Alaska ${ }^{\circledR}$ 88E1545/ 88E1543/88E1548

Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver
Datasheet - Unrestricted

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted
M A R V E L ${ }^{\text {® }}$ Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Document Conventions

Note: Provides related information or information of special importance.	
Caution: Indicates potential damage to hardware or software, or loss of data.	
Document Indicates a risk of personal injury.	
Doc Status: Advance	

For more information, visit our website at: $\mathrm{http}: / / \mathrm{www}$. marvell.com
Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control

Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E: 2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any such information.
Copyright © 1999-2017. Marvell International Ltd. All rights reserved. Alaska, ARMADA, Avanta, Avastar, CarrierSpan, FLC, HyperDuo, Kirkwood, Link Street, LinkCrypt Marvell logo, Marvell, Marvell EZ-Connect, Marvell Smart, Marvell VSoC, MoChi, Moving Forward Faster, PISC, Prestera, Qdeo, QDEO logo, Virtual Cable Tester, The World as YOU See It, Vmeta, Xelerated, and Yukon are registered trademarks of Marvell or its affiliates. ArmadaBoard, Marvell COFFEEbin, Marvell ESPRESSObin, Marvell MACCHIATObin, and NANDEdge are trademarks of Marvell or its affiliates.
Patent(s) Pending-Products identified in this document may be covered by one or more Marvell patents and/or patent applications.

M A R V E L $L^{\text {® }}$

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver Datasheet - Unrestricted

PRODUCT OVERVIEW

The latest generation Alaska ${ }^{\circledR}$ Quad family of single-chip devices contains four independent Gigabit Ethernet transceivers on a single monolithic IC. Each transceiver performs all the physical layer functions for 1000BASE-T and 100BASE-TX full or half-duplex Ethernet on CAT 5 twisted pair cable, and 10BASE-T full or half-duplex Ethernet on CAT 3, 4, and 5 cable.
The Alaska 88E1545 device supports the Quad-Serial Gigabit Media Independent Interface (QSGMII) for direct connection to a MAC/Switch port. The QSGMII combines four ports of SGMII running at 1.25 Gbps onto a single differential-pair of signals operating at 5 Gbps . QSGMII primarily decreases the number of I/O pins on the MAC interface compared to the SGMII and lowers the overall power consumption.
The Alaska 88E1543 device supports SGMII on the MAC interface in a Copper to SGMII application. In addition, the SGMII can also be used as media interface for Fiber/SFP applications. The device can be also configured to operate in SGMII (System) to Auto-Media Copper/Fiber mode for mixed media applications.

The Alaska 88E1548 device supports four modes of operation. Three modes use the QSGMII to support either copper, SGMII/Fiber or auto media detect to copper or SGMII/Fiber. The fourth mode supports SGMII to copper directly. The device supports IEEE 802.3az Energy Efficient Ethernet (EEE) and is IEEE 802.3az compliant.

The device integrates MDI termination resistors and capacitors into the PHY. This resistor integration simplifies board layout and lowers board cost by reducing the number of external components. The new Marvell ${ }^{\circledR}$ calibrated resistor scheme will achieve and exceed the accuracy requirements of the IEEE 802.3 return loss specifications. The device consumes 400 mW per port in copper applications. This reduces the overall system cost by eliminating heat-sink and reducing air-flow requirements.

The device is fully compliant with the IEEE 802.3 standard. The device includes the PMD, PMA, and PCS sublayers. The device performs PAM5, 8B/10B, 4B/5B, MLT-3, NRZI, and Manchester encoding/decoding; digital clock/data recovery; stream cipher scrambling/descrambling; digital adaptive equalization for the receiver data path as well as digital filtering for pulse-shaping for the line transmitter; and Auto-Negotiation and management functions.

The device supports Auto-MDI/MDIX at all three speeds to enable easier installation and reduced installation costs.

The device uses advanced mixed-signal processing to perform equalization, echo and crosstalk cancellation, data recovery, and error correction at a Gigabits per second data rate. The device dissipates very low power while achieving robust performance in noisy environments. The device is supported with an integrated Advanced Virtual Cable Tester ${ }^{\circledR}$ (VCT $^{\text {TM }}$) enabling fault detection and advanced cable performance monitoring.

Features

- Supports Energy Efficient Ethernet (EEE) - IEEE 802.3az compliant
- 88E1545 supports one mode of operation
- QSGMII (System) to Copper
- 88E1543 supports two modes of operation
- SGMII (System) to Copper
- Dual-port SGMII (system) to Copper/Fiber
- 88E1548 supports four modes of operation
- QSGMII (System) to Copper
- QSGMII (System) to SGMII/Fiber (Media)
- QSGMII (System) to Copper/SGMII/Fiber Auto-Media
- SGMII (System) to Copper
- Ultra low power consumption
- Integrated MDI termination resistors and capacitors
- Integrated Advanced Virtual Cable Tester ${ }^{\circledR}$ (VCT ${ }^{\text {rM }}$)
cable diagnostic feature

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

- "Downshift" mode for two-pair cable installations
- Supports up to four LEDs per port programmable to indicate link, speed, and activity functions
- Supports Advance Power Management modes for significant power savings
- Automatic MDI/MDIX crossover for all 3 speeds of operation including 100BASE-TX and 10BASE-T
- Automatic polarity correction
- $25 \mathrm{MHz}, 125 \mathrm{MHz}$, or 156.25 MHz reference clock options
- Clock cascade up to two downstream devices
- Various loopback modes for diagnostics
- Supports IEEE 1149.1 JTAG and 1149.6 AC JTAG
- Available in Green compliant package only
- Manufactured in a $14 \times 20 \mathrm{~mm}$ 128-Pin LQFP with EPAD package
- 88E1545 and 88E1543 devices manufactured in a $14 \times 20 \mathrm{~mm}$ 128-Pin LQFP with EPAD package
- 88 E 1548 devices manufactured in a $15 \times 15 \mathrm{~mm}$ 196-Pin TFBGA package

Figure 1: 88E1545/88E1548 Device Application - QSGMII (System) to Copper

Figure 2: 88E1543/88E1548 Device Application - SGMII (System) to Copper

Figure 3: 88E1543/88E1548 Device Application - Dual-port SGMII (System) to Copper/SGMII/Fiber Auto Media Detect

Figure 4: 88E1548 Device Application - QSGMII (System) to Copper/SGMII/Fiber Auto Media Detect

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 5: 88E1548 Device Application - QSGMII (System) to SGMII/Fiber (Media)

Table 1: 88E1545/88E1543/88E1548 Device Features

Features	88E1545	88E1543	88E1548
Quad-port QSGMII (System) to Copper	Yes	No	Yes
Quad-port QSGMII (System) to Auto-media Copper/Fiber	No	No	Yes
Quad-port SGMII (System) to Copper	No	Yes	Yes
Dual-port SGMII (System) to Copper	No	Yes	Yes
Dual-port SGMII (System) to Fiber	No	Yes	Yes
Dual-port SGMII (System) to Auto-media Copper/Fiber	No	Yes	Yes
100BASE-FX support	No	Yes	Yes
IEEE 802.3az Energy Efficient Ethernet	Yes	Yes	Yes
Auto-Media Detect	No	Yes ${ }^{1}$	Yes
Package	$14 m m \times 20 m m ~ 128-p i n ~ L Q F P ~ w i t h ~$	$15 m m \times 15 m m$	

1. 88E1543 auto-media detect is only supported in dual-port SGMII (System) to Auto-media Copper/Fiber configuration.

Table of Contents

1 Signal Description 17
1.1 Pin Description 17
1.1.1 88E1545 128-Pin LQFP Package Pinout 18
1.1.2 88E1543 128-Pin LQFP Package Pinout 26
1.1.3 88E1548 196-Pin TFBGA Package Pinout 35
1.2 Pin Assignment List 45
1.2.1 88E1545 128-Pin LQFP Package Pin Assignment List 45
1.2.2 88E1543 128-Pin LQFP Package Pin Assignment List 47
1.2.3 88E1548 196-Pin TFBGA Package Pin Assignment List 49
2 PHY Functional Specifications 52
2.1 Modes of Operation and Major Interfaces 53
2.2 Copper Media Interface 56
2.2.1 Transmit Side Network Interface 56
2.2.2 Encoder 56
2.2.3 Receive Side Network Interface 56
2.2.4 Decoder 58
2.3 1.25 GHz SERDES Interface 59
2.3.1 Electrical Interface 59
2.3.2 SGMII Speed and Link 59
2.3.3 False SERDES Link Up Prevention 60
2.4 QSGMII 5.0 GHz SERDES Interface 61
2.4.1 Electrical Interface 61
2.4.2 QSGMII Register Addressing 62
2.4.3 QSGMII Speed and Link 62
2.5 Loopback 63
2.5.1 System Interface Loopback 63
2.5.2 Synchronous SERDES Loopback 65
2.5.3 Line Loopback 65
2.5.4 External Loopback 67
2.6 Resets 69
2.7 Power Management 70
2.7.1 Manual Power Down 70
2.7.2 MAC Interface Power Down 70
2.7.3 Copper Energy Detect Modes 71
2.7.4 Low Power Modes 72
2.7.5 Low Power Operating Modes 72
2.7.6 SGMII Effect on Low Power Modes 72
2.8 Auto-Negotiation 72
2.8.1 10/100/1000BASE-T Auto-Negotiation 73
2.8.2 1000BASE-X Auto-Negotiation 74
2.8.3 SGMII Auto-Negotiation 74
2.8.4 QSGMII Auto-Negotiation 75
2.9 Downshift Feature 76
2.9.1 Offset 77

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver
2.10 CRC Error Counter and Frame Counter 77
2.10.1 Enabling the CRC Error Counter and Frame Counter 77
2.11 Packet Generator 77
2.12 MDI/MDIX Crossover 78
2.13 Polarity Correction 79
2.14 FLP Exchange Complete with No Link 79
2.15 LED 80
2.15.1 LED Polarity 81
2.15.2 Pulse Stretching and Blinking 82
2.15.3 Bi-Color LED Mixing 83
2.15.4 Modes of Operation 84
2.15.5 Behavior in Various Low Power States 87
2.16 Interrupt 88
2.17 Configuring the Device 88
2.17.1 Hardware Configuration 88
2.17.2 Software Configuration - Management Interface 91
2.18 Reference Clock 95
2.19 Power Supplies 96
2.19.1 AVDD33 96
2.19.2 AVDD18 96
2.19.3 VDDC 96
2.19.4 DVDD 96
2.19.5 VDDOL 96
2.19.6 VDDOR 96
2.19.7 VDDOM 97
2.19.8 Power Supply Sequencing 97
3 PHY Register Description 98
3.1 PHY MDIO Register Description 99
4 Electrical Specifications 159
4.1 Absolute Maximum Ratings 159
4.2 Recommended Operating Conditions 160
4.3 Package Thermal Information 161
4.3.1 Thermal Conditions for 128-pin LQFP Package 161
4.3.2 Thermal Conditions for 196-pin TFBGA Package 162
4.4 Current Consumption 163
4.4.1 Current Consumption AVDD18 + VDDC 163
4.4.2 Current Consumption AVDD33 164
4.4.3 Current Consumption DVDD 165
4.4.4 Current Consumption VDDOL 166
4.4.5 Current Consumption VDDOR 166
4.4.6 Current Consumption VDDOM 167
4.5 DC Operating Conditions 168
4.5.1 Digital Pins 168
4.5.2 LED Pins 168
4.5.3 RESETn Pin 169
4.5.4 IEEE DC Transceiver Parameters 169
4.5.5 SGMII 170
4.5.6 QSGMII 174
4.5.7 REFCLKP/N Receiver Specifications 179
4.6 AC Electrical Specifications 180
4.6.1 Reset Timing 180
4.6.2 XTAL_IN/XTAL_OUT Timing 180
4.6.3 REFCLKP/N Receiver Specifications 181
4.6.4 LED to CONFIG Timing 182
4.7 SGMII Timing 184
4.7.1 SGMII Output AC Characteristics 184
4.7.2 SGMII Input AC Characteristics 184
4.8 QSGMII Timing 185
4.8.1 QSGMII Output AC Characteristics 185
4.8.2 QSGMII Receiver Input Jitter Tolerance Specifications 185
4.9 MDC/MDIO Timing 187
4.9.1 JTAG Timing 188
4.10 IEEE AC Transceiver Parameters 189
4.11 Latency Timing 190
4.11.1 10/100/1000BASE-T to SGMII Latency Timing 190
4.11.2 SGMII to 10/100/1000BASE-T Latency Timing 191
4.11.3 10/100/1000BASE-T to QSGMII Latency Timing 191
4.11.4 QSGMII to 10/100/1000BASE-T Latency Timing 193
4.11.5 QSGMII to SGMII Latency Timing 193
4.11.6 SGMII to QSGMII Latency Timing 194
4.11.7 SGMII to Auto-media Latency Timing 195
5 Mechanical Drawings 199
5.1 128-Pin LQFP Package Drawing 199
5.2 196-Pin TFBGA Package Drawing 201
6 Part Order Numbering/Package Marking 203
6.1 Part Order Numbering 203
6.2 Package Marking 204

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

List of Tables

Table 1: 88E1545/88E1543/88E1548 Device Features6
Table 2: Pin Type Definitions 17
Table 3: Media Dependent Interface Port 0 19
Table 4: Media Dependent Interface Port 1 19
Table 5: Media Dependent Interface Port 2 20
Table 6: Media Dependent Interface Port 3 20
Table 7: QSGMII 20
Table 8: Management Interface/Control 21
Table 9: LED/Configuration 21
Table 10: JTAG 22
Table 11: Clock/Reset 22
Table 12: Test 23
Table 13: Reference 23
Table 14: Power \& Ground 24
Table 15: Do Not Connect 25
Table 16: I/O State at Various Test or Reset Modes 25
Table 17: Media Dependent Interface Port 0 27
Table 18: Media Dependent Interface Port 1 27
Table 19: Media Dependent Interface Port 2 28
Table 20: Media Dependent Interface Port 3 28
Table 21: SGMII Port 0 28
Table 22: SGMII Port 1 29
Table 23: SGMII Port 2 29
Table 24: SGMII Port 3 29
Table 25: Management Interface/Control 29
Table 26: LED/Configuration 30
Table 27: JTAG 30
Table 28: Clock/Reset 31
Table 29: Test 32
Table 30: Reference 32
Table 31: Power \& Ground 33
Table 32: Do Not Connect 34
Table 33: I/O State at Various Test or Reset Modes 34
Table 34: Media Dependent Interface Port 0 36
Table 35: Media Dependent Interface Port 1 36
Table 36: Media Dependent Interface Port 2 37
Table 37: Media Dependent Interface Port 3 37
Table 38: SGMII Port 0 37
Table 39: SGMII Port 1 38
Table 40: SGMII Port 2 38
Table 41: SGMII Port 3 38
Table 42: QSGMII 38
Table 43: Management Interface/Control 38
Table 44: LED/Configuration 39
Table 45: JTAG 40
Table 46: Clock/Reset 40
Table 47: Test 41
Table 48: Reference 41
Table 49: Power \& Ground 42
Table 50: Do Not Connect 44
Table 51: I/O State at Various Test or Reset Modes 44
Table 52: 88E1545 128-Pin LQFP List—Alphabetical by Signal Name 45
Table 53: 88E1543 128-Pin LQFP List—Alphabetical by Signal Name 47
Table 54: 88E1548 196-Pin TFBGA List—Alphabetical by Signal Name 49
Table 55: MODE[2:0] Select 54
Table 56: SGMII (MAC Interface) Operational Speed 59
Table 57: Fiber Noise Filtering 60
Table 58: SGMII Port Operational Speed 62
Table 59: Reset Control Bits 69
Table 60: Power Down Control Bits 70
Table 61: Automatic MAC Interface Power Down 70
Table 62: Power State after Exiting Power Down 71
Table 63: SGMII Auto-Negotiation modes 75
Table 64: Media Dependent Interface Pin Mapping 78
Table 65: LED[3:2] Functional Pin Mapping 81
Table 66: LED Polarity 81
Table 67: Pulse Stretching and Blinking 82
Table 68: Bi-Color LED Mixing 83
Table 69: Modes of Operation 84
Table 70: Compound LED Status 86
Table 71: Speed Blinking Sequence 86
Table 72: Speed Blink 86
Table 73: MODE 3 Behavior 87
Table 74: MODE 4 Behavior 87
Table 75: Four Bit Mapping 88
Table 76: Configuration Mapping 89
Table 77: Device Configuration Definition 89
Table 78: PDOWN Register Setting as a Function of MODE[2:0] 91
Table 79: Serial Management Interface Protocol 92
Table 80: Page Address 93
Table 81: Extensions for Management Frame Format for Indirect Access 93
Table 82: Clause 45 Access to Clause 22 Registers Example. 94
Table 83: Reference Clock Pin Connections 95

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver
Table 84: Register Types 98
Table 85: Register Map 102
Table 86: Copper Control Register 104
Table 87: Copper Status Register 106
Table 88: PHY Identifier 1 107
Table 89: PHY Identifier 2 107
Table 90: Copper Auto-Negotiation Advertisement Register 108
Table 91: Copper Link Partner Ability Register - Base Page 110
Table 92: Copper Auto-Negotiation Expansion Register 111
Table 93: Copper Next Page Transmit Register 112
Table 94: Copper Link Partner Next Page Register 113
Table 95: 1000BASE-T Control Register 113
Table 96: 1000BASE-T Status Register 114
Table 97: MMD Access Control Register 115
Table 98: MMD Access Address/Data Register 115
Table 99: Extended Status Register 116
Table 100: Copper Specific Control Register 1 116
Table 101: Copper Specific Status Register 1 117
Table 102: Copper Specific Interrupt Enable Register 118
Table 103: Copper Interrupt Status Register 120
Table 104: Copper Specific Control Register 2 121
Table 105: Copper Specific Receive Error Counter Register 121
Table 106: Page Address 121
Table 107: Global Interrupt Status 122
Table 108: Fiber Control Register 122
Table 109: Fiber Status Register 124
Table 110: PHY Identifier 125
Table 111: PHY Identifier 125
Table 112: Fiber Auto-Negotiation Advertisement Register - 1000BASE-X Mode (Register 16_1.1:0 = 01) 126
Table 113: Fiber Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16_1.1:0 = 10) 127
Table 114: Fiber Auto-Negotiation Advertisement Register - SGMII (Media mode) (Register 16_1.1:0 = 11). 128
Table 115: Fiber Link Partner Ability Register - 1000BASE-X Mode (Register 16_1.1:0 = 01) 128
Table 116: Fiber Link Partner Ability Register - SGMII (System mode) (Register 16_1.1:0 = 10) 129
Table 117: Fiber Link Partner Ability Register - SGMII (Media mode) (Register 16_1.1:0 = 11) 129
Table 118: Fiber Auto-Negotiation Expansion Register. 130
Table 119: Fiber Next Page Transmit Register 131
Table 120: Fiber Link Partner Next Page Register 132
Table 121: Extended Status Register 132
Table 122: Fiber Specific Control Register 1 132
Table 123: Fiber Specific Status Register 133
Table 124: Fiber Interrupt Enable Register 134

List of Tables

Table 125: Fiber Interrupt Status Register. 135
Table 126: Fiber Receive Error Counter Register 136
Table 127: PRBS Control 136
Table 128: PRBS Error Counter LSB 137
Table 129: PRBS Error Counter MSB 137
Table 130: Fiber Specific Control Register 2 137
Table 131: MAC Specific Control Register 1 138
Table 132: MAC Specific Control Register 2 138
Table 133: LED[3:0] Function Control Register 139
Table 134: LED[3:0] Polarity Control Register 140
Table 135: LED Timer Control Register 141
Table 136: LED[5:4] Function Control and Polarity Register 142
Table 137: QSGMII Control Register 143
Table 138: QSGMII Status Register 144
Table 139: QSGMII Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16_4.0 = 0). 145
Table 140: QSGMII Link Partner Ability Register - SGMII (System mode) Mode (Register 16_4.0 = 0) 145
Table 141: QSGMII Link Partner Ability Register - SGMII (Media mode) Mode (Register 16_4.0 = 1) 146
Table 142: QSGMII Auto-Negotiation Expansion Register 147
Table 143: QSGMII Specific Control Register 1 147
Table 144: QSGMII Specific Status Register 148
Table 145: QSGMII Interrupt Enable Register 149
Table 146: QSGMII Interrupt Status Register 150
Table 147: QSGMII Receive Error Counter Register 150
Table 148: PRBS Control 150
Table 149: PRBS Error Counter LSB 151
Table 150: PRBS Error Counter MSB 151
Table 151: QSGMII Global Control Register 1 151
Table 152: QSGMII Global Control Register 2 152
Table 153: 1000BASE-T Pair Skew Register 153
Table 154: 1000BASE-T Pair Swap and Polarity 153
Table 155: Copper Port Packet Generation 153
Table 156: Copper Port CRC Counters 154
Table 157: Checker Control 155
Table 158: Copper Port Packet Generator IPG Control 155
Table 159: Misc Test 155
Table 160: Packet Generation 156
Table 161: CRC Counters 156
Table 162: Checker Control 157
Table 163: Packet Generator IPG Control 157
Table 164: General Control Register 1 158
Table 165: Absolute Maximum Ratings 159
Table 166: Recommended Operating Conditions 160
Table 167: Thermal Conditions for 128-pin LQFP Package 161

