

Г

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER:	DATE:
(客戶): 志盛	连翔 (日期):2017-05-11
CATEGORY (品名)	 CONDUCTIVE POLYMER ALUMINUM
DESCRIPTION (型号)	SOLID CAPACITORS ULR 6.3V680μF (φ6.3x8)
VERSION (版本)	: 01
Customer P/N	: /
SUPPLIER	:

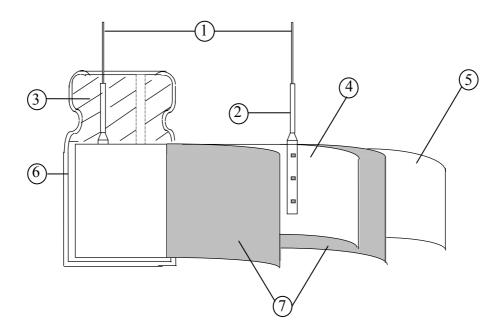
٦

SUPPL	SUPPLIER		OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华		

	SPECIFICATION ULR SERIES					ATION HIS ECORDS	FORY
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approve
Rev.	Date	Iviaiĸ	rage	Contents	ruipose	Dialiei	Appiove

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	1
	STA	ANDARD MANUAL		

CONTENTS	
	Sheet
1. Application	3
2. Part Number System	3
3. Construction	4
4. Characteristics	5~11
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic	
4.7 Load life test4.8 Surge test	
4.8 Surge test 4.9 Damp heat test	
4.10 Maximum permissible ripple current	
4.11 Rapid change of temperature	
4.12 Lead strength	
4.13 Resistance to vibration	
4.14 Solderability	
4.15 Resistance to soldering heat	
5. Product Marking	12
6. Product Dimensions, Impedance & Maximum Permissible Ripple Cur	
7. Application Guideline	14~15
7-1 Circuit design	
7-2 Voltage	
7-3 Sudden charge and discharge restricted	
7-4 Ripple current	
7-5 Leakage current 7-6 Failure rate	
7-7 Capacitor insulation	
7-8 Precautions for using capacitors	
8. Mounting Precautions	15
9. List of "Environment-related Substances to be Controlled ('Controlled Substances	
	., 10


Issue Date : 2017-05-11	Name	Specification Sheet – ULR			
Version	01		Page	2	
STANDARD MANUAL					

1.	Application This specification applies to	o conductive polymer aluminum solid capacitors used in electronic equipment.
2.	Part Number Syste	m
	ULR 687 M 0J	E 08 RR
	Tole ToleTOTTOTORTTOTORTTOTTOTTOTTO	Type (2.3) Case Length (2.6) Diameter (2.5) - Voltage (2.2) erance (2.4) nce (2.1)
2.1	Capacitance code	
	Code	687
	Capacitance (µF)	680
2.2	D. (. 1 1(1)	
2.2	Rated voltage code Code	0J
	Voltage (W.V.)	6.3
2.3	<u>Type</u>	
	Code	RR
	Туре	bulk.
2.4	Capacitance tolerance	200/
	"M" stands for $-20\% \sim +$	-20%
2.5	Diameter	
		E
	Diameter 6	.3
2.6	<u>Case length</u> 08=08mm	

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	3
	STA	ANDARD MANUAL		

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	4
	STA	ANDARD MANUAL		

4. Characteristics

Standard atmospheric conditions Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°CRelative humidity: 45% to75%Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity: 60% to 70%Air Pressure: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	5
	STA	ANDARD MANUAL		

	ITEM	PERFORMANCE
4.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 6.3 SV (V.DC) 7.2
4.2	Nominal capacitance (Tolerance)	<condition>Measuring Frequency: $120Hz\pm12Hz$Measuring Voltage: Not more than $0.5Vrms$Measuring Temperature: $20\pm2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>
4.3	Leakage current	<condition></condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10 \Omega$) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105 °C <criteria></criteria> See Table 3
4.4	tan δ	<condition>See 4.2, for measuring frequency, voltage and temperature.<criteria>Working voltage (v)$6.3$$\tan \delta$ (max.)</criteria></condition>
4.5	ESR	<condition> Measuring frequency : 100kHz to 300kHz; Measuring temperature:20±2°C Measuring point : 2mm max from the surface of a sealing resin on the lead wire. <criteria> (20°C)Less than the initial limit(See Table 3).</criteria></condition>

