1000 times. Then the capacitors shall be left under normal humidity for 1-2hours before measurement. <criteria></criteria></condition>							
		Item		Р	erformance					
1.0	Surge		Capacitance Change V		Within $\pm 20\%$ of initial capacitance					
4.8	test	tanδ		4	ess than or equal to 1.5 times of the .4					
		ESR			ess than or equal to 1.5 times of the .5	e value of i	tem			
		Leaka	ge current	L	ess than or equal to the value of item	ı 4.3				
		< Condi Humic The c	ition> dity Test: apacitor sha	ll be expo	ge is always applied. osed for 1000 ± 48 hours in an atmosp	-				
		at 60 Criter Item		haracteris	tic change shall meet the following r Performance	equiremen	t.			
		Capao	citance Char	nge	Within $\pm 20\%$ of initial capacitant					
		tanδ			Less than or equal to 1.5 times of the value of item 4.4					
	Damp	ESR			Less than or equal to 1.5 times of the value of item 4.5					
4.9	heat test	Leaka	age current		Less than or equal to the value of it	tem 4.3				
		Appe	arance		Notable changes shall not be found.					
Iss	ue Date : 202	1-05-13	Name	Specifi	ication Sheet – ULR					
	Version		01			Page	8			
			STA	ANDAR	D MANUAL					

4.10	Maximum permissible (ripple current)	The At Tab The rate	100kHz and ole 3	can be alue o d sha ipliers	e applied at of D.C volta ll not revers s: 120Hz≤ ≤<1kHz 0.05	maximum oper ge and the peak	naximum A.C c ating temperatu A.C voltage sh 10kHz≤ f<100kHz 0.70	re see all not e 100 f<5	exceed the kHz≤ 00kHz 1.00
4.11	Rapid change of temperature	Cycle Test Perfc Cap	e number: 5 diagram: Fig	cycles g.1 e capa ange	s acitors shall Performar Within ± Less than	meet the follow nce 10% of initial or equal to valu or equal to the	Roc $30\pm 3 \text{ min}$ n or less ile ving specification capacitance		
Issu	ue Date : 2021-0)5-13	Name	Spe	cification	Sheet – ULR			
	Version		01	1				Page	9
			STA	AND/	ARD MAI	NUAL	I	-	

	1							
	a) Lead pull strength							
	A static load force shall be applied to the terminal in the axial direction and acting in a direction away from the body for 10 ± 1 s.							
	Lead wire diameter (mm)	Load force (N)						
	d ≤0.5	5						
	h) I and handing							
	b) Lead bending When the capacitor is placed in a vartical position and the weight specified in the							
	When the capacitor is placed in a vertical position and the weight specified in the table above is applied to one lead and then the capacitor is slowly rotated 90^0 to a							
4.10 7 1 4 41	horizontal position and then returned to a vertical position thus completing bends							
4.12 Lead strength	for 2~3seconds.							
	The additional bends are made in the op							
	Lead wire diameter (mm)	Load force (N)						
	d ≤0.5	2.5						
		eet the following value after a) or b) test.						
	Item Performa							
		or equal to the value of item4.3						
	Outward Appearance No cuttin	g and slack of lead terminals						
4.13 Resistance to vibration	Frequency: 10 to 55 Hz (1minute interval / 1 Amplitude: 0.75mm(Total excursion 1.5mm) Direction :X、Y、Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following	g Fig2 ↓ ≤0. 3mm						
	Performance: Capacitance value shall not sho	w drastic change compared to the initial						
	capacitance when the value is measured with exam, Capacitance difference shall be within exam.	in 30 minutes. Prior to the completion of						
	capacitance when the value is measured with exam, Capacitance difference shall be within	in 30 minutes. Prior to the completion of						
Issue Date · 2021	capacitance when the value is measured with exam, Capacitance difference shall be within exam.	in 30 minutes. Prior to the completion of $\pm 5\%$ compared to the initial value the						
Issue Date : 2021 Version	capacitance when the value is measured with exam, Capacitance difference shall be within exam.	in 30 minutes. Prior to the completion of $\pm 5\%$ compared to the initial value the						

4.14	Solderability	The capacitor shall be tested under the following conditions:Solder: Sn-3Ag-0.5CuSoldering temperature:245±3°CImmersing time: 3±0.5sImmersing depth: 1.5~ 2.0mm from the root.Flux: Approx .25% rosinPerformance:At least 95% of the dipped portion of the terminal shall be covered with new solder.
Resistance		 A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260 ±5°C Immersing time : 10±1s Heat protector: t=1.6mm glass –epoxy board B) Soldering iron method Bit temperature : 400 ±10°C Application time : 3+1/-0 s Heat protector: t=1.6mm glass –epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured:
4.15	to soldering heat	Capacitance ChangeWithin $\pm 5\%$ of initial capacitancetan δ Less than or equal to the value of item 4.4ESRLess than or equal to the value of item 4.5Leakage currentLess than or equal to the value of item 4.3 (after voltage treatment)AppearanceNotable changes shall not be found.