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver
Table 168: Thermal Conditions for 196-pin TFBGA Package 162
Table 169: Current Consumption AVDD18 + VDDC 163
Table 170: Current Consumption AVDD33 164
Table 171: Current Consumption DVDD 165
Table 172: Current Consumption VDDOL 166
Table 173: Current Consumption VDDOR 166
Table 174: Current Consumption VDDOM 167
Table 175: Digital Pins 168
Table 176: LED Pins 168
Table 177: RESETn Pin 169
Table 178: Internal Resister Description 169
Table 179: IEEE DC Transceiver Parameters 169
Table 180: Transmitter DC Characteristics 170
Table 181: Programming SGMII Output Amplitude 170
Table 182: Receiver DC Characteristics 173
Table 183: Transmitter DC Characteristics 174
Table 184: Receiver DC Characteristics 177
Table 185: REFCLKP/N Receiver Specifications 179
Table 186: Reset Timing 180
Table 187: XTAL_IN/XTAL_OUT Timing 180
Table 188: REFCLKP/N Receiver Specifications 181
Table 189: LED to CONFIG Timing 182
Table 190: SGMII Output AC Characteristics 184
Table 191: SGMII Input AC Characteristics 184
Table 192: QSGMII Output AC Characteristics 185
Table 193: QSGMII Receiver Input Jitter Tolerance Specifications 185
Table 194: MDC/MDIO Timing 187
Table 195: JTAG Timing 188
Table 196: IEEE AC Transceiver Parameters 189
Table 197: 10/100/1000BASE-T to SGMII Latency Timing 190
Table 198: SGMII to 10/100/1000BASE-T Latency Timing 191
Table 199: 10/100/1000BASE-T to QSGMII Latency Timing 191
Table 200: QSGMII to 10/100/1000BASE-T Latency Timing 193
Table 201: QSGMII to SGMII Latency Timing 193
Table 202: SGMII to QSGMII Latency Timing 194
Table 203: SGMII to SGMII/Fiber Latency Timing (Register 27_4.14 = 1) 195
Table 204: 10/100/1000BASE-T to SGMII Latency Timing (Register 27_4.14 = 1) 196
Table 205: SGMII to 10/100/1000BASE-T Latency Timing (Register 27_4.14 = 1) 197
Table 206: 128-Pin LQFP Package Dimensions in mm 200
Table 207: 196-Pin TFBGA Package Dimensions in mm 202
Table 208: 88E1545/88E1543/88E1548 Part Order Options 203

List of Figures

Figure 1: 88E1545/88E1548 Device Application - QSGMII (System) to Copper 4
Figure 2: 88E1543/88E1548 Device Application - SGMII (System) to Copper 4
Figure 3: 88E1543/88E1548 Device Application - Dual-port SGMII (System) to Copper/SGMII/Fiber Auto Media Detect 5
Figure 4: 88E1548 Device Application - QSGMII (System) to Copper/SGMII/Fiber Auto Media Detect. 5
Figure 5: 88E1548 Device Application - QSGMII (System) to SGMII/Fiber (Media)
Figure 6: 88E1545 Device 128-Pin LQFP Package (Top View) 18
Figure 7: 88E1543 Device 128-Pin LQFP Package (Top View) 26
Figure 8: 88E1548 Device 196-Pin TFBGA Package (Top View) 35
Figure 9: 88E1548 Pin A1 Location 35
Figure 10: Device Functional Block Diagram 52
Figure 11: SGMII System to Copper Interface Example 53
Figure 12: QSGMII System to SGMII/Fiber Media Interface Example 53
Figure 13: QSGMII System to Copper Interface Example 54
Figure 14: CML I/Os 59
Figure 15: QSGMII 61
Figure 16: CML I/Os 62
Figure 17: MAC Interface Loopback Diagram - Copper Media Interface 63
Figure 18: System Interface Loopback Diagram - Fiber Media Interface 64
Figure 19: System Interface Loopback Diagram - QSGMII Media Interface 64
Figure 20: Synchronous SERDES Loopback Diagram 65
Figure 21: Copper Line Loopback Data Path. 66
Figure 22: Fiber Line Loopback Data Path 66
Figure 23: QSGMII Line Loopback Data Path 67
Figure 24: Loopback Stub (Top View with Tab up) 67
Figure 25: Test Setup for 10/100/1000 Mbps Modes using an External Loopback Stub 68
Figure 26: LED Chain 80
Figure 27: Various LED Hookup Configurations 81
Figure 28: Typical MDC/MDIO Read Operation 91
Figure 29: Typical MDC/MDIO Write Operation 92
Figure 30: Device Register Map Summary - Page 0 - Page 7 100
Figure 31: Device Register Map Summary - Page 8 - Page 255 101
Figure 32: CML I/Os 171
Figure 33: AC connections (CML or LVDS receiver) or DC connection LVDS receiver 172
Figure 34: DC Connection to a CML Receiver 173
Figure 35: Input Differential Hysteresis 174
Figure 36: CML I/Os 175
Figure 37: AC connections (CML or LVDS receiver) or DC connection LVDS receiver 176
Figure 38: DC Connection to a CML Receiver. 177

M A R V E L L® $\begin{array}{ll}\text { 空 } & \text { Alaska }{ }^{\circledR} \text { 88E1545/88E1543/88E1548 Datasheet - Unrestricted } \\ \text { Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver }\end{array}$
Figure 39: Driver and Receiver Differential Return Loss 178
Figure 40: Definition of Driver Amplitude and Swing 179
Figure 41: Reset Timing 180
Figure 42: XTAL_IN/XTAL_OUT Timing 181
Figure 43: REF_CLK Timing 182
Figure 44: LED to CONFIG Timing 183
Figure 45: Serial Interface Rise and Fall Times 184
Figure 46: Serial Interface Rise and Fall Times 185
Figure 47: Driver and Receiver Eye Mask 186
Figure 48: MDC/MDIO Timing 187
Figure 49: MDC/MDIO Input Hysteresis 187
Figure 50: JTAG Timing 188
Figure 51: 10/100/1000BASE-T to SGMII Latency Timing 190
Figure 52: SGMII to 10/100/1000BASE-T Latency Timing 191
Figure 53: 10/100/1000BASE-T to QSGMII Latency Timing 192
Figure 54: QSGMII to 10/100/1000BASE-T Latency Timing 193
Figure 55: QSGMII to SGMII Latency Timing 194
Figure 56: SGMII to QSGMII Latency Timing 195
Figure 57: SGMII to SGMII/Fiber Latency Timing (Register 27_4.14 = 1) 196
Figure 58: 10/100/1000BASE-T to SGMII Latency Timing (Register 27_4.14 = 1) 197
Figure 59: SGMII to 10/100/1000BASE-T Latency Timing (Register 27_4.14 = 1) 198
Figure 60: 128-Pin LQFP Package 199
Figure 61: 196-Pin TFBGA Package 201
Figure 62: Sample Part Number 203
Figure 63: 88E1545 128-pin LQFP Commercial Package Marking and Pin 1 Location 204
Figure 64: 88E1543 128-pin LQFP Commercial Package Marking and Pin 1 Location 204
Figure 65: 88E1548 196-pin TFBGA Commercial Package Marking and Pin 1 Location 205

Signal Description

1.1 Pin Description

Table 2: Pin Type Definitions

Pin Type	Definition
H	Input with hysteresis
I/O	Input and output
I	Input only
O	Output only
PU	Internal pull-up
PD	Internal pull-down
D	Tri-state output
Z	DC sink capability output
mA	

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

1.1.1 88E1545 128-Pin LQFP Package Pinout

Figure 6: 88E1545 Device 128-Pin LQFP Package (Top View)

Table 3: Media Dependent Interface Port 0

$\begin{aligned} & \text { 88E1545 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
$\begin{aligned} & 126 \\ & 127 \end{aligned}$	$\begin{aligned} & \text { PO_MDIP[0] } \\ & \text { PO_MDIN[0] } \end{aligned}$	I/O	Media Dependent Interface[0]. In 1000BASE-T mode in MDI configuration, MDIP/N[0] correspond to BI_DA \pm. In MDIX configuration, MDIP/N[0] correspond to BI_DB \pm. In 100BASE-TX and 10BASE-T modes in MDI configuration, MDIP/N[0] are used for the transmit pair. In MDIX configuration, MDIP/N[0] are used for the receive pair. NOTE: Unused MDI pins must be left floating. The 88E1545 device contains an internal 100 ohm resistor between the MDIP/N[0] pins.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { P0_MDIP[1] } \\ & \text { PO_MDIN[1] } \end{aligned}$	I/O	Media Dependent Interface[1]. In 1000BASE-T mode in MDI configuration, MDIP/N[1] correspond to BI_DB \pm. In MDIX configuration, MDIP/N[1] correspond to BI_DA \pm. In 100BASE-TX and 10BASE-T modes in MDI configuration, MDIP/N[1] are used for the receive pair. In MDIX configuration, MDIP/N[1] are used for the transmit pair. NOTE: Unused MDI pins must be left floating. The 88E1545 device contains an internal 100 ohm resistor between the MDIP/N[1] pins.
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { PO_MDIP[2] } \\ & \text { PO_MDIN[2] } \end{aligned}$	I/O	Media Dependent Interface[2]. In 1000BASE-T mode in MDI configuration, MDIP/N[2] correspond to BI_DC \pm. In MDIX configuration, MDIP/N[2] correspond to BI_DD \pm. In 100BASE-TX and 10BASE-T modes, MDIP/N[2] are not used. NOTE: Unused MDI pins must be left floating. The 88E1545 device contains an internal 100 ohm resistor between the MDIP/N[2] pins.
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { PO_MDIP[3] } \\ & \text { PO_MDIN[3] } \end{aligned}$	I/O	Media Dependent Interface[3]. In 1000BASE-T mode in MDI configuration, MDIP/N[3] correspond to BI_DD \pm. In MDIX configuration, MDIP/N[3] correspond to BI_DC \pm. In 100BASE-TX and 10BASE-T modes, MDIP/N[3] are not used. NOTE: Unused MDI pins must be left floating. The 88E1545 device contains an internal 100 ohm resistor between the MDIP/N[3] pins.

Table 4: Media Dependent Interface Port 1

88E1545 Pin \#	Pin Name	Pin Type	Description
19	P1_MDIP[0]	I/O	Media Dependent Interface[0] for Port 1. 18
P1_MDIN[0]		Refer to P0_MDI[0]P/N.	

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 4: Media Dependent Interface Port 1 (Continued)

88E1545 Pin \#	Pin Name	Pin Type	Description
13	P1_MDIP[2]	I/O	Media Dependent Interface[2] for Port 1. Refer to P0_MDI[2]P/N..
12	P1_MDIN[2]		Media Dependent Interface[3] for Port 1. Refer to PO_MDI[3]P/N..

Table 5: Media Dependent Interface Port 2

88E1545 Pin \#	Pin Name	Pin Type	Description
20	P2_MDIP[0]	I/O	Media Dependent Interface[0] for Port 2. Refer to PO_MDI[0]P/N.
21	P2_MDIN[0]		Media Dependent Interface[1] for Port 2. 23
242 Refer to PO_MDI[1]P/N.			

Table 6: Media Dependent Interface Port 3

$\begin{aligned} & \text { 88E1545 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
$\begin{aligned} & 41 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { P3_MDIP[0] } \\ & \text { P3_MDIN[0] } \end{aligned}$	I/O	Media Dependent Interface[0] for Port 3. Refer to PO_MDI[0]P/N.
$\begin{aligned} & 37 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { P3_MDIP[1] } \\ & \text { P3_MDIN[1] } \end{aligned}$	I/O	Media Dependent Interface[1] for Port 3. Refer to PO_MDI[1]P/N.
$\begin{aligned} & 35 \\ & 34 \end{aligned}$	$\begin{aligned} & \text { P3_MDIP[2] } \\ & \text { P3_MDIN[2] } \end{aligned}$	I/O	Media Dependent Interface[2] for Port 3. Refer to PO_MDI[2]P/N.
$\begin{aligned} & 32 \\ & 31 \end{aligned}$	P3_MDIP[3] P3_MDIN[3]	I/O	Media Dependent Interface[3] for Port 3. Refer to PO_MDI[3]P/N.

Table 7: QSGMII

88E1545 Pin \#	Pin Name	Pin Type	Description
80	Q_INP	I	QSGMII Transmit Data. 5.0 GBaud input - Positive and Negative.
82	Q_INN		
85	Q_OUTP	O	QSGMII Receive Data. 5.0 GBaud output - Positive and Negative.
87	Q_OUTN		

Table 8: Management Interface/Control

88E1545 Pin \#	Pin Name	Pin Type	Description
91	MDC	I	Management Clock pin. MDC is the management data clock reference for the serial management interface. A continuous clock stream is not expected. The maximum frequency supported is 12.5 MHz.
90	MDIO	I/O	Management Data pin. MDIO is the management data. MDIO transfers management data in and out of the device synchronously to MDC. This pin requires a pull-up resistor in a range from 1.5 kohm to 10 kohm.
99	INTn	OD	Interrupt pin. INTT functions as an active low interrupt output. The pull-up resistor used for the INTn should not be connected to voltage higher than VDDOL.

Table 9: LED/Configuration

88E1545 Pin \#	Pin Name	Pin Type	Description
103	P0_LED[3]	O	Parallel LED Output Port 0
102	P0_LED[2]		
101	P0_LED[1]		See Section 2.15, LED, on page 80 for details.
100	P0_LED[0]		
108	P1_LED[3]	O	Parallel LED Output Port 1
107	P1_LED[2]		See Section 2.15, LED, on page 80 for details.
106	P1_LED[1]		
105	P1_LED[0]		
116	P2_LED[3]	O	Parallel LED Output Port 2
115	P2_LED[2]		See Section 2.15, LED, on page 80 for details.
112	P2_LED[1]		
111	P2_LED[0]		Parallel LED Output Port 3
121	P3_LED[3]	O	
120	P3_LED[2]		See Section 2.15, LED, on page 80 for details.
119	P3_LED[1]		Global hardware configuration.
118	P3_LED[0]		See Section 2.17.1, Hardware Configuration, on page 88 for details.
125	CONFIG[3]	I	
124	CONFIG[2]		VDDOL voltage control.
123	CONFIG[1]		Tie to VSS = VDDOL operating at 2.5V/3.3V
122	CONFIG[0]		Floating = VDDOL operating at 1.8V
114	V18_L	I	

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 10: JTAG

88E1545 Pin \#	Pin Name	Pin Type	Description
58	TDI	I, PU	Boundary scan test data input. TDI contains an internal 150 kohm pull-up resistor.
55	TMS	I, PU	Boundary scan test mode select input. TMS contains an internal 150 kohm pull-up resistor.
54	TCK	I, PU	Boundary scan test clock input. TCK contains an internal 150 kohm pull-up resistor.
62	TRSTn	I, PU	Boundary scan test reset input. Active low. TRSTn contains an internal 150 kohm pull-up resistor. For normal operation, TRSTn should be pulled low with a 4.7 kohm pull-down resistor.
61	TDO	O	Boundary scan test data output.

Table 11: Clock/Reset

$\begin{aligned} & \text { 88E1545 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Description
49	XTAL_IN	1	25 MHz Clock Input $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance crystal reference or oscillator input. XTAL_IN has internal ac-coupling. XTAL_IN must be left floating when it is not used. Refer to the 'Oscillator Level Shifting' (MV-S301630-00) application note for details on how to convert a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ clock source to 1.8 V clock.
50	XTAL_OUT	0	25 MHz Crystal Output. $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance crystal reference. XTAL_OUT must be left floating when it is not used.
66	REF_CLKP REF_CLKN	1	$25 \mathrm{MHz} / 125 \mathrm{MHz} / 156.25 \mathrm{MHz}$ Reference Clock Input Positive and Negative ± 50 ppm tolerance differential clock inputs. REFCLKP/N inputs are LVDS differential inputs with a 100 ohm differential internal termination resistor and internal ac-coupling. If the REF_CLKP/N inputs are not used, the REF_CLKP/N must be left floating. REF_CLKP/N also supports 125 MHz single-ended clock. In this case, the unused pin must be connected with 0.1 uF capacitor to ground.
$\begin{aligned} & 52 \\ & 51 \end{aligned}$	$\begin{aligned} & \text { CLK_SEL[1] } \\ & \text { CLK_SEL[0] } \end{aligned}$	I	Reference Clock Selection $\begin{aligned} & \text { CLK_SEL[1:0] } \\ & 00=\text { Use } 156.25 \mathrm{MHz} \text { REF_CLKP/N } \\ & 01=\text { Use } 125 \mathrm{MHz} \text { REF_CLKP/N } \\ & 10=\text { Use } 25 \mathrm{MHz} \text { REF_CLKP/N } \\ & 11=\text { Use } 25 \mathrm{MHz} \text { XTAL_IN/XTAL_OUT } \end{aligned}$ CLK_SEL[1:0] must be connected to VDDOR for configuration HIGH.
97	RESETn	I	Hardware reset. XTAL_IN must be active for a minimum of 10 clock cycles before the rising edge of RESETn. RESETn must be in inactive state for normal operation. The RESETn pin can accept 2.5 V LVCMOS signaling when the VDDOL pin is connected to 3.3 V supply. $\begin{aligned} & 1=\text { Normal operation } \\ & 0=\text { Reset } \end{aligned}$

Table 12: Test

$\begin{aligned} & \text { 88E1545 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
$\begin{aligned} & 45 \\ & 44 \end{aligned}$	HSDACP HSDACN	O	AC Test Points (Positive and Negative), TX_TCLK, and Clock Cascade Differential Outputs. The HSDACP/N outputs are used for AC Test Points, TX_TCLK, and Clock Cascade Differential Outputs. These pins must be connected to a 50 ohm termination resistor to VSS. These pins can be left floating if not used for clock cascade, IEEE testing, and debug test points are not of importance. When used for clock cascade purpose, these pins are differential LVDS clock outputs that must be routed differentially to the REF_CLKP/N inputs of the downstream devices. A maximum of 5 downstream devices are allowed. The clock frequency follows the clock frequency used for the REF_CLKP/N or XTAL_ IN/OUT inputs. These pins are also used to bring out a differential TX_TCLK for IEEE testing and AC Test Points for debug purposes. When used for IEEE testing or AC Test Points, the clock cascade must be disabled.
46	TSTPT	O	DC Test Point. The TSTPT pin should be left floating if not used.
$\begin{aligned} & 93 \\ & 94 \end{aligned}$	$\begin{aligned} & \text { TEST[1] } \\ & \text { TEST[0] } \end{aligned}$	I, PD	Test Control. This pin should be left floating if not used.

Table 13: Reference

88E1545 Pin \#	Pin Name	Pin Type	Description
42	RSET	I	Resistor Reference External 5.0 kohm 1\% resistor connected to ground.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R V ELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 14: Power \& Ground

$\begin{aligned} & \text { 88E1545 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
$\begin{aligned} & 53 \\ & 57 \\ & 63 \\ & 89 \\ & 95 \\ & 104 \\ & 109 \\ & 113 \end{aligned}$	DVDD	Power	1.0V Digital Supply
$\begin{aligned} & 6 \\ & 11 \\ & 17 \\ & 22 \\ & 28 \\ & 33 \\ & 39 \\ & 70 \\ & 75 \\ & 83 \\ & 84 \\ & 96 \\ & 128 \end{aligned}$	AVDD18	Power	1.8V Analog Supply.
$\begin{aligned} & 1 \\ & 14 \\ & 25 \\ & 38 \end{aligned}$	AVDD33	Power	3.3V Analog Supply.
$\begin{aligned} & 43 \\ & 48 \end{aligned}$	VDDC	Power	1.8V Supply ${ }^{1}$.
$\begin{aligned} & 98 \\ & 110 \\ & 117 \end{aligned}$	VDDOL	Power	$1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V} \mathrm{I} / \mathrm{O}$ Supply ${ }^{2}$. When V18_L is tied to VSS, VDDOL operates at $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$. When V18_L is left floating, VDDOL operates at 1.8 V .
92	VDDOM	Power	1.2 V or 1.8 V I/O Supply ${ }^{3}$. NOTE: For the 88E1545 device, VDDOM only supports 1.2 V or 1.8 V
$\begin{aligned} & 56 \\ & 64 \end{aligned}$	VDDOR	Power	2.5 V or 3.3 V I/O Supply ${ }^{4}$.