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	6
	STA	ANDARD MANUAL		

		<conditio< th=""><th>Temperature(°C)</th><th>Item</th><th>Characteristics</th></conditio<>	Temperature(°C)	Item	Characteristics			
Temperature		1	20±2	Measure: Capacitance tanδ Impedance				
	2	-55+3	Z-55°C / 20°C	≤1.25				
	Temperature	3	Keep at 15 to 35°C for 15 minutes or more					
4.6	characteristic	4	105 ± 2	Z105°C / 20°C	≤1.25			
				Δ C/C 20°C	Within \pm 5% of step1			
		5	20±2	tanð	Less than or equal to the value of item 4.4			
		voltag	apacitor is stored at a tem e for 2000 +48/0 hours. T					
		< <u>Criter</u>						
		Item	Perf	Performance				
		C			•			
		Capa tan δ			apacitance times of the value of			
.7	Load life		Less	than or equal to 1.5 4.4 than or equal to 1.5				
.7		tan δ ESR	Less item Less item	than or equal to 1.5 4.4 than or equal to 1.5	times of the value of times of the value of			
.7	life	tan δ ESR Leak	Less item Less item age current	than or equal to 1.5 4.4 than or equal to 1.5 4.5	times of the value of times of the value of alue of item 4.3			

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	7
	STA	ANDARD MANUAL		

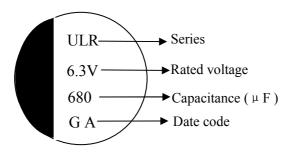
		seconds in every 5minutes	d the surge voltage through $1k\Omega$ resistor in series for 30 ± 5 30s at $15\sim 35^{\circ}$ C. Procedure shall be repeated 1000 times. Then under normal humidity for 1-2hours before measurement.
	~	Item	Performance
4.8	Surge test	Capacitance Change	Within $\pm 20\%$ of initial capacitance
	test	tan δ	Less than or equal to 1.5 times of the value of item 4.4
		ESR Leakage current	Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3
		The capacitor shall be ex 60 ± 2 °C, the characteris <criteria></criteria> Item	tic change shall meet the following requirement. Performance
$60 \pm 2^{\circ}C, \text{ the characteristic change shall meet the following required} \\ < Criteria> \\ \hline Item & Performance \\ \hline Capacitance Change & Within \pm 20\% \text{ of initial capacitance} \\ tan \delta & Less than or equal to 1.5 times of tan \\ 4.4 \\ \hline ESR & Less than or equal to 1.5 times of tan \\ 4.5 \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less tan \\ \hline Less than or equal to 1.5 times of tan \\ \hline Less \\ $			Less than or equal to 1.5 times of the value of item
	Less than or equal to 1.5 times of the value of item		
4.9	test	Leakage current	Less than or equal to the value of item 4.3
		Appearance	Notable changes shall not be found.
	Attention: This test simulates over voltage at abnormal situation, and hypothesizing that over voltage is always applied. <condition></condition> Humidity Test: The capacitor shall be exposed for 1000 ± 48 hours in an atmosphere of $90-5$ $60 \pm 2^{\circ}$ C, the characteristic change shall meet the following requirement. <criteria></criteria> Item Performance Capacitance Change Within $\pm 20\%$ of initial capacitance tan δ Less than or equal to 1.5 times of the value of 4.4 ESR Less than or equal to 1.5 times of the value of 4.5 Leakage current Less than or equal to the value of item 4.3		

