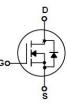
Maplesemi

SLP13N50A / SLF13N50A 500V N-Channel MOSFET

General Description


This Power MOSFET is produced using Maple semi's advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 13A, 500V, $R_{DS(on)}$ = 0.483 Ω @V_{GS} = 10 V
- Low gate charge (typical 19.1nC)
- Low Crss (typical 4.6pF)
- High ruggedness
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings

 $\rm T_{\rm C}$ = 25°C unless otherwise noted

Symbol	Parameter	SLP13N50A	SLF13N50A	Units
VDSS	Drain-Source Voltage	500		V
	Drain Current - Continuous (TC= 25°C)	13		А
Ι _D	- Continuous (TC= 100°C)	6.4*		А
I _{DM}	Drain Current - Pulsed (Note 1)	40*		А
V _{GSS}	Gate-Source Voltage	± 30		V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	346		mJ
I _{AR}	Avalanche Current (Note 1)	10		A
E _{AR}	Repetitive Avalanche Energy (Note 1)	41		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5		V/ns
D	Power Dissipation (TC = 25°C) - Derate above 25°C	32.5		W
P _D		0.26		W/°C
T _j ,T _{stg}	Operating and Storage Temperature Range	-55 to +150		٥C
ΤL	Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	300		٥C

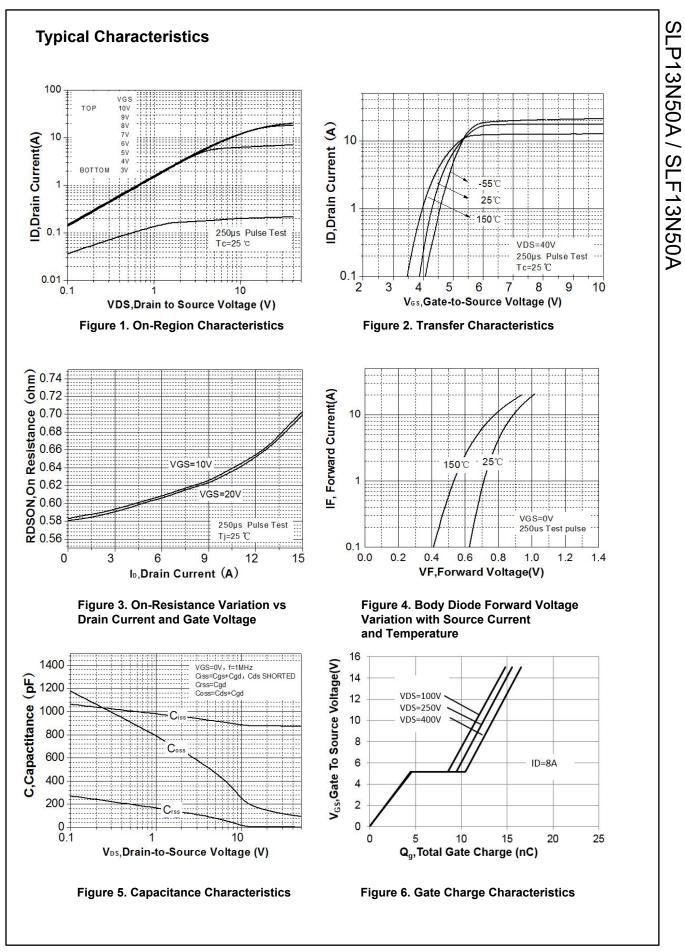
* Drain current limited by maximum junction temperature

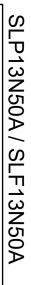
Thermal Characteristics

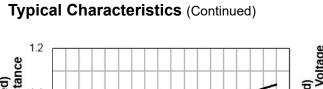
Symbol	Parameter	SLP13N50A	SLF13N50A	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	4.0		°C/W
$R_{\theta JS}$	Thermal Resistance, Case-to-Sink Typ.			°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	47	.8	°C/W

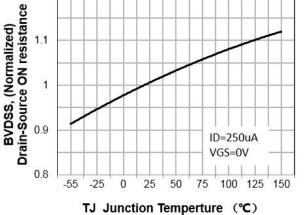
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Chara	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 250 µA	500			V
ΔBV_{DSS} / ΔT_{\perp}	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenc ed to 25°C		0.51		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V			1	μA
		V _{DS} = 400 V, TC = 125°			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Chara	acteristics	11		1		
$V_{GS(TH)}$	Gate Threshold voltage	$V_{DS}=V_{GS}$, $I_D=250$ uA	2.0		4.0	V
R _{DS(On)}	Drain-Source on-state resistance	V _{GS} =10 V, I _D = 5 A, T _J = 25°C		0.483	0.650	Ω
g _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 5 \text{ A}$ (Note 4)		7.5		S
Dynamic	Characteristics					
C _{iss}	Input capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		1066		pF
C_{oss}	Output capacitance			153		pF
C _{rss}	Reverse transfer capacitance			4.6		pF
Switching	g Characteristics					
t _{d(on)}	Turn On Delay Time			20		ns
t _r	Rising Time	$V_{DD} = 250 \text{ V}, \text{ ID} = 10 \text{ A},$		32		ns
$t_{d(off)}$	Turn Off Delay Time	R _G = 25 Ω (Note 4, 5)		64		ns
t _f	Fall Time			32		ns
Q _g	Total Gate Charge	V = 400 V ID = 40.4		19.1		nC
Q_gs	Gate-Source Charge	– V _{DS} = 400 V, ID = 10 A, V _{GS} = 10 V (Note 4, 5)		5.5		nC
Q_gd	Gate-Drain Charge			6.4		nC
Drain-So	urce Diode Characteristics and	Maximum Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				10	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				40	А
V_{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _S = 10 A			1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 10 A, dI _F / dt = 100 A/µs Note 4)		320		ns
Q _{rr}	Reverse Recovery Charge			2.2		μC