Table 14: Power \& Ground (Continued)

88E1545 Pin \#	Pin Name	Pin Type	Description
67	VSS	Ground	Ground.
78			
79		Ground	Ground to device. The device is packaged in a 128-pin LQFP package with an EPAD (exposed die pad) on the bottom of the package. This EPAD must be 86
88			Soldered to VSS as it is the main VSS connection on the device. The location and dimensions of the EPAD can be found in Table 206 on page 200. See the Marvell ${ }^{®}$ EPAD Layout Guidelines Application Note for EPAD layout details.
EPAD	VSS		

1. VDDC supplies XTAL_IN/OUT.
2. VDDOL supplies digital I/O pins for RESETn, LED, CONFIG, and INTn.
3. VDDOM supplies digital I/O pins for MDC, MDIO, and TEST.
4. VDDOR supplies digital I/O pins for TDO, TDI, TMS, TCK, TRSTn, REF_CLKP/N, and CLK_SEL[1:0].

Table 15: Do Not Connect

88E1545 Pin \#	Pin Name	Pin Type	Description
47	DNC	I	Do Not Connect. Do not connect these pins to anything. These pins must be left
59			unconnected.
60			
68			
69			
71			
72			
73			
74			
76			
77			

Table 16: I/O State at Various Test or Reset Modes

Pin(s)	Loopback	Software Reset	Hardware Reset	Power Down
MDI[3:0]P/N	Active	Tri-state	Tri-state	Tri-state
Q_OUTP/N	Active	Internally pulled up by terminations of 50 ohms	Internally pulled up by terminations of 50 ohms	Reg. 16.3 state $0=$ Internally pulled up by terminations of 50 ohms $1=$ Active
MDIO	Active	Active	Tri-state	Active
INTn	Active	Tri-state	Tri-state	Tri-state
TDO	Active	Active	Active	Active

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

1.1.2 88E1543 128-Pin LQFP Package Pinout

Figure 7: 88E1543 Device 128-Pin LQFP Package (Top View)

Table 17: Media Dependent Interface Port 0

$\begin{aligned} & \text { 88E1543 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
$\begin{aligned} & 126 \\ & 127 \end{aligned}$	$\begin{aligned} & \text { P0_MDIP[0] } \\ & \text { PO_MDIN[0] } \end{aligned}$	I/O	Media Dependent Interface[0]. In 1000BASE-T mode in MDI configuration, MDIP/N[0] correspond to BI_DA \pm. In MDIX configuration, MDIP/N[0] correspond to BI_DB \pm. In 100BASE-TX and 10BASE-T modes in MDI configuration, MDIP/N[0] are used for the transmit pair. In MDIX configuration, MDIP/N[0] are used for the receive pair. NOTE: Unused MDI pins must be left floating. The 88E1543 device contains an internal 100 ohm resistor between the MDIP/N[0] pins.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PO_MDIP[1] } \\ & \text { PO_MDIN[1] } \end{aligned}$	I/O	Media Dependent Interface[1]. In 1000BASE-T mode in MDI configuration, MDIP/N[1] correspond to BI_DB \pm. In MDIX configuration, MDIP/N[1] correspond to BI_DA \pm. In 100BASE-TX and 10BASE-T modes in MDI configuration, MDIP/N[1] are used for the receive pair. In MDIX configuration, MDIP/N[1] are used for the transmit pair. NOTE: Unused MDI pins must be left floating. The 88E1543 device contains an internal 100 ohm resistor between the MDIP/N[1] pins.
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { PO_MDIP[2] } \\ & \text { PO_MDIN[2] } \end{aligned}$	I/O	Media Dependent Interface[2]. In 1000BASE-T mode in MDI configuration, MDIP/N[2] correspond to BI_DC \pm. In MDIX configuration, MDIP/N[2] correspond to BI_DD \pm. In 100BASE-TX and 10BASE-T modes, MDIP/N[2] are not used. NOTE: Unused MDI pins must be left floating. The 88E1543 device contains an internal 100 ohm resistor between the MDIP/N[2] pins.
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { PO_MDIP[3] } \\ & \text { PO_MDIN[3] } \end{aligned}$	I/O	Media Dependent Interface[3]. In 1000BASE-T mode in MDI configuration, MDIP/N[3] correspond to BI_DD \pm. In MDIX configuration, MDIP/N[3] correspond to BI_DC \pm. In 100BASE-TX and 10BASE-T modes, MDIP/N[3] are not used. NOTE: Unused MDI pins must be left floating. The 88E1543 device contains an internal 100 ohm resistor between the MDIP/N[3] pins.

Table 18: Media Dependent Interface Port 1

88E1543 Pin \#	Pin Name	Pin Type	Description
19	P1_MDIP[0]	I/O	Media Dependent Interface[0] for Port 1. 18
P1_MDIN[0]		Refer to P0_MDI[0]P/N.	

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 18: Media Dependent Interface Port 1 (Continued)

88E1543 Pin \#	Pin Name	Pin Type	Description
13	P1_MDIP[2]	I/O	Media Dependent Interface[2] for Port 1. Refer to P0_MDI[2]P/N.
12	P1_MDIN[2]		Media Dependent Interface[3] for Port 1. 9
P1_MDIP[3]	I/O	Refer to PO_MDI[3]P/N..	

Table 19: Media Dependent Interface Port 2

88E1543 Pin \#	Pin Name	Pin Type	Description
20	P2_MDIP[0]	I/O	Media Dependent Interface[0] for Port 2. Refer to PO_MDI[0]P/N.
21	P2_MDIN[0]		Media Dependent Interface[1] for Port 2. 23
24	P2_MDIP[1]	I/O	Refer to P0_MDI[1]P/N.

Table 20: Media Dependent Interface Port 3

88E1543 Pin \#	Pin Name	Pin Type	Description
41	P3_MDIP[0]	I/O	Media Dependent Interface[0] for Port 3. Refer to P0_MDI[0]P/N.
30	P3_MDIN[0]		Media Dependent Interface[1] for Port 3. 37
P3_MDIP[1]	I/O	Refer to PO_MDI[1]P/N.	

Table 21: SGMII Port 0

88E1543 Pin \#	Pin Name	Pin Type	Description
96	PO_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
95	PO_S_INN		
93	PO_S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.
92	PO_S_OUTN		Output amplitude can be adjusted via register 26_1.2:0.

Table 22: SGMII Port 1

88E1543 Pin \#	Pin Name	Pin Type	Description
87	P1_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
88	P1_S_INN		
90	P1_S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.
91	P1_S_OUTN		Output amplitude can be adjusted via register 26_1.2:0.

Table 23: SGMII Port 2

88E1543 Pin \#	Pin Name	Pin Type	Description
77	P2_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
76	P2_S_INN		
74	P2_S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.
73	P2_S_OUTN		Output amplitude can be adjusted via register 26_1.2:0.

Table 24: SGMII Port 3

88E1543 Pin \#	Pin Name	Pin Type	Description
68	P3_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
69	P3_S_INN		
71	P3_S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.
72	P3_S_OUTN		Output amplitude can be adjusted via register 26_1.2:0.

Table 25: Management Interface/Control

88E1543 Pin \#	Pin Name	Pin Type	Description
82	MDC	I	Management Clock pin. MDC is the management data clock reference for the serial management interface. A continuous clock stream is not expected. The maximum frequency supported is 12.5 MHz.
81	MDIO	I/O	Management Data pin. MDIO is the management data. MDIO transfers management data in and out of the device synchronously to MDC. This pin requires a pull-up resistor in a range from 1.5 kohm to 10 kohm.
99	INTn	OD	Interrupt pin. INTn functions as an active low interrupt output. The pull-up resistor used for the INTn should not be connected to voltage higher than VDDOL.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 26: LED/Configuration

88E1543 Pin \#	Pin Name	Pin Type	Description
103	P0_LED[3]	O	Parallel LED Output Port 0
102	P0_LED[2]		See Section 2.15, LED, on page 80 for details.
101	P0_LED[1]		
100	P0_LED[0]		Parallel LED Output Port 1
108	P1_LED[3]	O	
107	P1_LED[2]		See Section 2.15, LED, on page 80 for details.
106	P1_LED[1]		
105	P1_LED[0]		Parallel LED Output Port 2
116	P2_LED[3]	O	
115	P2_LED[2]		See Section 2.15, LED, on page 80 for details.
112	P2_LED[1]		Parallel LED Output Port 3
111	P2_LED[0]		See Section 2.15, LED, on page 80 for details.
121	P3_LED[3]	O	
120	P3_LED[2]		Global hardware configuration.
119	P3_LED[1]		See Section 2.17.1, Hardware Configuration, on page 88 for details.
118	P3_LED[0]		
125	CONFIG[3]	I	
124	CONFIG[2]		VDDOL voltage control.
123	CONFIG[1]		Floating = VDDOL operating at 1.8 V
122	CONFIG[0]		
114	V18_L	I	

Table 27: JTAG

88E1543 Pin \#	Pin Name	Pin Type	Description
58	TDI	I, PU	Boundary scan test data input. TDI contains an internal 150 kohm pull-up resistor.
55	TMS	I, PU	Boundary scan test mode select input. TMS contains an internal 150 kohm pull-up resistor.
54	TCK	I, PU	Boundary scan test clock input. TCK contains an internal 150 kohm pull-up resistor.
62	TRSTn	I, PU	Boundary scan test reset input. Active low. TRSTn contains an internal 150 kohm pull-up resistor. For normal operation, TRSTn should be pulled low with a 4.7 kohm pull-down resistor.
61	TDO	O	Boundary scan test data output.

Table 28: Clock/Reset

$\begin{aligned} & \text { 88E1543 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
49	XTAL_IN	I	25 MHz Clock Input $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance crystal reference or oscillator input. XTAL_IN has internal ac-coupling. XTAL_IN must be left floating when it is not used. Refer to the 'Oscillator Level Shifting' (MV-S301630-00) application note for details on how to convert a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ clock source to 1.8 V clock.
50	XTAL_OUT	0	25 MHz Crystal Output. $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance crystal reference. XTAL_OUT must be left floating when it is not used.
$\begin{aligned} & 66 \\ & 65 \end{aligned}$	REF_CLKP REF_CLKN	1	25 MHz/125 MHz/156.25 MHz Reference Clock Input Positive and Negative +/50 ppm tolerance differential clock inputs. REFCLKP/N inputs are LVDS differential inputs with a 100 ohm differential internal termination resistor and internal ac-coupling. If the REF_CLKP/N inputs are not used, the REF_CLKP/N must be left floating. REF_CLKP/N also supports 125 MHz single-ended clock. In this case, the unused pin must be connected with 0.1 uF capacitor to ground.
$\begin{aligned} & 52 \\ & 51 \end{aligned}$	$\begin{aligned} & \text { CLK_SEL[1] } \\ & \text { CLK_SEL[0] } \end{aligned}$	1	Reference Clock Selection $\begin{aligned} & \text { CLK_SEL[1:0] } \\ & 00=\text { Use } 156.25 \mathrm{MHz} \text { REF_CLKP/N } \\ & 01=\text { Use } 125 \mathrm{MHz} \text { REF_CLKP/N } \\ & 10=\text { Use } 25 \mathrm{MHz} \text { REF_CLKP/N } \\ & 11=\text { Use } 25 \mathrm{MHz} \text { XTAL_IN/XTAL_OUT } \end{aligned}$ CLK_SEL[1:0] must be connected to VDDOR for configuration HIGH.
97	RESETn	I	Hardware reset. XTAL_IN must be active for a minimum of 10 clock cycles before the rising edge of RESETn. RESETn must be in inactive state for normal operation. The RESETn pin can accept 2.5V LVCMOS signalling when the VDDOL pin is connected to 3.3 V supply. 1 = Normal operation 0 = Reset

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 29: Test
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { 88E1543 } \\
\text { Pin \# }\end{array} & \text { Pin Name } & \begin{array}{l}\text { Pin } \\
\text { Type }\end{array} & \text { Description } \\
\hline 45 & \begin{array}{l}\text { HSDACP } \\
\text { HSDACN }\end{array} & \text { O } & \begin{array}{l}\text { AC Test Points (Positive and Negative), TX_TCLK, and Clock Cascade } \\
\text { Differential Outputs. }\end{array}
$$

The HSDACP/N outputs are used for AC Test Points, TX_TCLK, and Clock

Cascade Differential Outputs. These pins must be connected to a 50 ohm

termination resistor to VSS. These pins can be left floating if not used for clock

cascade, IEEE testing, and debug test points are not of importance.

When used for clock cascade purpose, these pins are differential LVDS clock\end{array}\right]\)| outputs that must be routed differentially to the REF_CLKP/N inputs of the |
| :--- |
| downstream devices. A maximum of 5 downstream devices are allowed. The |
| clock frequency follows the clock frequency used for the REF_CLKP/N or |
| XTAL_IN/OUT inputs. |

Table 30: Reference

88E1543 Pin \#	Pin Name	Pin Type	Description
42	RSET	I	Resistor Reference External 5.0 kohm 1\% resistor connected to ground.

Table 31: Power \& Ground

$\begin{aligned} & \text { 88E1543 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
$\begin{aligned} & 53 \\ & 57 \\ & 63 \\ & 79 \\ & 86 \\ & 104 \\ & 109 \\ & 113 \end{aligned}$	DVDD	Power	1.0V Digital Supply
$\begin{aligned} & 6 \\ & 11 \\ & 17 \\ & 22 \\ & 28 \\ & 33 \\ & 39 \\ & 70 \\ & 75 \\ & 78 \\ & 89 \\ & 94 \\ & 128 \end{aligned}$	AVDD18	Power	1.8V Analog Supply.
$\begin{aligned} & 1 \\ & 14 \\ & 25 \\ & 38 \end{aligned}$	AVDD33	Power	3.3V Analog Supply.
$\begin{aligned} & 43 \\ & 48 \end{aligned}$	VDDC	Power	1.8V Supply ${ }^{1}$.
$\begin{aligned} & 98 \\ & 110 \\ & 117 \end{aligned}$	VDDOL	Power	$1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V} \mathrm{I} / \mathrm{O}$ Supply ${ }^{2}$. When V18_L is tied to VSS, VDDOL operates at $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$. When V18_L is left floating, VDDOL operates at 1.8 V .
83	VDDOM	Power	2.5 V or 3.3 V I/O Supply ${ }^{3}$. NOTE: For the 88E1543 device, VDDOM only supports 2.5 V or 3.3 V
$\begin{aligned} & 56 \\ & 64 \end{aligned}$	VDDOR	Power	2.5 V or 3.3 V I/O Supply ${ }^{4}$.
67	VSS	Ground	Ground.
EPAD	VSS	Ground	Ground to device. The device is packaged in a 128-pin LQFP package with an EPAD (exposed die pad) on the bottom of the package. This EPAD must be soldered to VSS as it is the main VSS connection on the device. The location and dimensions of the EPAD can be found in Table 206 on page 200. See the Marvell ${ }^{\circledR}$ EPAD Layout Guidelines Application Note for EPAD layout details.

[^0]2. VDDOL supplies digital I/O pins for RESETn, LED, CONFIG, and INTn.
3. VDDOM supplies digital I/O pins for MDC, MDIO, and TEST.
4. VDDOR supplies digital I/O pins for TDO, TDI, TMS, TCK, TRSTn, REF_CLKP/N, and CLK_SEL[1:0].

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R V ELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 32: Do Not Connect

88E1543 Pin \#	Pin Name	Pin Type	Description
47	DNC	I	Do Not Connect. Do not connect these pins to anything. These pins must be left unconnected.
69			

Table 33: I/O State at Various Test or Reset Modes

Pin(s)	Loopback	Software Reset	Hardware Reset	Power Down
MDI[3:0]P/N	Active	Tri-state	Tri-state	Tri-state
S_OUTP/N	Active	Internally pulled up by terminations of 50 ohms	Internally pulled up by terminations of 50 ohms	Reg. 16.3 state $0=$ Internally pulled up by terminations of 50 ohms $1=$ Active
MDIO	Active	Active	Tri-state	Active
INTn	Active	Tri-state	Tri-state	Tri-state
TDO	Active	Active	Active	Active

1.1.3 88E1548 196-Pin TFBGA Package Pinout

The 88E1548 device is a 10/100/1000BASE-T Gigabit Ethernet Transceiver.
Figure 8: 88E1548 Device 196-Pin TFBGA Package (Top View)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	PO_S_INN	PO_S_OUTN	P1_S_OUTP	P1_S_INP	TEST[1]	MDIO	vss	Q_OUTP	Q_INN	vSs	P2_S_INP	P2_S_OUTP	P3_S_OUTN	P3_S_INN	A
B	PO_S_INP	PO_S_OUTP	P1_S_OUTN	P1_S_INN	TEST[0]	MDC	vss	Q_Outs	Q_INP	vss	P2_S_INN	P2_S_OUTN	P3_S_OUTP	P3_S_INP	B
c	vss	vss	vss	vss	vss	vss	V12_EN	TSTPTF	vss	vss	vss	vss	vss	vss	c
D	PO_LED[0]	$\mathbb{N T}$ n	vss	AVDD18	AVDD18	VDDOM	VDDOM	AVDD18	AVDD18	AVDD18	AVDD18	TDO	REF_CLKP	REF_CLKN	D
E	PO_LED[2]	PO_LED[1]	RESETn	AVDD18	AVDD18	DVDD	DVDD	DVDD	DVDD	AVDD18	AVDD18	TRSTn	V18_R	DNC	E
F	P1_LED[0]	PO_LED[3]	VDDOL	DVDD	vss	vss	vss	vss	vss	vss	DVDD	DVDD	VDDOR	DNC	F
G	P1_LED[2]	P1_LED[1]	VDDOL	DVDD	vss	vss	vss	vss	vss	vss	DVDD	TCK	TMS	TDI	G
H	P1_LED[3]	P2_LED[0]	VDDOL	DVDD	vss	VDDC	CLK_SE[1]	CLK_SEL[0]	H						
J	P2_LED[1]	V18_L	VDDOL	DVDD	AVDD33	vss	AVDD33	vss	AVDD33	vSs	vss	vssc	XTAL_IN	XTAL_OUT	J
к	P2_LED[2]	P2_LED[3]	CONFIG[2]	vss	AVDD33	vss	AVDD33	vss	AVDD33	vss	AVDD18	RSET	TSTPT	DNC	к
L	P3_LED[0]	P3_LED[1]	CONFIG[3]	AVDD18	vss	HSDACN	HSDACP	L							
M	P3_LED[2]	P3_LED[3]	vss	vss	P0_MDIP[3]	PO_MDIN[3]	P1_MDIN[0]	P1_MDIP[0]	P2_MDIP[3]	P2_MDIN[3]	P3_MDIN[1]	P3_MDIP[1]	vss	vss	M
N	CONFIG[0]	vss	PO_MDIP[0]	PO_MDIP[1]	PO_MDIN[2]	P1_MDIP[3]	P1_MDIP[2]	P1_MDIP[1]	P2_MDIN[0]	P2_MDIN[1]	P2_MDIN[2]	P3_MDIP[3]	P3_MDIP[2]	P3_MDIP[0]	N
P	CONFIG[1]	vss	PO_MDIN[0]	PO_MDIN[1]	P0_MDIP[2]	P1_MDIN[3]	P1_MDIN[2]	P1_MDIN[1]	P2_MDIP[0]	P2_MDIP[1]	P2_MDPP[2]	P3_MDIN[3]	P3_MDIN[2]	P3_MDIN[0]	P
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 9: 88E1548 Pin A1 Location

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 34: Media Dependent Interface Port 0

88E1548 Pin \#	Pin Name	Pin Type	Description P3

Table 35: Media Dependent Interface Port 1

88E1548 Pin \#	Pin Name	Pin Type	Description
M8	P1_MDIP[0]	I/O	Media Dependent Interface[0] for Port 1. M7
R8_MDIN[0]		Refer to P0_MDI[0]P/N.	
P8	P1_MDIP[1]	I/O	Redia Dependent Interface[1] for Port 1. R1_MDIN[1]

Table 35: Media Dependent Interface Port 1 (Continued)

88E1548 Pin \#	Pin Name	Pin Type	Description
N7	P1_MDIP[2]	I/O	Media Dependent Interface[2] for Port 1. R7
P1_MDIN[2]		Refer to P0_MDI[2]P/N.	
N6 P6	P1_MDIP[3]	I/O	Media Dependent Interface[3] for Port 1. Refer to PO_MDI[3]P/N..