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	8
	STA	ANDARD MANUAL		

4.10	Maximum permissible (ripple current)	<condition> The maximum perm At 100kHz and can Table 3 The combined value rated voltage and sh Frequency Multiplie Frequency Coefficient</condition>	be applied at e of D.C volta nall not revers	maximum oper ge and the peak	rating temperatur	re see
4.11	Rapid change of temperature	Applied voltage: with Cycle number: 5 cycl Test diagram: Fig.1 Performance: The ca Item Capacitance change tan δ Leakage current	pacitors shall Performan e Within ± Less than	meet the follow ice 10% of initial or equal to valu	Room $30 \pm 3 \min$ n or less de	

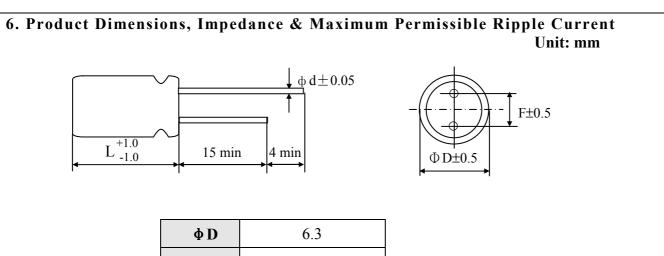
Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	9
	STA	ANDARD MANUAL		

		A static load force shall be a in a direction away from th		erminal in the axial direction and ± 1 s.	acting
4.12 Lead strength	Lead wire diameter	Load force (N)			
	$0.5 < d \leqslant 0.8$		10		
	Lead strength	table above is applied to one horizontal position and then for 2~3seconds. The additional bends are ma Lead wire diameter $0.5 < d \le 0.8$	e lead and then returned to a v ide in the oppo (mm) stic shall meet Performance Less than o	Load force (N) 5 the following value after a) or b	00 ⁰ to bends
	Resistance to vibration	Frequency: 10 to 55 Hz (1minute Amplitude: 0.75mm(Total excurs Direction :X、Y、Z (3 axes) Duration: 2hours/ axial (Total 6 I The capacitors are supported as t	sion 1.5mm) hours)		
		Performance: Capacitance value capacitance when the value is me exam, Capacitance difference sha exam.	easured within	30 minutes. Prior to the comple	tion of


Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	10
	STA	ANDARD MANUAL		

4.14	Solderability	The capacitor shall be tested under the following conditions:Solder: Sn-3Ag-0.5CuSoldering temperature:245±3°CImmersing time: 3±0.5sImmersing depth: 1.5~ 2.0mm from the root.Flux: Approx .25% rosinPerformance:At least 95% of the dipped portion of the terminal shall be covered with new solder.
4.15	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony.Then it will be immersed at the surface of the solder with the following condition: Solder: Sn-3Ag-0.5Cu Soldering temperatureSolder: Sn-3Ag-0.5Cu Soldering temperature: 260 ±5°C Immersing timeImmersing time: 10±1s
		Appearance Notable changes shall not be found.

Issue Date : 2017-05-11	Name	Specification Sheet – ULR		
Version	01		Page	11
	STA	ANDARD MANUAL		


5. Product Marking

Code Year	A 2011	B 2012	C 2013	G 2017					eek: see		2
Table 2						– Manu	facture	d year:	see Tab	ole 1	
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	С	D	E	F	G	Н	Ι	J	Κ
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	М	Ν	0	Р	Q	R	S	Т	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	Х	Y	Ζ	<u>A</u>	B	<u>C</u>	<u>D</u>	E	F	G
Week	34	35	36	37	38	39	40	41	42	43	44
Code	H	Ī	J	<u>K</u>	L	M	N	<u>0</u>	<u>P</u>	Q	<u>R</u>
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	<u>T</u>	U	V	W	<u>X</u>	<u>Y</u>	Z			

Issue Date : 2017-05-11	Name	Specification Sheet – ULR			
Version	01		Page	12	
STANDARD MANUAL					

 L
 8

 F
 2.5

 \$\overline{d}\$ d
 0.6

Table 3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 20°C100kHz to300kHz (mΩ)	Leakage current (µA) 2min
6.3	680	6.3x8	4700	8	857

Issue Date : 2017-05-11	Name	Specification Sheet – ULR				
Version	01		Page	13		
STANDARD MANUAL						

7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

1) Time constant circuits

- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current

4) High impedance voltage retention circuits.