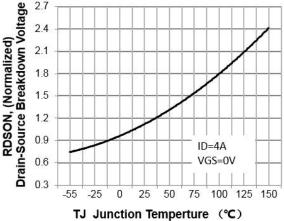
Notes:


1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 7.2 mH, IAS = 10 A, VDD = 50V, RG = 25Ω , Starting TJ = 25° C


3. ISD≤10A, di/dt ≤200A/us, VDD ≤ BVDSS, Starting TJ = 25°C


4. Pulse Test : Pulse width \leq 300us, Duty cycle $\leq 2\%$


5. Essentially independent of operating temperature


SLP13N50A / SLF13N50A

2.7

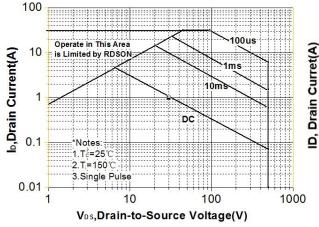


Figure 9. Maximum Safe Operating Area

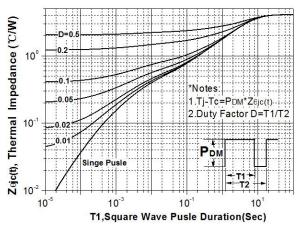


Figure 11. Transient Thermal Response Curve

Figure 8. On-Resistance Variation vs Temperature

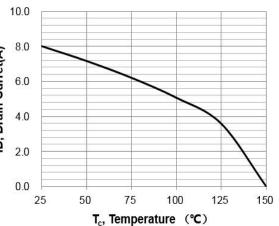
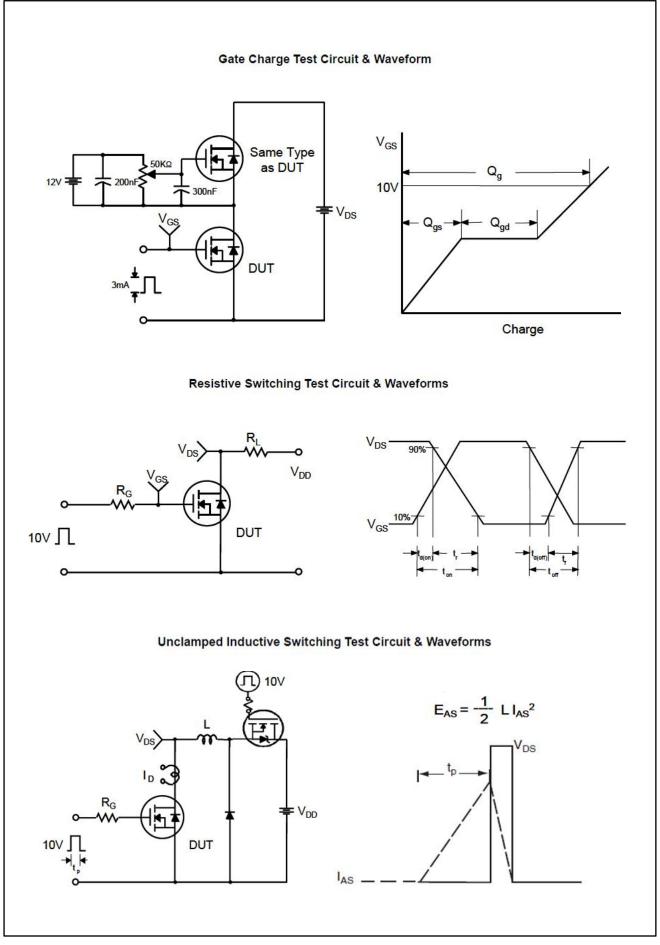
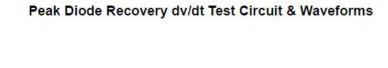
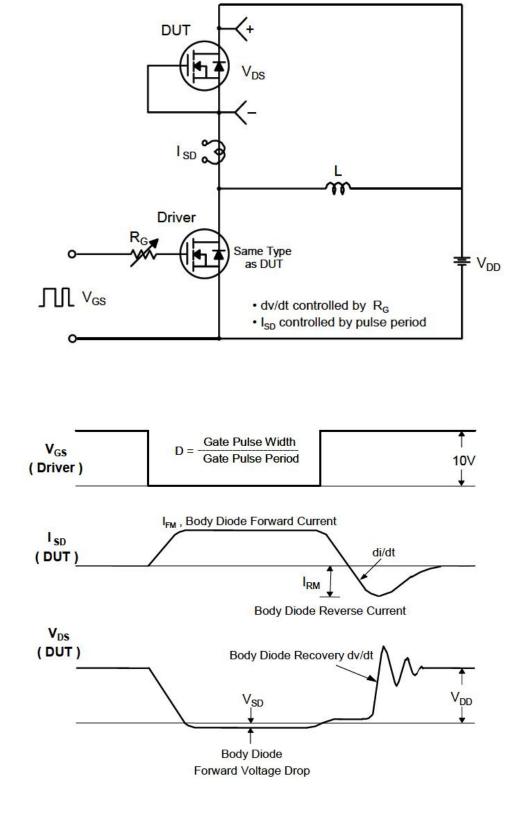





Figure 10. Maximum Drain Current vs Case Temperature

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Maplesemi manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3