Table 36: Media Dependent Interface Port 2

88E1548 Pin \#	Pin Name	Pin Type	Description
P9	P2_MDIP[0]	I/O	Media Dependent Interface[0] for Port 2. R9
P2_MDIN[0]		Refer to P0_MDI[0]P/N..	
P10	P2_MDIP[1]	I/O	Refer to P0_MDI[1]P/N..
P10	P2_MDIN[1]		Media Dependent Interface[2] for Port 2. R11
P2_MDIP[2]	I/O	P2_MDIN[2]	

Table 37: Media Dependent Interface Port 3

88E1548 Pin \#	Pin Name	Pin Type	Description
N14	P3_MDIP[0]	I/O	Media Dependent Interface[0] for Port 3. Refer to P0_MDI[0]P/N.
M12	P3_MDIN[0]		Media Dependent Interface[1] for Port 3. M11
P3_MDIP[1]	I/O		Refer to P0_MDI[1]P/N..

Table 38: SGMII Port 0

88E1548 Pin \#	Pin Name	Pin Type	Description
B1 A1	P0_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
B2	PO_S_INN		
A2	PO_S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 39: SGMII Port 1

88E1548 Pin \#	Pin Name	Pin Type	Description
A4	P1_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
B4	P1_S_INN		
A3	P1_S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.
B3	P1_S_OUTN		Output amplitude can be adjusted via register 26_1.2:0.

Table 40: SGMII Port 2

88E1548 Pin \#	Pin Name	Pin Type	Description
A11 B11	P2_S_INP P2_S_INN	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
A12 B12	P2_S_OUTP P2_S_OUTN	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.
		Output amplitude can be adjusted via register 26_1.2:0.	

Table 41: SGMII Port 3

88E1548 Pin \#	Pin Name	Pin Type	Description
B14 A14	P3_S_INP	I	SGMII Transmit Data. 1.25 GBaud input - Positive and Negative.
B13	P3_S_INN		
A13 S_OUTP	O	SGMII Receive Data. 1.25 GBaud output - Positive and Negative.	
			Output amplitude can be adjusted via register 26_1.2:0.

Table 42: QSGMII

88E1548 Pin \#	Pin Name	Pin Type	Description
B9	Q_INP	I	QSGMII Transmit Data.5.0 GBaud input - Positive and Negative.
A9	Q_INN		
A8	Q_OUTP	O	QSGMII Receive Data. 5.0 GBaud output - Positive and Negative.
B8	Q_OUTN		

Table 43: Management Interface/Control

88E1548 Pin \#	Pin Name	Pin Type	Description
B6	MDC	I	Management Clock pin. MDC is the management data clock reference for the serial management interface. A continuous clock stream is not expected. The maximum frequency supported is 12.5 MHz.

Table 43: Management Interface/Control (Continued)

88E1548 Pin \#	Pin Name	Pin Type	Description
A6	MDIO	I/O	Management Data pin. MDIO is the management data. MDIO transfers management data in and out of the device synchronously to MDC. This pin requires a pull-up resistor in a range from 1.5 kohm to 10 kohm.
D2	INTn	OD	Interrupt pin. INTn functions as an active low interrupt output. The pull-up resistor used for the INTn should not be connected to voltage higher than VDDOL.

Table 44: LED/Configuration

$\begin{aligned} & \text { 88E1548 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Description
$\begin{aligned} & \text { F2 } \\ & \text { E1 } \\ & \text { E2 } \\ & \text { D1 } \end{aligned}$	$\begin{aligned} & \text { P0_LED[3] } \\ & \text { PO_LED[2] } \\ & \text { PO_LED[1] } \\ & \text { PO_LED[0] } \end{aligned}$	O	Parallel LED Output Port 0 See Section 2.15, LED, on page 80 for details.
$\begin{aligned} & \mathrm{H} 1 \\ & \text { G1 } \\ & \text { G2 } \\ & \text { F1 } \end{aligned}$	$\begin{aligned} & \text { P1_LED[3] } \\ & \text { P1_LED[2] } \\ & \text { P1_LED[1] } \\ & \text { P1_LED[0] } \end{aligned}$	0	Parallel LED Output Port 1 See Section 2.15, LED, on page 80 for details.
$\begin{aligned} & \mathrm{K} 2 \\ & \mathrm{~K} 1 \\ & \mathrm{~J} 1 \\ & \mathrm{H} 2 \end{aligned}$	$\begin{aligned} & \text { P2_LED[3] } \\ & \text { P2_LED[2] } \\ & \text { P2_LED[1] } \\ & \text { P2_LED[0] } \end{aligned}$	O	Parallel LED Output Port 2 See Section 2.15, LED, on page 80 for details.
$\begin{aligned} & \text { M2 } \\ & \text { M1 } \\ & \text { L2 } \\ & \text { L1 } \end{aligned}$	$\begin{aligned} & \text { P3_LED[3] } \\ & \text { P3_LED[2] } \\ & \text { P3_LED[1] } \\ & \text { P3_LED[0] } \end{aligned}$	0	Parallel LED Output Port 3 See Section 2.15, LED, on page 80 for details.
$\begin{aligned} & \text { L3 } \\ & \text { K3 } \\ & \text { P1 } \\ & \text { N1 } \end{aligned}$	CONFIG[3] CONFIG[2] CONFIG[1] CONFIG[0]	I	Global hardware configuration. See Section 2.17.1, Hardware Configuration, on page 88 for details.
J2	V18_L	I	VDDOL voltage control. Tie to VSS = VDDOL operating at $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ Floating = VDDOL operating at 1.8 V
E13	V18_R	I	VDDOR voltage control. Tie to VSS = VDDOR operating at $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ Floating $=$ VDDOR operating at 1.8 V
C7	V12_EN	1	VDDOM voltage control. Tie to VSS = VDDOM operating at $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ Floating $=$ VDDOM operating at $1.2 \mathrm{~V} / 1.8 \mathrm{~V}$

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 45: JTAG

88E1548 Pin \#	Pin Name	Pin Type	Description
G14	TDI	I, PU	Boundary scan test data input. TDI contains an internal 150 kohm pull-up resistor.
G13	TMS	I, PU	Boundary scan test mode select input. TMS contains an internal 150 kohm pull-up resistor.
G12	TCK	I, PU	Boundary scan test clock input. TCK contains an internal 150 kohm pull-up resistor.
E12	TRSTn	I, PU	Boundary scan test reset input. Active low. TRSTn contains an internal 150 kohm pull-up resistor. For normal operation, TRSTn should be pulled low with a 4.7 kohm pull-down resistor.
D12	TDO	O	Boundary scan test data output.

Table 46: Clock/Reset

88E1548 Pin \#	Pin Name	Pin Type	Description
J13	XTAL_IN	1	25 MHz Clock Input $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance crystal reference or oscillator input. XTAL_IN has internal ac-coupling. XTAL_IN must be left floating when it is not used. Refer to the 'Oscillator Level Shifting' (MV-S301630-00) application note for details on how to convert a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ clock source to 1.8 V clock.
J14	XTAL_OUT	0	25 MHz Crystal Output. $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$ tolerance crystal reference. XTAL_OUT must be left floating when it is not used.
$\begin{aligned} & \text { D13 } \\ & \text { D14 } \end{aligned}$	REF_CLKP REF_CLKN	1	25 MHz/125 MHz/156.25 MHz Reference Clock Input Positive and Negative +/50 ppm tolerance differential clock inputs. REFCLKP/N inputs are LVDS differential inputs with a 100 ohm differential internal termination resistor and internal ac-coupling. If the REF_CLKP/N inputs are not used, the REF_CLKP/N must be left floating. REF_CLKP/N also supports 125 MHz single-ended clock. In this case, the unused pin must be connected with 0.1 uF capacitor to ground.
$\begin{aligned} & \mathrm{H} 13 \\ & \mathrm{H} 14 \end{aligned}$	$\begin{aligned} & \text { CLK_SEL[1] } \\ & \text { CLK_SEL[0] } \end{aligned}$	1	Reference Clock Selection CLK_SEL[1:0] 00 = Use 156.25 MHz REF_CLKP/N 01 = Use 125 MHz REF_CLKP/N 10 = Use 25 MHz REF_CLKP/N 11 = Use 25 MHz XTAL_IN/XTAL_OUT CLK_SEL[1:0] must be connected to VDDOR for configuration HIGH.
E3	RESETn	I	Hardware reset. XTAL_IN must be active for a minimum of 10 clock cycles before the rising edge of RESETn. RESETn must be in inactive state for normal operation. The RESETn pin can accept 2.5V LVCMOS signalling when the VDDOL pin is connected to 3.3 V supply. 1 = Normal operation $0=$ Reset

Table 47: Test
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { 88E1548 } \\
\text { Pin \# }\end{array} & \text { Pin Name } & \begin{array}{l}\text { Pin } \\
\text { Type }\end{array} & \text { Description } \\
\hline \text { L14 } & \begin{array}{l}\text { HSDACP } \\
\text { HSDACN }\end{array} & \text { O } & \begin{array}{l}\text { AC Test Points (Positive and Negative), TX_TCLK, and Clock Cascade } \\
\text { Differential Outputs. }\end{array}
$$

The HSDACP/N outputs are used for AC Test Points, TX_TCLK, and Clock

Cascade Differential Outputs. These pins must be connected to a 50 ohm

termination resistor to VSS. These pins can be left floating if not used for clock

cascade, IEEE testing, and debug test points are not of importance.

When used for clock cascade purpose, these pins are differential LVDS clock\end{array}\right]\)| outputs that must be routed differentially to the REF_CLKP/N inputs of the |
| :--- |
| downstream devices. A maximum of 5 downstream devices are allowed. The |
| clock frequency follows the clock frequency used for the REF_CLKP/N or XTAL_ |
| IN/OUT inputs. |

Table 48: Reference

88E1548 Pin \#	Pin Name	Pin Type	Description
K12	RSET	I	Resistor Reference External 5.0 kohm 1\% resistor connected to ground.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 49: Power \& Ground

$\begin{aligned} & \text { 88E1548 } \\ & \text { Pin \# } \end{aligned}$	Pin Name	Pin Type	Description
E6 E7 E8 E9 F4 F11 F12 G4 G11 H4 J4	DVDD	Power	1.0V Digital Supply
D4 D5 D8 D9 D10 D11 E4 E5 E10 E11 L4 L5 L7 L6 L9 L8 L10 L11 K11	AVDD18	Power	1.8V Analog Supply.
$\begin{aligned} & \text { J5 } \\ & \text { K5 } \\ & \text { J7 } \\ & \text { K7 } \\ & \text { J9 } \\ & \text { K9 } \end{aligned}$	AVDD33	Power	3.3V Analog Supply.
H12	VDDC	Power	1.8 V Supply ${ }^{1}$.
$\begin{aligned} & \text { D6 } \\ & \text { D7 } \end{aligned}$	VDDOM	Power	$1.2 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V} / \mathrm{O}^{\text {O Supply }}{ }^{2}$.
F13	VDDOR	Power	$1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V I/O Supply ${ }^{3}$.
$\begin{aligned} & \text { F3 } \\ & \text { G3 } \\ & \text { H3 } \\ & \text { J3 } \end{aligned}$	VDDOL	Power	$1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V} \mathrm{I} / \mathrm{O}$ Supply ${ }^{4}$.

Table 49: Power \& Ground (Continued)

88E1548	Pin Name	Pin Type	Description
Pin \#		Ground	Ground.
A7	VSS		
A10			
B7			
B10			
C1			
C2			
C3			
C4			
C5			
C6			
C9			
C10			
C11			
C12			
C13			
C14			
D3			
F5			
F6			
F7			
F8			
F9			
F10			
G5			
G6			
G7			
G8			
G9			
G10			
H5			
H6			
H7			
H8			
H9			
H10			
H11			
J10			
J11			
J6			
J8			
K4			
K6			
K8			
L12			

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 49: Power \& Ground (Continued)

88E1548 Pin \#	Pin Name	Pin Type	Description
M13	VSS (cont.)	Ground	Ground.
M14			
N2			
P2		Ground	Ground.
J12	VSSC		

1. VDDC supplies XTAL_IN/OUT
2. VDDOM supplies digital I/O pins for MDC, MDIO, and TEST.
3. VDDOR supplies digital I/O pins for TDO, TDI, TMS, TCK, TRSTn, REF_CLKP/N, and CLK_SEL[1:0]
4. VDDOL supplies digital I/O pins for RESETn, LED, CONFIG, and INTn

Table 50: Do Not Connect

88E1548 Pin \#	Pin Name	Pin Type	Description
E14	DNC	O	Do Not Connect. Do not connect these pins to anything. These pins must be left unconnected.
K14	DNC	I	Do Not Connect. Do not connect these pins to anything. These pins must be left unconnected.

Table 51: I/O State at Various Test or Reset Modes

Pin(s)	Loopback	Software Reset	Hardware Reset	Power Down
MDI[3:0]P/ N	Active	Tri-state	Tri-state	Tri-state
S_OUTP/N	Active	Internally pulled up by terminations of 50 ohms	Internally pulled up by terminations of 50 ohms	Reg. 16.3 state $0=$ Internally pulled up by terminations of 50 ohms $1=$ Active
Q_OUTP/N	Active	Internally pulled up by terminations of 50 ohms	Internally pulled up by terminations of 50 ohms	Reg. 16.3 state $0=$ Internally pulled up by terminations of 50 ohms $1=$ Active
MDIO	Active	Active	Tri-state	Active
INTn	Active	Tri-state	Tri-state	Tri-state
TDO	Active	Active	Active	Active

1.2 Pin Assignment List

1.2.1 88E1545 128-Pin LQFP Package Pin Assignment List

Table 52: 88E1545 128-Pin LQFP List—Alphabetical by Signal Name

Pin Name	Pin Number
AVDD18	6
AVDD18	11
AVDD18	17
AVDD18	22
AVDD18	28
AVDD18	33
AVDD18	39
AVDD18	70
AVDD18	75
AVDD18	83
AVDD18	84
AVDD18	96
AVDD18	128
AVDD33	1
AVDD33	14
AVDD33	25
AVDD33	38
CLK_SEL[0]	51
CLK_SEL[1]	52
CONFIG[0]	122
CONFIG[1]	123
CONFIG[2]	124
CONFIG[3]	125
DVDD	53
DVDD	57
DVDD	63
DVDD	89
DVDD	95
DVDD	104
DVDD	109
DVDD	113
HSDACN	44
HSDACP	45
INTn	99
MDC	91
MDIO	90

Pin Name	Pin Number
NC	47
NC	59
NC	60
NC	68
NC	69
NC	71
NC	72
NC	73
NC	74
NC	76
NC	77
P0_LED[0]	100
P0_LED[1]	101
P0_LED[2]	102
P0_LED[3]	103
PO_MDIN[0]	127
PO_MDIN[1]	3
PO_MDIN[2]	5
P0_MDIN[3]	8
P0_MDIP[0]	126
P0_MDIP[1]	2
P0_MDIP[2]	4
PO_MDIP[3]	7
P1_LED[0]	105
P1_LED[1]	106
P1_LED[2]	107
P1_LED[3]	108
P1_MDIN[0]	18
P1_MDIN[1]	15
P1_MDIN[2]	12
P1_MDIN[3]	9
P1_MDIP[0]	19
P1_MDIP[1]	16
P1_MDIP[2]	13
P1_MDIP[3]	10
P2_LED[0]	111
P2_LED[1]	112

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Pin Name	Pin Number
P2_LED[2]	115
P2_LED[3]	116
P2_MDIN[0]	21
P2_MDIN[1]	24
P2_MDIN[2]	27
P2_MDIN[3]	30
P2_MDIP[0]	20
P2_MDIP[1]	23
P2_MDIP[2]	26
P2_MDIP[3]	29
P3_LED[0]	118
P3_LED[1]	119
P3_LED[2]	120
P3_LED[3]	121
P3_MDIN[0]	40
P3_MDIN[1]	36
P3_MDIN[2]	34
P3_MDIN[3]	31
P3_MDIP[0]	41
P3_MDIP[1]	37
P3_MDIP[2]	35
P3_MDIP[3]	32
Q_INN	82
Q_INP	80
Q_OUTN	87
Q_OUTP	85
REF_CLKN	65
REF_CLKP	66
RESETn	97

Pin Name	Pin Number
RSET	42
TCK	54
TDI	58
TDO	61
TEST[0]	94
TEST[1]	93
TMS	55
TRSTn	62
TSTPT	46
V18_L	114
VDDC	43
VDDC	48
VDDOL	98
VDDOL	110
VDDOL	117
VDDOM	92
VDDOR	56
VDDOR	64
VSS	67
VSS	78
VSS	79
VSS	81
VSS	86
VSS	88
VSS	EPAD
XTAL_IN	49
XTAL_OUT	50

1.2.2 88E1543 128-Pin LQFP Package Pin Assignment List

Table 53: 88E1543 128-Pin LQFP List—Alphabetical by Signal Name

Pin Name	Pin Number
AVDD18	6
AVDD18	11
AVDD18	17
AVDD18	22
AVDD18	28
AVDD18	33
AVDD18	39
AVDD18	70
AVDD18	75
AVDD18	78
AVDD18	89
AVDD18	94
AVDD18	128
AVDD33	1
AVDD33	14
AVDD33	25
AVDD33	38
CLK_SEL[0]	51
CLK_SEL[1]	52
CONFIG[0]	122
CONFIG[1]	123
CONFIG[2]	124
CONFIG[3]	125
DVDD	53
DVDD	57
DVDD	63
DVDD	79
DVDD	86
DVDD	104
DVDD	109
DVDD	113
HSDACN	44
HSDACP	45
INTn	99
MDC	82
MDIO	81

Pin Name	Pin Number
NC	47
NC	59
NC	60
P0_LED[0]	100
P0_LED[1]	101
P0_LED[2]	102
P0_LED[3]	103
P0_MDIN[0]	127
P0_MDIN[1]	3
P0_MDIN[2]	5
P0_MDIN[3]	8
P0_MDIP[0]	126
P0_MDIP[1]	2
P0_MDIP[2]	4
P0_MDIP[3]	7
P0_S_INN	95
P0_S_INP	96
P0_S_OUTN	92
P0_S_OUTP	93
P1_LED[0]	105
P1_LED[1]	106
P1_LED[2]	107
P1_LED[3]	108
P1_MDIN[0]	18
P1_MDIN[1]	15
P1_MDIN[2]	12
P1_MDIN[3]	9
P1_MDIP[0]	19
P1_MDIP[1]	16
P1_MDIP[2]	13
P1_MDIP[3]	10
P1_S_INN	88
P1_S_INP	87
P1_S_OUTN	91
P1_S_OUTP	90
P2_LED[0]	111

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Pin Name	Pin Number
P2_LED[1]	112
P2_LED[2]	115
P2_LED[3]	116
P2_MDIN[0]	21
P2_MDIN[1]	24
P2_MDIN[2]	27
P2_MDIN[3]	30
P2_MDIP[0]	20
P2_MDIP[1]	23
P2_MDIP[2]	26
P2_MDIP[3]	29
P2_S_INN	76
P2_S_INP	77
P2_S_OUTN	73
P2_S_OUTP	74
P3_LED[0]	118
P3_LED[1]	119
P3_LED[2]	120
P3_LED[3]	121
P3_MDIN[0]	40
P3_MDIN[1]	36
P3_MDIN[2]	34
P3_MDIN[3]	31
P3_MDIP[0]	41
P3_MDIP[1]	37
P3_MDIP[2]	35
P3_MDIP[3]	32
P3_S_INN	69
P3_S_INP	68
P3_S_OUTN	72

Pin Name	Pin Number
P3_S_OUTP	71
REFCLKN	65
REFCLKP	66
RESETn	97
RSET	42
TCK	54
TDI	58
TDO	61
TEST[0]	85
TEST[1]	84
TMS	55
TRSTn	62
TSTPT	46
TSTPTF	80
V18_L	114
VDDC	43
VDDC	48
VDDOL	98
VDDOL	110
VDDOL	117
VDDOM	83
VDDOR	56
VDDOR	64
VSS	67
VSS	EPAD
XTAL_IN	49
XTAL_OUT	50

