AE

Fig. 3 .: Diagrams of the operation principles of the TS-43-3 TWILIGHT SWITCH.

V. Repair and maintenance

All repairs of the TWILIGHT SWITCH TS-43-3 are performed by the manufacturer. The device does not require any maintenance. When the sensor becomes contaminated, clean it with a clean, damp cloth. The device does not require any additional maintenance

VI. Warranty Card

The manufacturer guarantees the correct operation of the TS-43-3 TWILIGHT SWITCH. The warranty period is 36 months from the date of sale. The warranty is extended by the time of repair. Warranty repairs are performed by the manufacturer free of charge after the AUTOMAT is delivered to the manufacturer. Improper use of the device or independent modifications to it will void the warranty.

www.mart-electronics.eu Made in Europe

c
The TS-43-3 TWILIGHT SWITCH meets the requirements of the European Union Directives: - Directive LVD 2014/35/EU - Low Voltage Directive of 26 February 2014 - Directive EMC 2014/30/EU - Eletromagnetic Compatibility Directive of 26 February 2014

In order to protect the environment, do not throw away used electrical appliances and electronics together with municipal waste. Used equipment should be delivered to collection points for recycling free of charge. Any information on this can be obtained at sellers, distributors, manufacturer or on the Internet. The product's packaging is made of ecological materials. The PVC packaging tape will be used while stocks last.

TWILIGHT SWITCH
TS-43-3 ECO

User manual

I. Purpose

The TWILIGHT SWITCH TS-43-3 is designed to automatically switch the receiver on at the moment of dusk and turns it off in the astronomical middle of the night (middle between sunset and sunrise). The shutdown time can be adjusted ± 2 h. The TWILIGHT SWITCH has NO, NC contacts, so it can also perform the reverse function.
The TWILIGHT SWITCHTS-43-3 is designed to control the lighting: advertisements, shop windows and wherever you can turn off the lighting in the middle of the night, saving electricity.
The light intensity measurement sensor has a spectrum similar to that of the human eye, and the switch-on threshold adjustment has a logarithmic characteristic - also similar to that of the human eye.
Switching off in the astronomical middle of the night with the possibility of adjustment of $\pm 2 h$ has the additional advantage that
on sunny (cloudless) days, the lamp is turned off later, and on cloudy days, correspondingly earlier. Given the increased activity of people on sunny days, this is a favorable phenomenon.
Such an innovative design of the TS-43-3 TWILIGHT SWITCH makes the lighting control: economic and ecological.
The TS-43-3 TWILIGHT SWITCH includes:
>> TS-43 CONTROLLER - mounted in a distribution box on a 35 mm rail (one 18 mm module)
>> OUTDOOR SENSOR (IP65) - surface-mounted box mounted to the wall with two screws with a PG9 gland to insert the cable. Connection cable not longer than 100 m .

II. Properties of the TS-43-3 ECO TWILIGHT SWITCH

>> precise logarithmic control of switching on - 1 ... 10 ... $100 \ldots 1000 \mathrm{~lx}$
\gg off - astronomical middle of the night with a correction of $\pm 2 \mathrm{~h}$
>> high switching power - 16A (4000 W) 250VAC, 16A (384 W) 24VDC
>> high inrush current - resistance to 100 A surge current
>> freedom of connections:
$>$ executive relay contacts (one normally open contact - NO, one normally closed contact - NC) galvanically separated, which allows connections in various configurations
>> traffic light (LED):
$>$ Green LED - indication of 230V AC supply voltage on LN terminals
> LED red:

- pulsating signaling (without delay) - the set (set) actuation threshold is exceeded
$>$ Blue LED - changeover indication - switching on (contact 1-2), disconnection (contact 2-3)
> 35 mm rail - changeover 18 mm module
The TS-43-3 CONTROLLER uses a specialized OMRON G2RL-1-E-HR relay, designed to switch various types of lighting lamps. The special design of the relay enables effective switching of lamps with an inrush current up to 100 A .

III. Assembly

The TS-43-3 TWILIGHT SWITCH device may only be connected by a person authorized to operate electrical installations. Remember to choose the right protection.
On the front panel of the TS-43 CONTROLLER, there are three LED indicators: green, red, blue, and two knobs for setting the switch-on threshold in the ranges from 1 to 1000 Ix and adjustment of the switch-off time ± 2 hours from the middle of the night.
On the side walls of the TS-43-3 CONTROLLER there are connection diagrams and the regulation characteristics.

In order to connect the TS-43-3 TWILIGHT SWITCH you should: 1. mount the TS-43 CONTROLLER in the switchboard on a 35 mm rail 2. Fix the SENSOR on a vertical wall with two screws. Lead the connection cable into the box from the bottom through the Pg9 gland and connect to the terminal block. After mounting and screwing cables to the terminal strip, tightly screw the PG9 gland.