7-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

(2) When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tunid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issue Date : 2017-05-11	Name	Specification Sheet – ULR			
Version	01		Page	14	
STANDARD MANUAL					

7-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

5) Acid or alkaline environments.

6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

8. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal			
	1) Used X-CON capacitors	Not reused			
	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with $1 \text{K} \Omega$			
	after long storage	resistance for 1 hour at the range between 60 and 70° C			
	3) X-CON capacitors dropped to the	Not reused			
	floor				
Before mounting	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated			
Defote mounting	and rated voltage	voltage shouldn't be available			
	5) Precautions on the pitch between	The products can be used only when said pitch is matched			
	lead terminal and PCB				
	6) Precautions on the stress that lead	The products can be used for production only when lead			
	terminal and body of X-CON	terminal and body are not subject stress.			
	capacitors enduring in mounting				
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet			
		the requirements of out-going SPEC; no stress should be			
		allowed to occur in mounting; Don't let the tip of the			
Manutina		soldering iron touch the X-CON itself.			
Mounting	2) Flow soldering	X-CON capacitor body should be prohibited to submerg			
		in melted solder; both temperature and duration in mounting should meet the requirements of out-going			
		SPEC; The rosin is not allowed to adhere to any where			
		other than lead terminal.			
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other matte			
	1) Trecautions on mounting status	touch X-CON.			
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total or			
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60° C			
After mounting	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water cleaning			
	st-100s, 750L,750M;2) Detergents	X-CON products should be dried with hot air (less than			
	including substitute freon such as	the maximum operating temperature).			
	AK-225AES and IPA)				

Issue Date : 2017-05-11	Name	Specification Sheet – ULR			
Version	01		Page	15	
STANDARD MANUAL					

9.It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).`

	Substances				
Heavy metals	Cadmium and cadmium compounds				
	Lead and lead compounds				
Tiedvy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
Brominated organic compounds	Polybrominated biphenyls (PBB)				
	Polybrominated diphenylethers(PBDE) (including				
	decabromodiphenyl ether[DecaBDE])				
	Other brominated organic compounds				
Tributyltin comp	ounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo con	pounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Issue Date : 2017-05-11	Name	Specification Sheet – ULR				
Version	01		Page	16		
STANDARD MANUAL						

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Organic Polymer Capacitors category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

750-1809 SEAU0A0102G MPP104K6130714LC MPP223J5130508LC MPP104K6130612LC MPP684K4241219LC PPS333KD241017LC MPP472K4130408LC PCZ1V221MCL1GS HHXD500ARA470MHA0G NPXB1001B271MF NPXB1101B391MF NPXC0571B221MF NPXC0701B331MF NPXB0901B391MF NPXD0701A471MF HHXD630ARA330MJA0G HHXD350ARA270MF61G HHXD350ARA220ME61G HHXD350ARA101MHA0G HHXD350ARA680MF80G APXJ200ARA151MF61G RS81C271MDN1CG APSF6R3ELL821MF08S PM101M016E058PTR PM101M025E077PTR SPZ1EM221E10P25RAXXX APSE2R5ETD821MF08S SPZ1EM681F14000RAXXX SPZ1AM102F11000RAXXX SPV1VM471G13000RAXXX SPZ1VM821G18000RAXXX SPV1HM331G15000RAXXX SVZ1EM221E09E00RAXXX PM101M035E077PTR HV1A227M0605PZ HV1C107M0605PZ HV1C227M0607PZ HV1H107M0810PZ HV1E107M0607PZ HV1V106M0605PZ HV1V476M0605PZ HV1H227M1010PZ HV0J337M0607PZ HV1A477M0607PZ HV1E566M0605PZ HV1V227M0810PZ HV0J108M0810PZ M2101M035C070RT SVZ1EM471FBRE00RAXXX