1.2.3 88E1548 196-Pin TFBGA Package Pin Assignment List

Table 54: 88E1548 196-Pin TFBGA List—Alphabetical by Signal Name

Pin Name	Pin Number
AVDD33	J5
AVDD33	K5
AVDD33	J7
AVDD33	K7
AVDD33	J9
AVDD33	K9
AVDD18	D4
AVDD18	D5
AVDD18	D8
AVDD18	D9
AVDD18	D10
AVDD18	D11
AVDD18	E4
AVDD18	E5
AVDD18	E10
AVDD18	E11
AVDD18	K11
AVDD18	L4
AVDD18	L5
AVDD18	L6
AVDD18	L7
AVDD18	L8
AVDD18	L9
AVDD18	L10
AVDD18	L11
CLK_SEL[0]	H14
CLK_SEL[1]	H13
CONFIG[0]	N1
CONFIG[1]	P1
CONFIG[2]	K3
CONFIG[3]	L3
DVDD	E6
DVDD	E7
DVDD	E8
DVDD	E9
DVDD	F4

Pin Name	Pin Number
DVDD	F11
DVDD	F12
DVDD	G4
DVDD	G11
DVDD	H4
DVDD	J4
HSDACN	L13
HSDACP	L14
INTn	D2
MDC	B6
MDIO	A6
P0_LED[0]	D1
P0_LED[1]	E2
P0_LED[2]	E1
P0_LED[3]	F2
P0_MDIN[0]	P3
P0_MDIN[1]	P4
P0_MDIN[2]	N5
P0_MDIN[3]	M6
P0_MDIP[0]	N3
P0_MDIP[1]	N4
P0_MDIP[2]	P5
P0_MDIP[3]	M5
P0_S_INN	A1
P0_S_INP	B1
P0_S_OUTN	A2
P0_S_OUTP	B2
P1_LED[0]	F1
P1_LED[1]	G2
P1_LED[2]	G1
P1_LED[3]	H1
P1_MDIN[0]	M7
P1_MDIN[1]	P8
P1_MDIN[2]	P7
P1_MDIN[3]	P6
P1_MDIP[0]	M8

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Pin Name	Pin Number
P1_MDIP[1]	N8
P1_MDIP[2]	N7
P1_MDIP[3]	N6
P1_S_INN	B4
P1_S_INP	A4
P1_S_OUTN	B3
P1_S_OUTP	A3
P2_LED[0]	H2
P2_LED[1]	J1
P2_LED[2]	K1
P2_LED[3]	K2
P2_MDIN[0]	N9
P2_MDIN[1]	N10
P2_MDIN[2]	N11
P2_MDIN[3]	M10
P2_MDIP[0]	P9
P2_MDIP[1]	P10
P2_MDIP[2]	P11
P2_MDIP[3]	M9
P2_S_INN	B11
P2_S_INP	A11
P2_S_OUTN	B12
P2_S_OUTP	A12
P3_LED[0]	L1
P3_LED[1]	L2
P3_LED[2]	M1
P3_LED[3]	M2
P3_MDIN[0]	P14
P3_MDIN[1]	M11
P3_MDIN[2]	P13
P3_MDIN[3]	P12
P3_MDIP[0]	N14
P3_MDIP[1]	M12
P3_MDIP[2]	N13
P3_MDIP[3]	N12
P3_S_INN	A14
P3_S_INP	B14
P3_S_OUTN	A13

Pin Name	Pin Number
P3_S_OUTP	B13
Q_INN	A9
Q_INP	B9
Q_OUTN	B8
Q_OUTP	A8
NC	E14
NC	F14
REF_CLKN	D14
REF_CLKP	D13
RESET	E3
RSET	K12
NC	K14
TCK	G12
TDI	G14
TDO	D12
TEST[0]	B5
TEST[1]	A5
TMS	G13
TRST	E12
TSTPT	K13
TSTPTF	C8
V12_EN	C7
V18_L	J2
V18_R	E13
VDDC	H12
VDDOM	D6
VDDOM	D7
VDDOL	F3
VDDOL	G3
VDDOL	H3
VDDOL	J3
VDDOR	F13
VSS	A7
VSS	A10
VSS	B7
VSS	B10
VSS	C1
VSS	C2

Pin Name	Pin Number
VSS	C3
VSS	C4
VSS	C5
VSS	C6
VSS	C9
VSS	C11
VSS	C12
VSS	C13
VSS	C14
VSS	F5
VSS	F6
VSS	F8
VSS	F9
VSS	F10
VSS	G5
VSS	G6
VSS	G7
VSS	G8
VSS	G9
VSS	G10
VSS	H5
VSS	
VSS	VSS
VSS	

Pin Name	Pin Number
VSS	H7
VSS	H8
VSS	H9
VSS	H10
VSS	H11
VSS	J6
VSS	J8
VSS	J10
VSS	K11
VSS	K6
VSS	K10
VSS	L12
VSS	M3
VSS	M4
VSS	M13
VSS	N2
VSS	P2
VSS	J12
VSS	J13
VSS	J14
VSSC	
XTAL_IN	XTAL_OUT

2

PHY Functional Specifications

Abstract

The device is a 4-port 10/100/1000 Gigabit Ethernet transceiver. Each port of the device may operate completely independent of each other, but they are identical in performance and functionality. The functional description and electrical specifications for the device are applicable to each port. For simplicity, the functional description in this document describes the operation of a single transceiver.

Port numbers have been omitted from many diagrams and descriptive text indicating that the functionality applies to all ports. In this document, the pins for each port are specified by the port number, pin name, and signal number, respectively. For example, LED 1 pin for Port 0 shown below: P0_LED[1]

However, the MDIO pin supported by the device are global to the chip and do not have port numbers. Figure 10 shows the functional block diagram of the device.

For purpose of discussion, the word "device" refers to all devices.
Refer to Table 1 on page 6 for a list of features supported by each device.

Figure 10: Device Functional Block Diagram

2.1 Modes of Operation and Major Interfaces

The device has three separate major electrical interfaces:

- MDI to Copper Cable
- SERDES/SGMII
- QSGMII

The MDI is always a media interface. The SGMII and QSGMII Interfaces can be on the system interface side, or on the media interface side. The QSGMII can be used as a Media interface only in conjunction with the QSGMII Crossover Muxing and Loopback. (The system interface is also known as MAC interface. It is typically the connection between the PHY and the MAC or the system ASIC.) For example:

Figure 11: SGMII System to Copper Interface Example

Figure 12: QSGMII System to SGMII/Fiber Media Interface Example

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 13: QSGMII System to Copper Interface Example

As can be seen from these examples, SGMII can act either as a system interface or a Media interface. To keep the notation simple, SGMII (System) will be used to indicate SGMII system interface and SGMII (Media) will be used to indicate SGMII media interface. It is also important to note the differences in the logical operation of the two modes. The major difference is due to the SGMII Auto-Negotiation function:

- When used as a system interface, the device implements the PHY SGMII Auto-Negotiation status (link, duplex, etc.) advertisements as specified in the Cisco SGMII specification.
- When used as a Media interface, the device implements the MAC SGMII Auto-Negotiation function, which monitors PHY status advertisements.
For details of how SGMII Auto-Negotiation operates, see Section 2.8.3, SGMII Auto-Negotiation, on page 74 as well as the Cisco SGMII specification.

The device supports 8 modes of operation as shown in Table 55. For each mode of operation two or three of three interfaces as described in section 2.1, 2.2, and 2.3 are powered up. On hardware reset, all four ports are configured to operate in the same mode. However, it is possible for each port to operate in a different mode than another by programming register 20_18.2:0.

The behavior of the 1.25 GHz SERDES interface is selected by setting the MODE[2:0] register in 20_18.2:0. The SERDES can operate in 100BASE-FX, 1000BASE-X, SGMII (System), and SGMII (Media).

The behavior of the QSGMII is also selected by setting the MODE[2:0] register in 20_18.2:0. The QSGMII can operate in QSGMII (System) or QSGMII (Media).

Table 55: MODE[2:0] Select

MODE[2:0] Register 20_18.2:0	Description
000	QSGMII (System) to Copper
001	SGMII (System) to Copper
010	QSGMII (System) to 1000BASE-X
011	Reserved
100	Reserved
101	Reserved

Table 55: MODE[2:0] Select (Continued)

MODE[2:0] Register 20_18.2:0	Description
110	Reserved
111	Reserved

2.2 Copper Media Interface

The copper interface consists of the MDIP/N[3:0] pins that connect to the physical media for 1000BASE-T, 100BASE-TX, and 10BASE-T modes of operation.

The device integrates MDI termination resistors. The IEEE 802.3 specification requires that both sides of a link have termination resistors to prevent reflections. Traditionally, these resistors and additional capacitors are placed on the board between a PHY device and the magnetics. The resistors have to be very accurate to meet the strict IEEE return loss requirements. Typically, $\pm 1 \%$ accuracy resistors are used on the board. These additional components between the PHY and the magnetics complicate board layout. Integrating the resistors has many advantages including component cost savings, better ICT yield, board reliability improvements, board area savings, improved layout, and signal integrity improvements. See the Application Note: "Benefits of Integrating Termination Resistors for Ethernet Applications" for details.

2.2.1 Transmit Side Network Interface

2.2.1.1 Multi-mode TX Digital to Analog Converter

The device incorporates a multi-mode transmit DAC to generate filtered 4D PAM 5, MLT3, or Manchester coded symbols. The transmit DAC performs signal wave shaping to reduce EMI. The transmit DAC is designed for very low parasitic loading capacitances to improve the return loss requirement, which allows the use of low cost transformers.

2.2.1.2 Slew Rate Control and Waveshaping

In 1000BASE-T mode, partial response filtering and slew rate control is used to minimize high frequency EMI. In 100BASE-TX mode, slew rate control is used to minimize high frequency EMI. In 10BASE-T mode, the output waveform is pre-equalized via a digital filter.

2.2.2 Encoder

2.2.2.1 1000BASE-T

In 1000BASE-T mode, the transmit data bytes are scrambled to 9-bit symbols and encoded into 4D PAM5 symbols. Upon initialization, the initial scrambling seed is determined by the PHY address. This prevents multiple device from outputting the same sequence during idle, which helps to reduce EMI.

2.2.2.2 100BASE-TX

In 100BASE-TX mode, the transmit data stream is 4B/5B encoded, serialized, and scrambled.

2.2.2.3 10BASE-T

In 10BASE-T mode, the transmit data is serialized and converted to Manchester encoding.

2.2.3 Receive Side Network Interface

2.2.3.1 Analog to Digital Converter

The device incorporates an advanced high speed ADC on each receive channel with greater resolution than the ADC used in the reference model of the IEEE 802.3ab standard committee. Higher resolution ADC results in better SNR, and therefore, lower error rates. Patented architectures and design techniques result in high differential and integral linearity, high power supply noise rejection, and low metastability error rate. The ADC samples the input signal at 125 MHz .

2.2.3.2 Active Hybrid

The device employs a sophisticated on-chip hybrid to substantially reduce the near-end echo, which is the super-imposed transmit signal on the receive signal. The hybrid minimizes the echo to reduce the precision requirement of the digital echo canceller. The on-chip hybrid allows both the transmitter and receiver to use the same transformer for coupling to the twisted pair cable, which reduces the cost of the overall system.

2.2.3.3 Echo Canceller

Residual echo not removed by the hybrid and echo due to patch cord impedance mismatch, patch panel discontinuity, and variations in cable impedance along the twisted pair cable result in drastic SNR degradation on the receive signal. The device employs a fully developed digital echo canceller to adjust for echo impairments from more than 100 meters of cable. The echo canceller is fully adaptive to compensate for the time varying nature of channel conditions.

2.2.3.4 NEXT Canceller

The 1000BASE-T physical layer uses all 4 pairs of wires to transmit data to reduce the baud rate requirement to only 125 MHz . This results in significant high frequency crosstalk between adjacent pairs of cable in the same bundle. The device employs 3 parallel NEXT cancellers on each receive channel to cancel any high frequency crosstalk induced by the adjacent 3 transmitters. A fully adaptive digital filter is used to compensate for the time varying nature of channel conditions.

2.2.3.5 Baseline Wander Canceller

Baseline wander is more problematic in the 1000BASE-T environment than in the traditional 100BASE-TX environment due to the DC baseline shift in both the transmit and receive signals. The device employs an advanced baseline wander cancellation circuit to automatically compensate for this DC shift. It minimizes the effect of DC baseline shift on the overall error rate.

2.2.3.6 Digital Adaptive Equalizer

The digital adaptive equalizer removes inter-symbol interference at the receiver. The digital adaptive equalizer takes unequalized signals from ADC output and uses a combination of feedforward equalizer (FFE) and decision feedback equalizer (DFE) for the best-optimized signal-to-noise (SNR) ratio.

2.2.3.7 Digital Phase Lock Loop

In 1000BASE-T mode, the slave transmitter must use the exact receive clock frequency it sees on the receive signal. Any slight long-term frequency phase jitter (frequency drift) on the receive signal must be tracked and duplicated by the slave transmitter; otherwise, the receivers of both the slave and master physical layer devices have difficulty canceling the echo and NEXT components. In the device, an advanced DPLL is used to recover and track the clock timing information from the receive signal. This DPLL has very low long-term phase jitter of its own, thereby maximizing the achievable SNR.

2.2.3.8 Link Monitor

The link monitor is responsible for determining if link is established with a link partner. In 10BASE-T mode, link monitor function is performed by detecting the presence of valid link pulses (NLPs) on the MDIP/N pins.

In 100BASE-TX and 1000BASE-T modes, link is established by scrambled idles.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

If Force Link Good register $16 _0.10$ is set high, the link is forced to be good and the link monitor is bypassed for 100BASE-TX and 10BASE-T modes. In the 1000BASE-T mode, register 16_0.10 has no effect.

2.2.3.9 Signal Detection

In 1000BASE-T mode, signal detection is based on whether the local receiver has acquired lock to the incoming data stream.

In 100BASE-TX mode, the signal detection function is based on the receive signal energy detected on the MDIP/N pins that is continuously qualified by the squelch detect circuit, and the local receiver acquiring lock.

2.2.4 Decoder

2.2.4.1 1000BASE-T

In 1000BASE-T mode, the receive idle stream is analyzed so that the scrambler seed, the skew among the 4 pairs, the pair swap order, and the polarity of the pairs can be accounted for. Once calibrated, the 4D PAM 5 symbols are converted to 9-bit symbols that are then descrambled into 8 -bit data values. If the descrambler loses lock for any reason, the link is brought down and calibration is restarted after the completion of Auto-Negotiation.

2.2.4.2 100BASE-TX

In 100BASE-TX mode, the receive data stream is recovered and converted to NRZ. The NRZ stream is descrambled and aligned to the symbol boundaries. The aligned data is then parallelized and 5B/4B decoded. The receiver does not attempt to decode the data stream unless the scrambler is locked. The descrambler "locks" to the scrambler state after detecting a sufficient number of consecutive idle code-groups. Once locked, the descrambler continuously monitors the data stream to make sure that it has not lost synchronization. The descrambler is always forced into the unlocked state when a link failure condition is detected, or when insufficient idle symbols are detected.

2.2.4.3 10BASE-T

In 10BASE-T mode, the recovered 10BASE-T signal is decoded from Manchester to NRZ, and then aligned. The alignment is necessary to ensure that the start of frame delimiter (SFD) is aligned to the nibble boundary.

2.3

2.3.1 Electrical Interface

The input and output buffers are internally terminated to 50 ohm impedance. The output swing can be adjusted by programming register 26_1.2:0.

The input and output buffers of the 1.25 GHz SERDES interface are internally terminated by 50 ohm impedance. No external terminations are required. The 1.25 GHz SERDES I/Os are Current Mode Logic (CML) buffers. CML I/Os can be used to connect to other components with PECL or LVDS I/Os. See the "Reference Design Schematics" and "Fiber Interface" application note for details.

Figure 14: CML I/Os

2.3.2 SGMII Speed and Link

When the SGMII MAC interface is used, the media interface can be copper or QSGMII. The operational speed of the SGMII MAC interface is determined according to Table 56 media interface status and/or loopback mode.

Table 56: SGMII (MAC Interface) Operational Speed

Link Status or Media Interface Status	SGMII (MAC Interface) Speed
No Link	Determined by speed setting of 21_2.2:0
MAC Loopback	Determined by speed setting of 21_2.2:0
1000BASE-T or QSGMII (Media) at 1000 Mbps	1000 Mbps
100BASE-TX or QSGMII (Media) at 100 Mbps	100 Mbps
10BASE-T or QSGMII (Media) at 10 Mbps	10 Mbps

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Two registers are available to determine whether the SGMII achieved link and sync. Register 17_1.5 indicates that the SERDES locked onto the incoming KDKDKD... sequence. Register 17_1.10 indicates whether 1000BASE-X link is established on the SERDES. If SGMII Auto-Negotiation is disabled, register 17_1.10 has the same meaning as register 17_1.5. If SGMII Auto-Negotiation is enabled, then register 17_1.10 indicates whether SGMII Auto-Negotiation successfully established link.

2.3.3 False SERDES Link Up Prevention

The SERDES interface can operate in 1000BASE-X mode and in 100BASE-FX mode where an unconnected optical receiver will send full swing noise into the PHY. Sometimes this random noise will look like a real signal and falsely cause the 1000BASE-X or 100BASE-FX PCS to link up.

A noise filtering state machine can be enabled to reduce the probability of false link up. When the state machine is enabled it will cause a small delay in link up time.

Table 57: Fiber Noise Filtering

Register	Function	Setting	Mode	HW Rst	SW Rst
$26 _1.14$	1000BASE-X Noise Filtering	$1=$ Enable 0 = Disable	R/W	0	Retain
$26 _1.13$	100BASE-FX Noise Filtering	$1=$ Enable $0=$ Disable	R/W	0	Retain

2.4 QSGMII 5.0 GHz SERDES Interface

The 5.0 GHz SERDES Interface is used as the QSGMII.
The QSGMII aggregates and de-aggregates four SGMII ports via a 5.0 GHz SERDES.
Figure 15: QSGMII

2.4.1 Electrical Interface

The input and output buffers are internally terminated to 50 ohm impedance.
The input and output buffers of the 5.0 GHz SERDES interface are internally terminated by 50 ohm impedance. No external terminations are required. The 5.0 GHz SERDES I/Os are Current Mode Logic (CML) buffers. CML I/Os can be used to connect to other components with PECL or LVDS I/Os. See the "Reference Design Schematics" and "Fiber Interface" application note for details.

The polarity of the 5.0 GHz inputs and outputs can be inverted.
Register 26_4.13 inverts the input;: $0=$ Invert, $1=$ Normal.
Register 26_4.12 inverts the outputs; $0=$ Invert, 1 = Normal.

In order to meet the QSGMII transmit and receive jitter specifications, a 125 MHz or 156.25 MHz reference clock input is required. The 25 MHz reference clock input option Note should not be used for applications using the QSGMII.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 16: CML I/Os

2.4.2 QSGMII Register Addressing

QSGMII registers are accessed by setting Register 22.7:0 to 0x04. There are four copies of the QSGMII registers - one for each port. The only exception are registers $26 _4$ and 27_4, which are common control registers for QSGMII. These registers can be accessed via any of the four ports PHY addresses.

2.4.3 QSGMII Speed and Link

When the QSGMII MAC interface is used, the media interface can be copper or SGMII/1000BASE-X/100BASE-FX. The operational speed of the aggregated SGMII interfaces within the QSGMII MAC interface is determined according to Table 58 media interface status and/or loopback mode.

Each SGMII port of the QSGMII can independently operate at different speeds.
Table 58: SGMII Port Operational Speed

Link Status	SGMII Speed
No Link	Determined by speed setting of 21_2.2:0
MAC Loopback	Determined by speed setting of 21_2.2:0
1000BASE-T, SGMII at 1000 Mbps, 1000BASE-X	1000 Mbps
100BASE-TX, SGMII at 100 Mbps, 100BASE-FX	100 Mbps
10BASE-T, SGMII at 10 Mbps	10 Mbps

Two registers are available to determine whether the QSGMII achieved link and sync. Register 17_ 4.5 indicates that the SERDES locked onto the incoming KDKDKD... sequence. If QSGMII Auto-Negotiation is disabled, register 17_4.10 has the same meaning as register 17_4.5. If QSGMII Auto-Negotiation is enabled, then register 17_4.10 indicates whether QSGMII Auto-Negotiation successfully established link.

2.5 Loopback

The device implements various different loopback paths.

2.5.1 System Interface Loopback

The functionality, timing, and signal integrity of the System interface can be tested by placing the device in System interface loopback mode. This can be accomplished by setting register 0_0.14 = 1, $0 _1.14=1$, or 0_4.14 = 1. In loopback mode, the data received from the MAC is not transmitted out on the media interface. Instead, the data is looped back and sent to the MAC. During loopback, link will be lost and packets will not be received.