3. Connect the wires in accordance with the diagram (fig. 2)

4. turn on the supply voltage - the green LED will light up and the red and blue LEDs will "blink" three times set the activation voltage -
When, during dimming, the level set on the ON knob is exceeded, the red LED will start to "blink" (without delay), and after about 60 seconds the operating relay will switch, which will be signalled by the blue LED. The activation delay of 60 s should be counted from the moment of stable flashing of the red LED.
Using the control knobs, set the desired value of the switch-on threshold ON and switch-off OFF. Check operation of TWILIGHT SWITCH TS-43-3 and possibly correct the setting in real conditions (in the evening and at night). TWILIGHT SWITCH the first night works until morning, it "learns". From the second night, AUTOMAT works until the middle of the night with the possibility of adjusting the switch-off time $\pm 2 \mathrm{~h}$. Every time the power ails, the TWILIGHT SWITCH restarts from the beginning. On the following nights, it works until the middle of the night ± 2 hours. Examples of mid-night hours are presented in Table 1.

CITY	LONGITUDE	21.12 .2020			21.06 .2020 (summer time + 1h)		
		Sunset	Sunrise	Middle of the night	Sunset	Sunrise	Middle of the night
BIAKYSTOK	$23^{\circ} 10^{\prime} \mathrm{E}$	$15: 11$	$07: 39$	$23: 25$	$20: 57$	$04: 00$	$00: 28$
WARSAW	$21^{\circ} 01^{\prime} \mathrm{E}$	$15: 25$	$07: 42$	$23: 34$	$21: 01$	$04: 14$	$00: 37$
SZCZECIN	$14^{\circ} 33^{\prime} \mathrm{E}$	$15: 44$	$08: 15$	$00: 00$	$21: 34$	$04: 32$	$01: 03$

Table 1- Sample information on sunrise, sunset and midnight hours.
The TWILIGHT SWITCH TS-43-3 is programmed in such a way, that on cloudy and dark days it switches off the lighting earlier, depending on the degree of cloudiness, and e days off respectively later
It should be remembered that the optimal setting of the activation thresholds has an impact on the costs of ectricity used and contributes to environmental protection.
In order to limit the impact of temporary large changes in lighting, e.g. car lamps, lightning flash, etc. on the operation of the SWITCH, an actuation delay (approx. 60s) has been applied
When setting the ON threshold, remember that on a sunny day, covering the sensor with your bare hand may not be sufficient. Then you should cover the SENSOR more effectively.
A pictorial diagram of the TS-43-3 TWILIGHT SWITCH operation principle is shown in Fig. 3.
NOTE: Avoid mounting the SENSOR directly in the light beam of the lamp being switched on, because lighting with the SENSOR lamp may interfere with operation - the lamp will be turned on periodically and turned off from evening until morning.
IV. Technical data

Fig. 2 .: Connection diagrams for the TS-43-3 TWILIGHT SWITCH automatic device

For the Central European Time zone, in places located on the 15th meridian (this condition is approximately me by: Stargard, Żary, Gorlitz, Liberec, Salerno), during the winter time, the astronomical middle of the night falls approximately (with an accuracy of several minutes) at 00:00 (at midnight), and during summer time approximately at 01:00 AM (table1).

Table 1
Sunrise, sunset and midnight for Stargard (15003'E) in 2020

Date	Sunset	Sunrise	Middle of the night	Time
January 1	$15: 50$	$08: 14$	$00: 02$	Winter
January 15	$16: 09$	$08: 07$	$00: 08$	Winter
February 1	$16: 40$	$07: 45$	$00: 12$	Winter
February 15	$17: 08$	$07: 19$	$00: 13$	Winter
March 1	$17: 37$	$06: 47$	$00: 12$	Winter
March 15	$18: 03$	$06: 14$	$00: 08$	Winter
April 1	$19: 34$	$06: 32$	$01: 03$	Summer + 1h
April 15	$19: 59$	$05: 59$	$00: 59$	Summer + 1h
May 1	$20: 28$	$05: 25$	$00: 57$	Summer + 1h
May 15	$20: 52$	$04: 59$	$00: 55$	Summer + 1h
June 1	$21: 17$	$04: 38$	$00: 57$	Summer + 1h
June 15	$21: 29$	$04: 31$	$01: 00$	Summer + 1h
July 1	$21: 31$	$04: 36$	$01: 03$	Summer + 1h
July 15	$21: 20$	$04: 50$	$01: 05$	Summer + 1h
August 1	$20: 56$	$05: 16$	$01: 06$	Summer + 1h
August 15	$20: 28$	$05: 39$	$01: 03$	Summer + 1h
September 1	$19: 50$	$06: 09$	$01: 00$	Summer + 1h
September 15	$19: 16$	$06: 33$	$00: 55$	Summer + 1h
October 1	$18: 37$	$07: 01$	$00: 49$	Summer + 1h
October 15	$18: 04$	$07: 26$	$00: 46$	Summer + 1h
November 1	$16: 28$	$06: 58$	$23: 45$	Winter
November 15	$16: 04$	$07: 24$	$23: 44$	Winter
December 1	$15: 45$	$07: 51$	$23: 48$	Winter
December 15	$15: 41$	$08: 08$	$23: 55$	Winter

This condition is met despite the fact that the night lengths in the cities in the north and in the south differ significantly. Similar dependencies occur for other time zones - for places located on the 0 meridian In the universal time zone (e.g., London) and for places located on the 30th meridian in the Eastern European time zone (e.g., around Kiev).
For places east of the 15 th meridian, the middle of the night is earlier, and for places to the west it is later. The value of the clock shift in the middle of the night can be determined from the difference between the longitude of the place and the meridian. A change of latitude by 150 causes a shift in the middle of the night by 1 hour i.e., a change of latitude by 10 causes a shift in the middle of the night by 4 minutes.