Issue Date : 2021-05-13	Name	Specification Sheet – ULR		
Version	01		Page	11
	STA	ANDARD MANUAL		

5. Product Marking

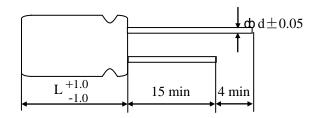
Marking Sample:

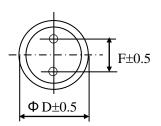
Cathode marking Cathode marking Capacitance (µ F) L A Date code

L A

Table 1				
Code	Н	J	K	L
Year	2018	2019	2020	2021
T 11 0				

Manufactured week: see Table 2 — Manufactured year: see Table 1


Table 2


Week	1	2	3	4	5	6	7	8	9	10	11
Code	Α	В	С	D	Е	F	G	Н	Ι	J	K
	1		1	1	1			1	1	1	
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	Μ	Ν	0	Р	Q	R	S	Т	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	Х	Y	Ζ	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	E	F	<u>G</u>
						-					
Week	34	35	36	37	38	39	40	41	42	43	44
Code	H	I	J	K	L	M	N	<u>0</u>	<u>P</u>	Q	<u>R</u>
		1				1	1		1		
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	T	U	V	W	X	Y	Z			

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	12	
STANDARD MANUAL					

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	5
L	9
F	2.5
φd	0.5

Table 3

Working Voltage (V)	Capacitance (µ F)	Dimension (D×L, mm)	Maximum permissible ripple current at 105℃ 100kHz (mA rms)	ESR at 20°C 100kHz to300kHz (mΩ)	Leakage current (µ A) 2min
7.5	390	5x9	3092	12	585

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	13	
STANDARD MANUAL					

7.Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

1) Time constant circuits

- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current

4) High impedance voltage retention circuits.

7-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the

peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit. 2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

2 When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tunid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor $(1K\Omega)$ must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	14	
STANDARD MANUAL					

7-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the

PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

- 5) Acid or alkaline environments.
- 6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

8. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal
	1) Used X-CON capacitors	Not reused
	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with $1K\Omega$
	after long storage	resistance for 1 hour at the range between 60 and 70° C
	3) X-CON capacitors dropped to the	Not reused
	floor	
Before mounting	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated
Defore mounting	and rated voltage	voltage shouldn't be available
	5) Precautions on the pitch between	The products can be used only when said pitch is matched
	lead terminal and PCB	
	6) Precautions on the stress that lead	The products can be used for production only when lead
	terminal and body of X-CON	terminal and body are not subject stress.
	capacitors enduring in mounting	
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet
		the requirements of out-going SPEC; no stress should be
		allowed to occur in mounting; Don't let the tip of the
Mounting		soldering iron touch the X-CON itself.
Mounting	2) Flow soldering	X-CON capacitor body should be prohibited to submerge in melted solder; both temperature and duration in
		mounting should meet the requirements of out-going
		SPEC; The rosin is not allowed to adhere to any where
		other than lead terminal.
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other
	-,	matter touch X-CON.
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60° C
After mounting	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water
	st-100s, 750L,750M;2) Detergents	cleaning, X-CON products should be dried with hot air
		(less than the maximum operating temperature).
	including substitute freon such as	

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	15	
STANDARD MANUAL					

9.It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
	Polybrominated biphenyls (PBB)					
Brominated	Polybrominated diphenylethers(PBDE) (including					
organic compounds	decabromodiphenyl ether[DecaBDE])					
	Other brominated organic compounds					
Tributyltin comp	pounds(TBT)					
Triphenyltin con	npounds(TPT)					
Asbestos						
Specific azo com	pounds					
Formaldehyde						
Polyvinyl chlorid	de (PVC) and PVC blevds					
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)					
Perfluorooctane	sulfonates (PFOS)					
Specific Benzotr	iazole					

Issue Date : 2021-05-13	Name	Specification Sheet – ULR			
Version	01		Page	16	
STANDARD MANUAL					

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Organic Polymer Capacitors category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

750-1809 SEAU0A0102G MPP104K6130714LC MPP223J5130508LC MPP104K6130612LC MPP684K4241219LC PPS333KD241017LC MPP472K4130408LC PCZ1V221MCL1GS HHXD500ARA470MHA0G NPXB1001B271MF NPXB1101B391MF NPXC0571B221MF NPXC0701B331MF NPXB0901B391MF NPXD0701A471MF HHXD630ARA330MJA0G HHXD350ARA270MF61G HHXD350ARA220ME61G HHXD350ARA101MHA0G HHXD350ARA680MF80G APXJ200ARA151MF61G RS81C271MDN1CG APSF6R3ELL821MF08S PM101M016E058PTR PM101M025E077PTR SPZ1EM221E10P25RAXXX APSE2R5ETD821MF08S SPZ1EM681F14000RAXXX SPZ1AM102F11000RAXXX SPV1VM471G13000RAXXX SPZ1VM821G18000RAXXX SPV1HM331G15000RAXXX SVZ1EM221E09E00RAXXX PM101M035E077PTR HV1A227M0605PZ HV1C107M0605PZ HV1C227M0607PZ HV1H107M0810PZ HV1E107M0607PZ HV1V106M0605PZ HV1V476M0605PZ HV1H227M1010PZ HV0J337M0607PZ HV1A477M0607PZ HV1E566M0605PZ HV1V227M0810PZ HV0J108M0810PZ M2101M035C070RT SVZ1EM471FBRE00RAXXX