If loopback is enabled while auto-negotiating, FLP Auto-Negotiation codes will be transmitted. If loopback is enabled in forced 10BASE-T mode, 10BASE-T idle link pulses will be transmitted on the copper side. If loopback is enabled in forced 100BASE-T mode, 100BASE-T idles will be transmitted on the copper side.

The speed of the SGMII or QSGMII is determined by register 21_2.2:0 during loopback. 21_2.2:0 is $100=10 \mathrm{Mbps}, 101=100 \mathrm{Mbps}, 110=1000 \mathrm{Mbps}$.

Figure 17: MAC Interface Loopback Diagram - Copper Media Interface

Copper
Interface

Figure 18: System Interface Loopback Diagram - Fiber Media Interface

Fiber Interface

Figure 19: System Interface Loopback Diagram - QSGMII Media Interface

2.5.2 Synchronous SERDES Loopback

The 1.25 GHz SERDES and 5.0 GHz SERDES can loop back the raw 10 bit symbol at the receiver back to the transmitter. In this mode of operation, the received data is assumed to be frequency locked with the transmit data output by the PHY. No frequency compensation is performed when the 10 bit symbol is looped back. This mode facilitates testing using non $8 / 10$ symbols such as PRBS.
The 1.25 GHz SERDES synchronous loopback is enabled by setting register 16_1.12 = 1 and 16_ $1.8=1$.
The 5.0 GHz SERDES synchronous loopback is enabled by setting register 26_4.9 = 1 .
Figure 20: Synchronous SERDES Loopback Diagram

Any Media Interface

2.5.3 Line Loopback

Line loopback allows a link partner to send frames into the device to test the transmit and receive data path. Frames from a link partner into the PHY, before reaching the MAC interface pins, are looped back and sent out on the line. They are also sent to the MAC. The packets received from the MAC are ignored during line loopback. Refer to Figure 21 on page 66. This allows the link partner to receive its own frames.

Before enabling the line loopback feature, the PHY must first establish link to another PHY link partner. If Auto-Negotiation is enabled, both link partners should advertise the same speed and full-duplex. If Auto-Negotiation is disabled, both link partners need to be forced to the same speed and full-duplex. Once link is established, the line loopback mode can be enabled.
Register 21_2.14 = 1 enables the line loopback on the copper interface.
Register 16_1.12 = 1 and 16_1.8 $=0$ enables the line loopback of the 1000BASE-X, SGMII.
Register 16_4.12 = 1 enables the line loopback of the QSGMII media interface.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R V E L L® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 21: Copper Line Loopback Data Path

Figure 22: Fiber Line Loopback Data Path

Figure 23: QSGMII Line Loopback Data Path

2.5.4 External Loopback

For production testing, an external loopback stub allows testing of the complete data path.
For 10BASE-T and 100BASE-TX modes, the loopback test requires no register writes. For 1000BASE-T mode, register 18_6.3 must be set to 1 to enable the external loopback. All copper modes require an external loopback stub.
The loopback stub consists of a plastic RJ-45 header, connecting RJ-45 pair 1,2 to pair 3,6 and connecting pair 4,5 to pair 7,8 , as seen in Figure 24.

Figure 24: Loopback Stub (Top View with Tab up)

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

The external loopback test setup requires the presence of a MAC that will originate the frames to be sent out through the PHY. Instead of a normal RJ-45 cable, the loopback stubs allows the PHY to self-link at 1000 Mbps. It also allows the actual external loopback. See Figure 25. The MAC should see the same packets it sent, looped back to it.

Figure 25: Test Setup for 10/100/1000 Mbps Modes using an External Loopback Stub

2.6 Resets

In addition to the hardware reset pin (RESETn) there are several software reset bits as summarized in Table 59.

Register 27_4.15 is a software bit that emulates the hardware reset. The entire chip is reset as if the RESETn pin is asserted. Once triggered, registers are not accessible through the MDIO until the chip reset completes.
The copper, fiber, and QSGMII circuits are reset per port via register 0_0.15, 0_1.15, and 0_4.15 respectively. A reset in one circuit does not directly affect another circuit.
Register 20_18.15 resets the mode control, port power management, and generator and checkers.
Register 26_4.15 resets the QSGMII for all 4 ports including the 5.0G SERDES.
All the reset registers described are self clear.

Table 59: Reset Control Bits

Reset Register	Register Effect	Block
$27 _4.15$	Chip Hardware Reset	Entire Chip
$0 _0.15$	Software Reset for Bank 0, 2, 3, 5, 7	Copper - per port
$0 _1.15$	Software Reset for Bank 1	Fiber/SGMII - per port
$0 _4.15$	Software Reset for Bank 4	QSGMII - per port
$26 _4.15$	Software Reset for Bank 4 - All 4 ports	QSGMII - all ports and common
$20 _18.15$	Software Reset for Bank 6 and 18	Generator/Checker/Mode - per port

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.7 Power Management

The device supports several advanced power management modes that conserve power.

2.7.1 Manual Power Down

There are multiple power down control bits on chip and they are summarized in Table 60. Each power down control independently powers down its respective circuits. In general, it is not necessary to power down an unused interface. The PHY will automatically power down any unused circuit. For example when auto-media detect is turned on, the unused interface will automatically power down.
The automatic PHY power management can be overridden by setting the power down control bits. These bits have priority over the PHY power management in that the circuit can not be powered up by the power management when its associated power down bit is set to 1 . When a circuit is power back up by setting the bit to 0 , a software reset is also automatically sent to the corresponding circuit.

Note that register 0_0.11 and 16_0.2 are logically ORed to form a power down control.

Table 60: Power Down Control Bits

Reset Register	Register Effect
$0 _0.11$	Copper Power Down
$16 _0.2$	Copper Power Down
$0 _1.11$	Fiber/SGMII Power Down
$0 _4.11$	QSGMII Power Down - Per port
$26 _4.11$	Global QSGMII Power Down

2.7.2 MAC Interface Power Down

In some applications, the MAC interface must run continuously regardless of the state of the network interface. Additional power will be required to keep the MAC interface running during low power states.

If absolute minimal power consumption is required during network interface power down mode or in the Energy Detect modes, then register 16_2.3 or 16_1.3 should be set to 0 to allow the MAC interface to power down.

Table 61 shows which bit controls the automatic MAC interface power down, and the MAC interface that is powered down. In general 16_2.3 is used when the network interface is copper and 16_1.3 is used when the network interface is fiber.

There is no equivalent bit when the QSGMII is used as the network interface. In MODE = 101 the power down in the QSGMII has no effect on the SGMII. Also note that there is no energy detect function in the QSGMII.
In the auto media detect modes $($ MODE $=110$ and 111) both the fiber side and copper side has to indicate power down before the QSGMII port can be powered down.

Table 61: Automatic MAC Interface Power Down

Register 20_18.2:0	Mode	MAC Interface Power Down Control Bit	MAC Interface Powered Down
000	QSGMII (System) to Copper	$16 _2.3$	QSGMII Port Logic
001	SGMII (System) to Copper	$16 _2.3$	SGMII
010	QSGMII (System) to 1000BASE-X	$16 _1.3$	QSGMII Port Logic

2.7.3 Copper Energy Detect Modes

The device can be placed in energy detect power down modes by selecting either of the two energy detect modes. Both modes enable the PHY to wake up on its own by detecting activity on the CAT 5 cable. The status of the energy detect is reported in register 17_0.4 and the energy detect changes are reported in register 19_0.4.

2.7.3.1 Energy Detect (Mode 1)

Energy Detect (Mode 1) is entered by setting register 16_0.9:8 to 10.
In Mode 1, only the signal detection circuitry and serial management interface are active. If the PHY detects energy on the line, it starts to Auto-Negotiate sending FLPs for 5 seconds. If at the end of 5 seconds the Auto-Negotiation is not completed, then the PHY stops sending FLPs and goes back to monitoring receive energy. If Auto-Negotiation is completed, then the PHY goes into normal $10 / 100 / 1000$ Mbps operation. If during normal operation the link is lost, the PHY will re-start Auto-Negotiation. If no energy is detected after 5 seconds, the PHY goes back to monitoring receive energy.

2.7.3.2 Energy Detect $+{ }^{\mathrm{TM}}$ (Mode 2)

Energy Detect (Mode 2) is entered by setting register 16_0.9:8 to 11.
In Mode 2, the PHY sends out a single 10 Mbps NLP (Normal Link Pulse) every one second. Except for this difference, Mode 2 is identical to Mode 1 operation. If the device is in Mode 1, it cannot wake up a connected device; therefore, the connected device must be transmitting NLPs, or either device must be woken up through register access. If the device is in Mode 2 , then it can wake a connected device.

2.7.3.3 Normal 10/100/1000 Mbps Operation

Normal 10/100/1000 Mbps operation can be entered by turning off energy detect mode by setting register 16_0.9:8 to 0x.

2.7.3.4 Power State Upon Exiting Power Down

When the PHY exits power down (register $0 _0.11$ or $16 _0.2$) the active state will depend on whether the energy detect function is enabled (register 16_0.9:8 = 1x). If the energy detect function is enabled, the PHY will transition to the energy detect state first and will wake up only if there is a signal on the wire.

Table 62: Power State after Exiting Power Down

Register		Behavior	
$\mathbf{0} _\mathbf{0 . 1 1}$	$\mathbf{1 6} \mathbf{0 . 2}$	$\mathbf{1 6} \mathbf{0 . 9 : 8}$	
1	x	xx	Power down
x	1	xx	Power down
1 to 0	0	00	Transition to power up
0	1 to 0	00	Transition to power up
1 to 0	0	$1 x$	Transition to energy detect state
0	1 to 0	$1 x$	Transition to energy detect state

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.7.4 Low Power Modes

Three low power modes are supported in the device.

- IEEE 22.2.4.1.5 compliant power down
- Energy Detect (Mode 1)
- Energy Detect+ ${ }^{\text {TM }}$ (Mode 2)

IEEE 22.2.4.1.5 power down compliance allows for the PHY to be placed in a low-power consumption state by register control.
Energy Detect (Mode 1) allows the device to wake up when energy is detected on the wire.
Energy Detect+ ${ }^{\text {TM }}$ (Mode 2) is identical to Mode 1 with the additional capability to wake up a link partner. In Mode 2, the 10BASE-T link pulses are sent once every second while listening for energy on the line.

Details of each mode are described below.

2.7.5 Low Power Operating Modes

2.7.5.1 IEEE Power Down Mode

The standard IEEE power down mode is entered by setting register 0_0.11. In this mode, the PHY does not respond to any system interface (i.e., QSGMII/SGMII) signals except the MDC/MDIO. It also does not respond to any activity on the copper or fiber media.

In this power down mode, the PHY cannot wake up on its own by detecting activity on the media. It can only wake up by setting registers 0_0.11 and 16_0.2 = 0 .
Upon deassertion of hardware reset, Register $0 _0.11$ and $16 _0.2$ are set to 1 to default the device to a power down state.

Register 0_0.11 and 16_0.2 are logically ORed to form a power down control.

2.7.5.2 Energy Detect Power Down Modes

The device can be placed in energy detect power down modes by selecting either of the two energy detect modes. Both modes enable the PHY to wake up on its own by detecting activity on the CAT 5 cable. The energy detect modes only apply to the copper media. The status of the energy detect is reported in register 17_0.4 and the energy detect changes are reported in register 19_0.4.

2.7.6 SGMII Effect on Low Power Modes

In some applications, the SGMII must run continuously regardless of the state of the PHY. Additional power will be required to keep this SGMII running during low power states.

If absolute minimal power consumption is required during the IEEE power down mode or the Energy Detect modes, then register $16 _2.3$ should be set to 0 to allow the SGMII to power down. Note that for these settings to take effect a software reset must be issued.

2.8 Auto-Negotiation

The device supports four types of Auto-Negotiation.

- 10/100/1000BASE-T Copper Auto-Negotiation. (IEEE 802.3 Clauses 28 and 40)
- 1000BASE-X Fiber Auto-Negotiation (IEEE 802.3 Clause 37)
- SGMII Auto-Negotiation (Cisco specification)
- QSGMII Auto-Negotiation (Cisco specification)

Auto-Negotiation provides a mechanism for transferring information from the local station to the link partner to establish speed, duplex, and Master/Slave preference during a link session.
Auto-Negotiation is initiated upon any of the following conditions:

- Power up reset
- Hardware reset
- Software reset (Register 0_0.15, 0_1.15, or 0_4.15)
- Restart Auto-Negotiation (Register 0_0.9, 0_1.9, 0_4.9)
- Transition from power down to power up (Register 0.0_0.11, 0_1.11, or 0_4.11)
- The link goes down

The following sections describe each of the Auto-Negotiation modes in detail.

2.8.1 10/100/1000BASE-T Auto-Negotiation

The 10/100/1000BASE-T Auto-Negotiation (AN) is based on Clause 28 and 40 of the IEEE 802.3 specification. It is used to negotiate speed, duplex, and flow control over CAT5 UTP cable. Once Auto-Negotiation is initiated, the device determines whether or not the remote device has Auto-Negotiation capability. If so, the device and the remote device negotiate the speed and duplex with which to operate.

If the remote device does not have Auto-Negotiation capability, the device uses the parallel detect function to determine the speed of the remote device for 100BASE-TX and 10BASE-T modes. If link is established based on the parallel detect function, then it is required to establish link at half-duplex mode only. Refer to IEEE 802.3 clauses 28 and 40 for a full description of Auto-Negotiation.

After hardware reset, 10/100/1000BASE-T Auto-Negotiation can be enabled and disabled via Register 0_0.12. Auto MDI/MDIX and Auto-Negotiation may be disabled and enabled independently. When Auto-Negotiation is disabled, the speed and duplex can be set via registers 0_0.13, 0_0.6, and $0 _0.8$ respectively. When Auto-Negotiation is enabled the abilities that are advertised can be changed via registers 4_0 and 9_0.
Changes to registers $0 _0.12,0 _0.13,0 _0.6$ and $0 _0.8$ do not take effect unless one of the following takes place:

- Software reset (registers 0_0.15)
- Restart Auto-Negotiation (register 0_0.9)
- Transition from power down to power up (register 0_0.11)
- The copper link goes down

To enable or disable Auto-Negotiation, Register 0_0.12 should be changed simultaneously with either register 0_0.15 or 0_0.9. For example, to disable Auto-Negotiation and force 10BASE-T half-duplex mode, register 0_0 should be written with 0×8000.

Registers 4_0 and 9_0 are internally latched once every time the Auto-Negotiation enters the Ability Detect state in the arbitration state machine. Hence, a write into Register 4_0 or 9_0 has no effect once the device begins to transmit Fast Link Pulses (FLPs). This guarantees that sequences of FLPs transmitted are consistent with one another.

Register 7_0 is treated in a similar way as registers 4_0 and 9_0 during additional next page exchanges.

If 1000BASE-T mode is advertised, then the device automatically sends the appropriate next pages to advertise the capability and negotiate master/slave mode of operation. If the user does not wish to transmit additional next pages, then the next page bit (Register 4_0.15) can be set to zero, and the user needs to take no further action.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

If next pages in addition to the ones required for 1000BASE-T are needed, then the user can set register 4_0.15 to one, and send and receive additional next pages via registers 7_0and 8_0, respectively. The device stores the previous results from register 8 in internal registers, so that new next pages can overwrite register 8_0.

Note that 1000BASE-T next page exchanges are automatically handled by the device without user intervention, regardless of whether or not additional next pages are sent.

Once the device completes Auto-Negotiation, it updates the various status in registers 1_0, 5_0, 6_ 0 , and 10_0. Speed, duplex, page received, and Auto-Negotiation completed status are also available in registers 17_0 and 19_0.
See Section 3, PHY Register Description, on page 98.

2.8.2 1000BASE-X Auto-Negotiation

1000BASE-X Auto-Negotiation is defined in Clause 37 of the IEEE 802.3 specification. It is used to auto-negotiate duplex and flow control over fiber cable. Registers 0_1, 4_1, 5_1, 6_1, and 15_1 are used to enable AN, advertise capabilities, determine link partner's capabilities, show AN status, and show the duplex mode of operation respectively.

Register 22.7:0 must be set to one to view the fiber auto-negotiation registers.
The device supports Next Page option for 1000BASE-X Auto-Negotiation. Register 7_1 of the fiber pages is used to transmit Next Pages, and register 8_1 of the fiber pages is used to store the received Next Pages. The Next Page exchange occurs with software intervention. The user must set Register 4_1.15 to enable fiber Next Page exchange. Each Next Page received in the registers should be read before a new Next Page to be transmitted is loaded in Register 7_1.
If the PHY enables 1000BASE-X Auto-Negotiation and the link partner does not, the link cannot link up. The device implements an Auto-Negotiation bypass mode. See Section 2.8.3.1, Serial Interface Auto-Negotiation Bypass Mode, on page 75 for more details.

2.8.3 SGMII Auto-Negotiation

SGMII is a de-facto standard designed by Cisco. SGMII uses 1000BASE-X coding to send data as well as Auto-Negotiation information between the PHY and the MAC. However, the contents of the SGMII Auto-Negotiation are different than the 1000BASE-X Auto-Negotiation. See the "Cisco SGMII Specification" and the "MAC Interfaces and Auto-Negotiation" application note for further details.
The device supports SGMII with and without Auto-Negotiation. Auto-Negotiation can be enabled or disabled by writing to Register 0_1.12 followed by a soft reset. If SGMII Auto-Negotiation is disabled, the MAC interface link, speed, and duplex status (determined by the media side) cannot be conveyed to the MAC from the PHY. The user must program the MAC with this information in some other way (e.g., by reading PHY registers for link, speed, and duplex status). However, the operational speed of the SGMII will follow the speed of the media. (See Table 56 on page 59). Regardless of whether the Auto-Negotiation is enabled or disabled.

2.8.3.1 Serial Interface Auto-Negotiation Bypass Mode

If the MAC or the PHY implements the Auto-Negotiation function and the other does not, two-way communication is not possible unless Auto-Negotiation is manually disabled and both sides are configured to work in the same operational modes. To solve this problem, the device implements the SGMII Auto-Negotiation Bypass Mode. When entering the state "Ability_Detect," a bypass timer begins to count down from an initial value of approximately 200 ms . If the device receives idles during the 200 ms , the device will interpret that the other side is "alive" but cannot send configuration codes to perform Auto-Negotiation. After 200 ms , the state machine will move to a new state called "Bypass_Link_Up" in which the device assumes a link-up status and the operational mode is set to the value listed under the "Comments" column of Table 63.

Table 63: SGMII Auto-Negotiation modes

Reg. 0_1.12	Reg. 26_1.6	Comments
0	X	No Auto-Negotiation. User responsible for determining speed, link, and duplex status by reading PHY registers.
1	0	Normal SGMII Auto-Negotiation. Speed, link, and duplex status automatically communicated to the MAC during Auto-Negotiation.
1	1	MAC Auto-Negotiation enabled. Normal operation.
	MAC Auto-Negotiation disabled. After 200 ms the PHY will disable Auto-Negotiation and link based on idles.	

2.8.4 QSGMII Auto-Negotiation

The QSGMII aggregates and de-aggregates four SGMII ports with the SGMII Auto-Negotiation code word passing transparently through the QSGMII.

The SGMII Auto-Negotiation described in Section 2.8.3, SGMII Auto-Negotiation, on page 74 applies to the Auto-Negotiation used on the QSGMII. The only exception to that is that the register is accessed by setting Register 22.7:0 to 0x04 (Page 4) instead of 0x01 (Page 1), i.e., the Auto-Negotiation enable register is accessed via Register 0_4.12 instead of 0_1.12 and the enhanced SGMII mode is selected through Register 16_4.7:6 instead of 16_1.7:6.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.9 Downshift Feature

Without the downshift feature enabled, connecting between two Gigabit link partners requires a four-pair RJ-45 cable to establish 10, 100, or 1000 Mbps link. However, there are existing cables that have only two-pairs, which are used to connect 10 Mbps and 100 Mbps Ethernet PHYs. With the availability of only pairs 1, 2 and 3,6, Gigabit link partners can Auto-Negotiate to 1000 Mbps , but fail to link. The Gigabit PHY will repeatedly go through the Auto-Negotiation but fail 1000 Mbps link and never try to link at 10 Mbps or 100 Mbps .

With the Marvell® downshift feature enabled, the device is able to Auto-Negotiate with another Gigabit link partner using cable pairs 1,2 and 3,6 to downshift and link at 10 Mbps or 100 Mbps , whichever is the next highest advertised speed common between the two Gigabit PHYs.

In the case of a three pair cable (additional pair 4,5 or 7,8-but not both) the same downshift function for two-pair cables applies.
By default, the downshift feature is turned off. Refer to register 16_0.14:11 which describe how to enable this feature and how to control the downshift algorithm parameters.