The middle of the night determined by the TS-43-2 TWILIGHT SWITCH at different levels of cloudiness in the evening and in the morning may differ slightly from day to day. The current time change is in effect From winter to summer, it causes a shift in the middle of the night from 0 per hour 1 . Due to the more intense nightlife of the society in this period, the subsequent switching off of advertisements controlled by the TS-43-2 TWILIGHT SWITCH, display windows and other objects, in which there is no need to turn on the lighting for the whole night, is beneficial. In addition, the TWILIGHT SWITCH has the additional advantage that on sunny whole night, is beneficial. In addition, the The (cloudless) days the lamp is turned off later, and on cloudy days it is appropriate earlier.
(cloudless) das the lamp is turned ofres and of the night centre for the longest night (December 21) and the shortest night (June 21).

Table 2
Sunsets and sunrises and calculated astronomical means of night for selected European cities in the Central European time zone.

City	Longitude	December 21			June 21 (summer time +1 h)		
Białystok	$23^{\circ} 10^{\prime} \mathrm{E}$	$15: 11$	$07: 39$	$23: 25$	$20: 58$	$04: 00$	$00: 29$
Warsaw	$21^{\circ} 01^{\prime} \mathrm{E}$	$15: 25$	$07: 43$	$23: 34$	$21: 01$	$04: 14$	$00: 37$
Stargard	$15^{\circ} 03^{\prime} \mathrm{E}$	$15: 43$	$08: 12$	$23: 58$	$21: 31$	$04: 31$	$01: 01$
Liberec	$15^{\circ} 03^{\prime} \mathrm{E}$	$15: 56$	$07: 59$	$23: 58$	$21: 16$	$04: 46$	$01: 01$
Salerno	$14^{\circ} 47^{\prime} \mathrm{E}$	$16: 36$	$07: 21$	$23: 59$	$20: 35$	$05: 29$	$01: 02$
Goerlitz	$14^{\circ} 59^{\prime} \mathrm{E}$	$15: 55$	$08: 01$	$23: 58$	$21: 19$	$04: 44$	$01: 01$
Berlin	$13^{\circ} 24^{\prime} \mathrm{E}$	$15: 54$	$08: 15$	$00: 04$	$21: 33$	$04: 43$	$01: 08$
Munich	$11^{\circ} 34^{\prime} \mathrm{E}$	$16: 22$	$08: 01$	$00: 11$	$21: 17$	$05: 13$	$01: 15$
Hamburg	$10^{\circ} 01^{\prime} \mathrm{E}$	$16: 01$	$08: 34$	$00: 17$	$21: 53$	$04: 50$	$01: 21$
Aachen	$06^{\circ} 05^{\prime} \mathrm{E}$	$16: 32$	$08: 35$	$00: 33$	$21: 52$	$05: 22$	$01: 37$
Paris	$02^{\circ} 21^{\prime} \mathrm{E}$	$16: 56$	$08: 41$	$00: 48$	$21: 57$	$05: 47$	$01: 52$
Madrid	$03^{\circ} 42^{\prime} \mathrm{W}$	$17: 51$	$08: 34$	$01: 12$	$21: 48$	$06: 44$	$02: 16$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Controllers category:
Click to view products by MART manufacturer:
Other Similar products are found below :
61FGPN8DAC120 CV500SLK21 70177-1011 F03-03 HAS C F03-31 81550401 FT1A-C12RA-W H2CAC24A H2CRSAC110B R88A-CRGB003CR-E R88ARR080100S R88A-TK01K DCN1-1 AFP0RT32CT DRT2ID08C DTB4896VRE DTB9696LVE E53-AZ01 E53E01 E53E8C E5C4Q40J999FAC120 E5CWLQ1TCAC100240 E5GNQ03PFLKACDC24 B300LKL21 NSCXDC1V3 NSH5-232CW-3M NT20SST122BV1 NV-CN001 OAS-160-N C40PEDRA K31S6 K33-L1B K3MA-F 100-240VAC K3TX-AD31A 89750101 L595020 SRM1-C02 SRS2-1 G32X-V2K 2654680326546805 PWRA440A CPM1AETL03CH CV500SLK11 3G2A5BI081 3G2A5IA122 3G2A5LK010E 3G2A5OA223 3G2A5OD211 3G2A5PS223E