To enable the downshift feature, the following registers must be set:

- Register 16_0.11 = 1 - enables downshift
- Register 16_0.14:12 - sets the number of link attempts before downshifting

PHY Functional Specifications
 CRC Error Counter and Frame Counter

2.9.1 Offset

The offset reports the offset seen at the receiver. This is a debug mode. Bits 7:0 of registers 16_5, $17 _5,18 _5$, and 19_5 have no meaning. When bits $15: 8$ return a value of 0×80 it means there is zero offset. If bit 15:8 returns a value of 0×00 then the test failed.
Note that in the maximum peak, first peak, and sample point modes, the systematic offset is automatically subtracted from the results.

2.10 CRC Error Counter and Frame Counter

The CRC counter and frame counters, normally found in MACs, are available in the device. The error counter and frame counter features are enabled through register writes and each counter is stored in eight register bits.
Register 18_18.2:0 controls which path the CRC checker and packet counter is counting.
If register 18_18.2:0 is set to 010 then the Copper receive path is checked.
If register $18 _18.2: 0$ is set to 100 then the SGMII/Fiber input path is checked.
If register $18 _18.2: 0$ is set to 110 then the QSGMII input path is checked.

2.10.1 Enabling the CRC Error Counter and Frame Counter

To enable the counters to count, set register 18_18.2:0 to a non-zero value. If the counters are enabled while receiving any packets, the packet may be counted as an error packet. It is recommended to clear the counters after the counters are enabled.

To disable the counters, set register 18_18.2:0 to 000.
To read the CRC counter and frame counter, read register 17_18.
17_18.15:8 (Frame count is stored in these bits)
17_18.7:0 (CRC error count is stored in these bits)
The CRC counter and frame counter do not clear on a read command.
To clear the counters, write Register $18 _18.4=1$. The register $18 _18.4$ is a self-clear bit. Disabling the counters by writing register 18_18.2:0 to 000 will also reset the counters.

2.11 Packet Generator

The device contains a very simple packet generator. Packet Generation (Table 160 p. 156) lists the device Packet Generator register details.
The packet generator is enabled when:
Register 16_18.7:5 controls which path the packet generator is connected to.
If register $16 _18.7: 5$ is set to 010 then the input into the SGMII/Fiber or the QSGMII is ignored and the packet is generated onto the copper transmit path.

If register 16_18.7:5 is set to 100 then the copper receiver or the QSGMII is ignored and the packet is generated onto the SGMII/Fiber output path.

If register 16_18.7:5 is set to 110 then the copper receiver or the SGMII/Fiber is ignored and the packet is generated onto the QSGMII output path.
Once enabled, a fixed length packet of 64 or 1518 byte frame (including CRC) will be transmitted separated by 12 bytes of IPG the inter-packet-gap (IPG). The length of the IPG between the packets can be programmed (by default the IPG is set to 12 bytes). The preamble length will be 8 bytes. The payload of the frame is either a fixed $5 \mathrm{~A}, \mathrm{~A} 5,5 \mathrm{~A}, \mathrm{~A} 5$ pattern or a pseudo random pattern. A correct IEEE CRC is appended to the end of the frame. An error packet can also be generated.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R V EL L® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

The registers are as follows:
16_18.7:5 Packet generator enable. 000 = Normal operation. Else = Enable internal packet generator

16_18.4 Packet generator trigger/status. $0=$ Packet Generator is transmitting packets. $1=$ Transmission is done. Writing ' 0 ' when this bit is ' 1 ' will retrigger the packet generator to send another burst of packets.
16_18.3 Packet generator self clear control. $0=$ Resume normal operation after all packets are sent. 1 = Stay in packet generator mode after all packets are sent.
16_18.2 Payload type. $0=$ Pseudo random. $1=$ Fixed 5A, A5, 5A, A5, ...
16_18.1 Packet length. $0=64$ bytes. $1=1518$ bytes
16_18.0 Error packet. $0=$ Good CRC. 1 = Symbol error and corrupt CRC.
16_18.15:8 Packet Burst Size. $0 \times 00=$ Continuous. 0×01 to 0xFF = Burst 1 to 255 packets.
19_18.7:0 IPG Length + 1 (in bytes). Default is 12 bytes.
If register 16_18.15:8 is set to a non-zero value (to send burst packets), the register 16_18.7:5 packet generator behavior is controlled by register 16_18.4:3. If register 16_18.3 is set to ' 0 ', register 16_18.7:5 will self clear once the required numbers of packets are generated. Note that if register $16 _18.7: 5$ is manually set to 0 while packets are still bursting, the bursting will cease immediately once the current active packet finishes transmitting. The value in register 16_18.15:8 should not be changed while register $16 _18.7: 5$ is set to a non-zero value. If register $16 _18.3$ is set to ' 1 ', register 16_18.7:5 will retain the value and the packet generator will stay active. Normal packets that sent towards the direction of the packet generator are transmitting will be blocked until the packet generator control is released. As an example, if the copper packet generator is enabled, any packets sent from the SGMII/QSGMII to the copper interface will be blocked. Register 16_18.4 indicates the status of the packet generator transmission. When register 16_18.4 is ' 1 ', writing ' 0 ' will trigger the packet generator to send another burst packets.

2.12 MDI/MDIX Crossover

The device automatically determines whether or not it needs to cross over between pairs as shown in Table 64 on page 78 so that an external crossover cable is not required. If the device interoperates with a device that cannot automatically correct for crossover, the device makes the necessary adjustment prior to commencing Auto-Negotiation. If the device interoperates with a device that implements MDI/MDIX crossover, a random algorithm as described in IEEE 802.3 clause 40.4.4 determines which device performs the crossover.

When the device interoperates with legacy 10BASE-T devices that do not implement Auto-Negotiation, the device follows the same algorithm as described above since link pulses are present. However, when interoperating with legacy 100BASE-TX devices that do not implement Auto-Negotiation (i.e. link pulses are not present), the device uses signal detect to determine whether or not to crossover.

The auto MDI/MDIX crossover function can be disabled via register 16_0.6:5.
The pin mapping in MDI and MDIX modes is shown in Table 64.
Table 64: Media Dependent Interface Pin Mapping

Pin	MDI			MDIX		
	1000BASE-T	100BASE-TX	10BASE-T	1000BASE-T	100BASE-TX	10BASE-T
MDIP/N[0]	BI_DA \pm	TX \pm	TX \pm	BI_DB \pm	RX \pm	$\mathrm{RX} \pm$
MDIP/N[1]	BI_DB \pm	$R X \pm$	$R X \pm$	$B B_{1}$ DA \pm	TX \pm	TX \pm

Table 64: Media Dependent Interface Pin Mapping (Continued)

Pin	MDI	MDIX			
	1000BASE-T	100BASE-TX	10BASE-T	1000BASE-T	100BASE-TX

Table 64 assumes no crossover on PCB.
Note

The MDI/MDIX status is indicated by Register 17_0.6. This bit indicates whether the receive pairs $(3,6)$ and $(1,2)$ are crossed over. In 1000BASE-T operation, the device can correct for crossover between pairs $(4,5)$ and $(7,8)$ as shown in Table 64 . However, this is not indicated by Register 17 0.6.

If 1000BASE-T link is established, pairs $(1,2)$ and $(3,6)$ crossover is reported in register 21 _5.4, and pairs $(4,5)$ and $(7,8)$ crossover is reported in register 21_5.5.

2.13 Polarity Correction

The device automatically corrects polarity errors on the receive pairs in 1000BASE-T and 10BASE-T modes. In 100BASE-TX mode, the polarity does not matter.

In 1000BASE-T mode, receive polarity errors are automatically corrected based on the sequence of idle symbols. Once the descrambler is locked, the polarity is also locked on all pairs. The polarity becomes unlocked only when the receiver loses lock.

In 10BASE-T mode, polarity errors are corrected based on the detection of validly spaced link pulses. The detection begins during the MDI crossover detection phase and locks when the 10BASE-T link is up. The polarity becomes unlocked when link is down.

The polarity correction status is indicated by Register 17_0.1. This bit indicates whether the receive pair $(3,6)$ is polarity reversed in MDI mode of operation. In MDIX mode of operation, the receive pair is $(1,2)$ and Register 17_0.1 indicates whether this pair is polarity reversed. Although all pairs are corrected for receive polarity reversal, Register 17_0.1 only indicates polarity reversal on the pairs described above.

If 1000BASE-T link is established register 21_5.3:0 reports the polarity on all 4 pairs.
Polarity correction can be disabled by register write $16 _0.1=1$. Polarity will then be forced in normal 10BASE-T mode.

2.14 FLP Exchange Complete with No Link

Sometimes when link does not come up, it is difficult to determine whether the failure is due to the auto-negotiation Fast Link Pulse (FLP) not completing or from the 10/100/1000BASE-T link not being able to come up.

Register 19_0.3 is a sticky bit that gets set to 1 whenever the FLP exchange is completed but the link cannot be established for some reason. Once the bit is set, it can be cleared only by reading the register.
This bit will not be set if the FLP exchange is not completed, or if link is established.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.15 LED

The LED[3:0] pins can be used to drive LED pins. Registers 16_3, 17_3, 18_3, and 19_3 controls the operation of the LED pins. LED[3:0] are used to configure the PHY per Section 2.17.1, Hardware Configuration, on page 88. After the configuration is completed, LED[3:0] will operate per this section.

The LED[2] pin outputs either the LED[2] function or the LED[4] function. Register 19_3.14 controls the selection.

The LED[3] pin outputs either the LED[3] function or the LED[5] function. Register 19_3.15 controls the selection.

The LED[4] and LED[5] pins do not exist.
In general, 19_3.7:4 controls the LED[5] function, 19_3.3:0 controls the LED[4] function, 16_3.15:12 controls the LED[3] function, 16_3.11:8 controls the LED[2] function, 16_3.7:4 controls the LED[1] function, and 16_3.3:0 controls the LED[0] function. These are referred to single LED modes.

However, there are some LED modes where LED[5:4] function operates as a unit, LED[3:2] function operates as a unit and LED[1:0] operate as a unit. These are entered when 19_3.3:2 is set to 11, $16 _3.11: 10$ is set to 11 , or $16 _3.3: 2$ is set to 11 respectively. These are referred to as dual LED modes. In dual LED modes, register 19_3.7:4 have no meaning when 19_3.3:2 is set to 11,16_ 3.15:12 have no meaning when 16_3.11:10 is set to 11 , and 16_3.7:4 have no meaning when 16 3.3:2 is set to 11 .

The LED reports the status of the active media interface i.e., copper or fiber.
Figure 26 shows the general chaining of function for the LEDs. The various functions are described in the following sections.

Figure 26: LED Chain

Table 65: LED[3:2] Functional Pin Mapping

Register	LED Pin	Definition
$19 _3.15$	LED[3]	$0=$ Output LED[3] function to LED[3] pin $1=$ Output LED[5] function to LED[3] pin
$19 _3.14$	LED[2]	$0=$ Output LED[2] function to LED[2] pin $1=$ Output LED[4] function to LED[2] pin

2.15.1 LED Polarity

There are a variety of ways to hook up the LEDs. Some examples are shown in Figure 27. In order to make things more flexible registers 19_3.11:10, 19_3.9:8, 17_3.7:6, 17_3.5:4, 17_3.3:2, and 17_ 3.1:0 specify the output polarity for the LED[5:0] function. The lower bit of each pair specified the on (active) state of the LED, either high or low. The upper bit of each pair specifies whether the off state of the LED should be driven to the opposite level of the on state or $\mathrm{Hi}-\mathrm{Z}$. The Hi-Z state is useful in cases such the LOS and INIT function where the inactive state is $\mathrm{Hi}-\mathrm{Z}$.

Figure 27: Various LED Hookup Configurations

Table 66: LED Polarity

Register	LED Function	Definition
19_3.11:10	LED[5]	$\begin{aligned} & 00=\text { On - drive LED[5] low, Off - drive LED[5] high } \\ & 01=\text { On - drive LED[5] high, Off - drive LED[5] low } \\ & 10=\text { On - drive LED[5] low, Off - tristate LED[5] } \\ & 11=\text { On - drive LED[5] high, Off - tristate LED[5] } \end{aligned}$
19_3.9:8	LED[4]	$00=$ On - drive LED[4] low, Off - drive LED[4] high 01 = On - drive LED[4] high, Off - drive LED[4] low $10=$ On - drive LED[4] low, Off - tristate LED[4] 11 = On - drive LED[4] high, Off - tristate LED[4]
17_3.7:6	LED[3]	$00=$ On - drive LED[3] low, Off - drive LED[3] high 01 = On - drive LED[3] high, Off - drive LED[3] low 10 = On - drive LED[3] low, Off - tristate LED[3] 11 = On - drive LED[3] high, Off - tristate LED[3]
17_3.5:4	LED[2]	00 = On - drive LED[2] low, Off - drive LED[2] high 01 = On - drive LED[2] high, Off - drive LED[2] low 10 = On - drive LED[2] low, Off - tristate LED[2] 11 = On - drive LED[2] high, Off - tristate LED[2]

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 66: LED Polarity (Continued)

$\left.\begin{array}{|l|l|l|}\hline \text { Register } & \text { LED Function } & \text { Definition } \\ \hline 17 _3.3: 2 & \text { LED[1] } & \begin{array}{l}00=\text { On - drive LED[1] low, Off - drive LED[1] high } \\ 01=\text { On - drive LED[1] high, Off - drive LED[1] low } \\ 10=\text { On - drive LED[1] low, Off - tristate LED[1] } \\ \\ \end{array} \\ \hline 11=\text { On - drive LED[1] high, Off - tristate LED[1] }\end{array}\right\}$

2.15.2 Pulse Stretching and Blinking

Register 18_3.14:12 specifies the pulse stretching duration of a particular activity. Only the transmit activity, receive activity, and (transmit or receive) activity are stretched. All other statuses are not stretched since they are static in nature and no stretching is required.

Some status will require blinking instead of a solid on. Register 18_3.10:8 specifies the blink rate. Note that the pulse stretching is applied first and the blinking will reflect the duration of the stretched pulse.

The stretched/blinked output will then be mixed if needed (Section 2.15.3, Bi-Color LED Mixing, on page 83) and then inverted/Hi-Z according to the polarity described in section (Section 2.15.1, LED Polarity, on page 81)

Table 67: Pulse Stretching and Blinking

Register	LED Function	Definition
18_3.14:12	Pulse stretch duration	$000=$ No pulse stretching $001=21 \mathrm{~ms}$ to 42 ms $010=42 \mathrm{~ms}$ to 84 ms $011=84 \mathrm{~ms}$ to 170 ms $100=170 \mathrm{~ms}$ to 340 ms $101=340 \mathrm{~ms}$ to 670 ms $110=670 \mathrm{~ms}$ to 1.3 s $111=1.3 \mathrm{~s}$ to 2.7 s
18_3.10:8	Blink Rate	$\begin{aligned} & 000=42 \mathrm{~ms} \\ & 001=84 \mathrm{~ms} \\ & 010=170 \mathrm{~ms} \\ & 011=340 \mathrm{~ms} \\ & 100=670 \mathrm{~ms} \\ & 101 \text { to } 111 \text { = Reserved } \end{aligned}$

2.15.3 Bi-Color LED Mixing

In the dual LED modes the mixing function allows the 2 colors of the LED to be mixed to form a third color. This is useful since the PHY is tri speed and the three colors each represent one of the speeds. Register 17_3.15:12 control the amount to mix in the LED[5], LED[3], and LED[1] pins. Register 17_3.11:8 control the amount to mix in the LED[4], LED[2], and LED[0] pins. The mixing is determined by the percentage of time the LED is on during the active state. The percentage is selectable in 12.5% increments.
Note that there are two types of bi-color LEDs: three terminal type, and two terminal type. For example, the third and fourth LED block from the left in Figure 27 on page 81 illustrates three terminal types, and the one on the far right is the two terminal type. In the three terminal type both of the LEDs can be turned on at the same time. Hence the sum of the percentage specified by 17 $3.15: 12$ and $17 _3.11: 8$ can exceed 100%. However, in the two terminal type the sum should never exceed 100% since only one LED can be turned on at any given time.

The mixing only applies when register 19_3.3:0, 16_3.11:8 or 16_3.3:0 are set to 11xx. There is no mixing in single LED modes.

Table 68: Bi-Color LED Mixing

Register	LED Function	Definition
17_3.15:12	LED[5], LED[3], LED[1] mix percentage	When using 2 terminal bi-color LEDs the mixing percentage should not be set greater than 50%. $\begin{aligned} & 0000=0 \% \\ & 0001=12.5 \% \end{aligned}$ $\begin{aligned} & 0111=87.5 \% \\ & 1000=100 \% \end{aligned}$ $1001 \text { to } 1111 \text { = Reserved }$
17_3.11:8	LED[4], LED[2], LED[0] mix percentage	When using 2 terminal bi-color LEDs the mixing percentage should not be set greater than 50%. $\begin{aligned} & 0000=0 \% \\ & 0001=12.5 \%, \end{aligned}$ $\begin{aligned} & 0111=87.5 \% \\ & 1000=100 \% \end{aligned}$ 1001 to 1111 = Reserved

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.15.4 Modes of Operation

The LED pins relay some modes of the PHY so that these modes can be displayed by the LEDs. Most of the single LED modes are self-explanatory from the register map of register 16_3. We will cover the non-obvious ones in this section.

Table 69: Modes of Operation

Register	LED Function	Definition
19_3.7:4	LED[5] Control	If 19_3.3:2 is set to 11 then 19_3.7:4 has no effect $0000=$ On - Receive, Off - No Receive 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity $0100=$ Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit $0110=$ On - Full-duplex, Off - Half-duplex 0111 = On - Full-duplex, Blink - Collision Off - Half-duplex $1000=$ Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 11xx = Reserved
19_3.3:0	LED[4] Control	```\(0000=\) On - Receive, Off - No Receive 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity \(0100=\) Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit \(0110=\) On - Full-duplex, Off - Half-duplex 0111 = On - Full-duplex, Blink - Collision Off - Half-duplex \(1000=\) Force Off 1001 = Force On \(1010=\) Force Hi-Z 1011 = Force Blink \(1100=\) MODE 1 (Dual LED mode) 1101 = MODE 2 (Dual LED mode) 1110 = MODE 3 (Dual LED mode) 1111 = MODE 4 (Dual LED mode)```
16_3.15:12	LED[3] Control	If 16_3.11:10 is set to 11 then 16_3.15:12 has no effect $0000=$ On - Fiber Link, Off - Else 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity $0100=$ Blink - Activity, Off - No Activity 0101 = Reserved $0110=$ On - 10 Mbps or 1000 Mbps Master, Off - Else 0111 = On - Full-duplex, Off - Half-duplex $1000=$ Force Off 1001 = Force On $1010=$ Force Hi-Z 1011 = Force Blink 11xx = Reserved

Table 69: Modes of Operation (Continued)

Register	LED Function	Definition
16_3.11:8	LED[2] Control	```0000 = On - Link, Off - No Link 0001 = On - Link, Blink - Activity, Off - No Link \(0010=\) Reserved 0011 = On - Activity, Off - No Activity \(0100=\) Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit \(0110=\) On - 10/1000 Mbps Link, Off - Else 0111 = On - 10 Mbps Link, Off - Else \(1000=\) Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink \(1100=\) MODE 1 (Dual LED mode) 1101 = MODE 2 (Dual LED mode) 1110 = MODE 3 (Dual LED mode) 1111 = MODE 4 (Dual LED mode)```
16_3.7:4	LED[1] Control	If 16_3.3:2 is set to 11 then 16_3.7:4 has no effect $0000=$ On - Copper Link, Off - Else 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link $0011=$ On - Activity, Off - No Activity $0100=$ Blink - Activity, Off - No Activity 0101 = On - 100 Mbps, Link or Fiber Link, Off - Else $0110=$ On - 100/1000 Mbps Link, Off - Else $0111=$ On - 100 Mbps Link, Off - Else 1000 = Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 11xx = Reserved
16_3.3:0	LED[0] Control	```0000 = On - Link, Off - No Link 0001 = On - Link, Blink - Activity, Off - No Link \(0010=3\) blinks -1000 Mbps 2 blinks - 100 Mbps 1 blink - 10 Mbps 0 blink - No Link \(0011=\) On - Activity, Off - No Activity 0100 = Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit \(0110=\) On - Copper Link, Off - Else 0111 = On - 1000 Mbps Link, Off - Else \(1000=\) Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 1100 = MODE 1 (Dual LED mode) 1101 = MODE 2 (Dual LED mode) 1110 = MODE 3 (Dual LED mode) 1111 = MODE 4 (Dual LED mode)```

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.15.4.1 Compound LED Modes

Compound LED modes are defined in Table 70.
Table 70: Compound LED Status

Compound Mode	Description
Activity	Transmit Activity OR Receive Activity
Copper Link	10BASE-T link OR 100BASE-TX Link OR 1000BASE-T Link
Link	Copper Link or Fiber Link

2.15.4.2 Speed Blink

When $16 _3.3: 0$ is set to 0010 the LED[0] pin takes on the following behavior.
LED[0] outputs the sequence shown in Table 71 depending on the status of the link. The sequence consists of 8 segments. If a 1000 Mbps link is established the LED[0] outputs 3 pulses, 100 Mbps 2 pulses, 10 Mbps 1 pulse, and no link 0 pulses. The sequence repeats over and over again indefinitely.
The odd numbered segment pulse duration is specified in 18_3.1:0. The even numbered pulse duration is specified in 18_3.3:2.

Table 71: Speed Blinking Sequence

Segment	$\mathbf{1 0}$ Mbps	$\mathbf{1 0 0}$ Mbps	$\mathbf{1 0 0 0}$ Mbps	No Link	Duration
1	On	On	On	Off	$18 _3.1: 0$
2	Off	Off	Off	Off	$18 _3.3: 2$
3	Off	On	On	Off	$18 _3.1: 0$
4	Off	Off	Off	Off	$18 _3.3: 2$
5	Off	Off	On	Off	$18 _3.1: 0$
6	Off	Off	Off	Off	$18 _3.3: 2$
7	Off	Off	Off	Off	$18 _3.1: 0$
8	Off	Off	Off	Off	$18 _3.3: 2$

Table 72: Speed Blink

Register	LED Function	Definition
$18 _3.3: 2$	Pulse Period for	$00=84 \mathrm{~ms}$
	even segments	$01=170 \mathrm{~ms}$
		$10=340 \mathrm{~ms}$
		$11=670 \mathrm{~ms}$
$18 _3.1: 0$	Pulse Period for	$00=84 \mathrm{~ms}$
	odd segments	$01=170 \mathrm{~ms}$
		$10=340 \mathrm{~ms}$
		$11=670 \mathrm{~ms}$

2.15.4.3 Manual Override

When 19_3.7:6, 19_3.3:2,16_3.15:14, 16_3.11:10, 16_3.7:6, and 16_3.3:2 are set to 10 the LED[5:0] are manually forced. Registers 19_3.5:4, 19_3.1:0,16_3.13:12, 16_3.9:8, 16_3.5:4, and 16_3.1:0 then select whether the LEDs are to be on, off, Hi-Z, or blink.

If bi-color LEDs are used, the manual override will select only one of the two colors. In order to get the third color by mixing, MODE 1 and MODE 2 should be used (Section 2.15.4.4, MODE 1, MODE 2, MODE 3, MODE 4, on page 87).

2.15.4.4 MODE 1, MODE 2, MODE 3, MODE 4

MODE 1 to 4 are dual LED modes. These are used to mix a third color using bi-color LEDs.
When 19_3.3:0,16_3.11:8 or 16_3.3:0 is set to $11 x x$ then one of the 4 modes are enabled.
MODE 1 - Solid mixed color. The mixing is discussed in Section 2.15.3, Bi-Color LED Mixing, on page 83.

MODE 2 - Blinking mixed color. The mixing is discussed in Section 2.15.3. The blinking is discussed in section Section 2.15.2, Pulse Stretching and Blinking, on page 82.

MODE 3 - Behavior according to Table 73.
MODE 4 - Behavior according to Table 74.
Note that MODE 4 is the same as MODE 3 except the 10 Mbps and 100 Mbps are reversed.
Table 73: MODE 3 Behavior

Status	LED[5] LED[3]	LED[4] LED[2] LED[1]
1000 Mbps Link - No Activity	Off	Solid On
1000 Mbps Link - Activity	Off	Blink
100 Mbps Link - No Activity	Solid Mix	Solid Mix
100 Mbps Link - Activity	Blink Mix	Blink Mix
10 Mbps Link - No Activity	Solid On	Off
10 Mbps Link - Activity	Blink	Off
No link	Off	Off

Table 74: MODE 4 Behavior

Status	LED[5] LED[3] LED[1]	LED[4] LED[2] LED[0]
1000 Mbps Link - No Activity	Off	Solid On
1000 Mbps Link - Activity	Off	Blink
100 Mbps Link - No Activity	Solid On	Off
100 Mbps Link - Activity	Blink	Off
10 Mbps Link - No Activity	Solid Mix	Solid Mix
10 Mbps Link - Activity	Blink Mix	Blink Mix
No link	Off	Off

2.15.5 Behavior in Various Low Power States

When the PHY is in software reset, powered down, or the energy detect state, the LEDs are set to the inactive state in order to save power unless overridden by the user.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

If the LED[x] control (Registers 16_3.11:8, 16_3.7:4, and 16_3.3:0 is set to $10 x x$ (forced mode) then the LEDs will be forced regardless of the power state. This allows the user to have direct control over the LEDs. Note that the LED will not BLINK when the PHY is in low power state.

If the LED $[x]$ control is not set to $10 x x$, then the LEDs will be forced off when the PHY is in the software reset, power down state or in the energy detect state. The off value for LED[x] is defined by the setting in registers 17_3.7:6, 17_3.5:4, 17_3.3:2, 17_3.1:0, 19_3.11:10, and 19_3.9:8.
When the PHY is in the powered up state and not in the energy detect state, the LED $[x]$ will operate normally.

2.16 Interrupt

The INTn pin supports the interrupt function. INTn is active low.
Registers 18_0, 18_1, 18_2, 18_4, and 26_6.7 are the Interrupt Enable registers.
Registers 19_0, 19_1, 19_2, 19_4, and 26_6.6 are the Interrupt Status registers.
Registers 23 _0 is the Interrupt Status summary registers. Register 23_0 lists the ports that have active interrupts. Register 23_0 provides a quick way to isolate the interrupt so that the MAC or switch does not have to poll register 19 for all ports. Reading register 23_0 does not de-assert the INTn pin. Note that register 23_0 can be accessed by reading register 23_0 using the PHY address of any of the four ports.

The various pages of register 18 and $26 _6.7$ are used to select the interrupt events that can activate the interrupt pin. The interrupt pin will be activated if any of the selected events on any page of register 18 or 26_6.7 occurs.
If a certain interrupt event is not enabled for the INTn pin, it will still be indicated by the corresponding Interrupt status bits if the interrupt event occurs. The unselected events will not cause the INTn pin to be activated.

2.17 Configuring the Device

The device can be configured two ways:

- Hardware configuration strap options (unmanaged applications)
- MDC/MDIO register writes (managed applications)

All hardware configuration options can be overwritten by software except PHYADR[4:2] and PHY_ ORDER.

2.17.1 Hardware Configuration

After the deassertion of RESETn the device will be hardware configured.
The device is configured through the CONFIG[3:0] pins and CLK_SEL[1:0].
CLK_SEL[1:0] are used to select the reference clock input option. See Section 2.18, Reference Clock, on page 95 for details.

Each CONFIG[3:0] pin is used to configure 4 bits. The 4-bit value is set depending on what is connected to the CONFIG pins soon after the deassertion of hardware reset. The 4-bit mapping is shown in Table 75.

Table 75: Four Bit Mapping

Pin	Bit 3, 2,1,0
VSS	0000
P0_LED[1]	0001

PHY Functional Specifications Configuring the Device

Table 75: Four Bit Mapping (Continued)

Pin	Bit 3, 2,1,0
P0_LED[2]	0010
P0_LED[3]	0011
P1_LED[0]	0100
P1_LED[1]	0101
P1_LED[2]	0110
P1_LED[3]	0111
P2_LED[0]	1000
P2_LED[1]	1001
P2_LED[2]	1010
P2_LED[3]	1011
P3_LED[0]	1100
P3_LED[1]	1101
P3_LED[2]	1110
VDDO	1111
P0_LED[0]	Reserved
P3_LED[3]	Reserved

The 4 bits for each CONFIG pin is mapped as shown in Table 76.
Table 76: Configuration Mapping

Pin	Bit3	Bit 2	Bit1	Bit 0
CONFIG[0]	PHY_ORDER	PHYAD[4]	PHYAD[3]	PHYAD[2]
CONFIG[1]	SEL_MS	ENA_PAUSE	C_ANEG[1]	C_ANEG[0]
CONFIG[2]	S_ANEG, Q_ANEG	ENA_XC	DIS_SLEEP	PDOWN
CONFIG[3]	Reserved (Set to 0)	MODE[2]	MODE[1]	MODE[0]

Each bit in the configuration is defined as shown in Table 77.
Table 77: Device Configuration Definition

Bits	Definition	Register Affected
PHYAD[4:2]	PHY Address Bits 4:2	None
PHY_ORDER	$0=$ PHYAD[1:0] is set as follows: Port 0-00, Port 1-01, Port 2-10, Port 3-11	None
$1=$ PHYAD[1:0] is set as follows: Port 0-11, Port 1-10, Port 2-01, Port 3-00		

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 77: Device Configuration Definition (Continued)

Bits	Definition	Register Affected
C_ANEG[1:0]	$00=$ Advertise 1000BASE-T/1000BASE-X Full-Duplex Only	$4 _0.8: 5=0000,9 _0.8=0,4 _1.6: 5=01$
	01 = Advertise 1000BASE-T/1000BASE-X Full and Half-Duplex Only	$4 _0.8: 5=0000,9 _0.8=1,4 _1.6: 5=11$
	10 = Advertise All Capabilities Except 1000BASE-T/1000BASE-X Half-Duplex	4_0.8:5 = 1111, 9 _0.8 = 0, 4_1.6:5 $=01$
	11 = Advertise All Capabilities	4_0.8:5 = 1111, 9_0.8 = 1, 4_1.6:5 = 11
ENA_PAUSE	$0=$ Do Not Advertise Pause and Asymmetric Pause	4_0.11:10 $=00,4 _1.8: 7=00$
	1 = Advertise Pause and Asymmetric Pause	4_0.11:10 = 11, 4_1.8:7 = 11
PDOWN	0 = Default Power Up Port	See Table 78 on page 91
	1 = Default Power Down Port	See Table 78 on page 91
DIS_SLEEP	0 = Default Energy Detect On	16_0.9:8 $=11$
	1 = Default Energy Detect Off	16_0.9:8 = 00
ENA_XC	$0=$ Default Disable Auto-Crossover	16_0.6 = 0
	1 = Default Enable Auto-Crossover	16_0.6 = 1
SEL_MS	0 = Prefer Slave	9_0.11:10 $=00$
	1 = Prefer Master	9_0.11:10 = 11
MODE[2:0]	000 = QSGMII (System) to Copper	20_18.2:0 $=000$
	001 = SGMII (System) to Copper	20_18.2:0 $=001$
	$010=$ QSGMII (System) to 1000BASE-X	20_18.2:0 $=010$
	011 = Reserved	
	$100=$ Reserved	
	101 = Reserved	
	$110=$ Reserved	
	111 = Reserved	
S_ANEG	$0=$ SGMII/1000BASE-X Auto-Negotiations Off	0_1.12 = 0
	1 = SGMII/1000BASE-X Auto-Negotiations On	0_1.12 = 1
Q_ANEG	$0=$ SGMII Auto-Negotiations on QSGMII Off	$0 _4.12=0$
	1 = SGMII Auto-Negotiations on QSGMII On	0_4.12 = 1

Table 78: PDOWN Register Setting as a Function of MODE[2:0]

MODE[2:0]	PDOWN	$\mathbf{0} \mathbf{0 . 1 1}$	$\mathbf{0 _ 1 . 1 1}$	$\mathbf{0} \mathbf{4 . 1 1}$
xxx	0	0	0	0
000	1	1	0	0
001	1	1	0	0
010	1	0	1	0
011	1	0	1	0
100	1	0	1	0
101	1	0	0	1
110	1	1	1	0
111	1	1	1	0

2.17.2 Software Configuration - Management Interface

The management interface provides access to the internal registers via the MDC and MDIO pins and is compliant with IEEE 802.3 Clause 22 and Clause 45 MDIO protocol. MDC is the management data clock input and, it can run from DC to a maximum rate of 12.5 MHz . At high MDIO fanouts the maximum rate may be decreased depending on the output loading. MDIO is the management data input/output and is a bi-directional signal that runs synchronously to MDC.

The MDIO pin requires a pull-up resistor in a range from 1.5 kohm to 10 kohm that pulls the MDIO high during the idle and turnaround.
PHY address is configured during the hardware reset sequence. Refer to Section 2.17.1, Hardware Configuration, on page 88 for more information on how to configure PHY addresses.

All the required serial management registers are implemented as well as several optional registers. A description of the registers can be found in the Register Description.

2.17.2.1 Clause 22 MDC/MDIO Management Interface

Typical read and write operations on the management interface are shown in Figure 28 and Figure 29.

Figure 28: Typical MDC/MDIO Read Operation

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 29: Typical MDC/MDIO Write Operation

Table 79 is an example of a read operation.
Table 79: Serial Management Interface Protocol

32-Bit Preamble	Start of Frame	OpCode Read $=$ 10 Write $=$ 01	5-Bit PHY Device Address	5-Bit PHY Register Address (MSB)	2-Bit Turn around Read z0 Write $=$ 10	16-Bit Data Field	Idle
11111111	01	10	01100	00000	z0	0001001100000000	11111111

2.17.2.2 Extended Register Access

The IEEE defines only 32 registers address space for the PHY. In order to extend the number of registers address space available a paging mechanism is used. Register 22 bits 7 to 0 are used to specify the page. There is no paging for registers 22.
In this document, the short hand used to specify the registers take the form register_page.bit:bit, register_page.bit, register.bit:bit, or register.bit.
For example:
Register 16 page 2 bits 5 to 2 is specified as 16_2.5:2.
Register 16 page 2 bits 5 is specified as 16_2.5.
It takes four MDIO write commands to write the same register to the same value on all 4 ports. Register 22.15:14 can be used to selectively ignore PHYAD[4:2] and PHYAD[1:0] as shown in Table 80 so that the same register address can be written to all four ports in one MDIO write command. PHYAD[4:0] will still be decoded for read commands.

Care must be taken to setup multiple port write. To enable the concurrent write access write register 22 four times in a row with bit 14 set to 1 - once to each PHYAD[4:0]. The values written on all 16 bits must be the same otherwise unpredictable behavior will occur.

Once the four write commands to register 22 are issued, all subsequent writes will be concurrent to all ports including writes to register 22.
Concurrent write access will continue as long as every write to register 22 sets 22.14 to 1 .
To disable concurrent write access simply write register 22.14 to 0 .

Table 80: Page Address

Register	Function	Setting	Mode	HW Rst	SW Rst
22.15	Ignore PHYAD[4:2]	0 = Use PHYAD[4:2] to decode write commands $1=$ Ignore PHYAD[4:2] to decode write commands 0	R/W	0	Retain
22.14	Ignore PHYAD[1:0]	= Use PHYAD[1:0] to decode write commands $1=$ Ignore PHYAD[1:0] to decode write commands	R/W	0	Retain
$22.13: 8$	Reserved	00000000	RO	0	0
$22.7: 0$	Page select for registers 0 to 21, 23 to 28	Page Number	R/W	00	Retain

2.17.2.3 Clause 45 MDC/MDIO Management Interface (XMDIO)

Clause 45 provides extension of Clause 22 MDC/MDIO management interface to access more device registers while retaining its logical compatibility of the frame format. Clause 22 uses frame format with "Start of Frame" code of '01' while Clause 45 uses frame format with "Start of Frame" code of ' 00 '. The extensions for Clause 45 MDIO indirect register accesses are specified in Table 81.
Table 81: Extensions for Management Frame Format for Indirect Access

Frame	32-bit Preamble	Start of Frame	Opcode	5-bit PHY Address (MSB)	Device Address	2-bit Turnaround	16-bit ADRESS/DATA Field	
Address	$1 . .1$	00	00	PPPPP	DDDDD	10	AAAAAAAAAAAAAAAA	
Write	$1 . .1$	00	01	PPPPP	DDDDD	10	DDDDDDDDDDDDDDDD	Z
Read	$1 . .1$	00	11	PPPPP	DDDDD	Z0	DDDDDDDDDDDDDDDD	Z
Read Increment	$1 . .1$	00	10	PPPPP	DDDDD	Z0	DDDDDDDDDDDDDDDD	Z

Clause 45 MDIO implements a 16-bit address register that stores the address of the register to be accessed. For an address cycle, it contains the address of the register to be accessed on the next cycle. For read, write, post-read increment-address cycles, the field contains the data for the register. At power up and reset, the contents of the register are undefined. Write, read, and post-read-increment-address frames access the address register, though write and read frames do not modify the contents of the address register.

2.17.2.4 Clause 45 Access to Clause 22 Registers

Clause 22 registers space can also be access through the Clause 45 MDIO protocol. All of the Clause 22 registers are mapped into Clause 45 Device Address (DEVAD) 3 vendor specific register space ($0 \times 8000-0 \times 9 F F F$). The Clause 22 registers are mapped as the following:
C45_REGAD[15:0] $=\{3 \mathrm{~b}$ '100, P22[7:0], C22_REGAD[4:0] $\}$
Where:
P22[7:0] - Clause 22 register 22 paging
C22_REGAD[4:0] - Clause 22 REGAD[4:0]
C45_REGAD[15:0] - Clause 45 REGAD[15:0]

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 82: Clause 45 Access to Clause 22 Registers Example

Clause 22 Registers		Clause 45 Registers	
Page	Register Address	Device Address	Register Address
0×0	0×4	0×3	$0 \times 8004\left(3 b^{\prime} 100,8 b^{\prime} 00000000,5 b^{\prime} 00100\right)$
0×1	0×11 (Register 17)	0×3	$0 \times 8031\left(3 b^{\prime} 100,8 b^{\prime} 00000000,5 b^{\prime} 10001\right)$
0×12	0×14 (Register 20)	0×3	$0 \times 8254\left(3 b ' 100,8 b^{\prime} 00010010,5 b^{\prime} 10100\right)$

2.17.2.5 Preamble Suppression

The device is permanently programmed for preamble suppression. A minimum of one idle bit is required between operations.

2.18 Reference Clock

The device can use a 25 MHz crystal, 25 MHz oscillator, 125 MHz single-ended clock, $25 / 125 / 156.25 \mathrm{MHz}$ differential clock as reference clock. REF_CLKP/N are LVDS differential inputs with an internal 100 ohm differential termination resistor and internal ac-coupling. The connection to the reference clock pins are shown in Table 83. The reference frequency used must be indicated by the CLK_SEL[1:0] pins.

Table 83: Reference Clock Pin Connections

Reference Source	CLK_ SEL[1:0]	XTAL_IN	XTAL_OUT	REF_CLKP	REF_CLKN
25 MHz Crystal	11	Connect to Crystal	Connect to Crystal	Leave Floating	Leave Floating
25 MHz Oscillator	11	Connect to Driver	Leave Floating	Leave Floating	Leave Floating
25 MHz Differential	10	Leave Floating	Leave Floating	Connect to Driver	Connect to Driver
125 MHz Differential	01	Leave Floating	Leave Floating	Connect to Driver	Connect to Driver
125 MHz Single-ended	01	Leave Floating	Leave Floating	Connect to Driver	0.1 $\mu \mathrm{f}$ cap to ground
156.25 MHz Differential	00	Leave Floating	Leave Floating	Connect to Driver	Connect to Driver

When using a $25 / 125 / 156.25 \mathrm{MHz}$ diff clock, the REF_CLKP/N inputs are used instead of XTAL_ IN/XTAL_OUT.

In order to meet the QSGMII transmit and receive jitter specifications, a 125 MHz or 156.25 MHz reference clock input is required. The 25 MHz reference clock input option Note should not be used for applications using the QSGMII.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

2.19 Power Supplies

The device requires three power supplies: $1.0 \mathrm{~V}, 1.8 \mathrm{~V}$, and 3.3 V . If $2.5 \mathrm{~V} \mathrm{I} / \mathrm{Os}$ are required (e.g., JTAG or MDC/MDIO pins), then a fourth supply of 2.5 V will be required. The VDDOM can operate at 1.2 V . If VDDO is 2.5 V , then I / Os are not 3.3 V tolerant. For I / Os to be 3.3 V tolerant, VDDO must be 3.3 V .

2.19.1 AVDD33

AVDD33 is used as 3.3 V analog supply.

2.19.2 AVDD18

AVDD18 is used as the 1.8 V analog supply.

2.19.3 VDDC

VDDC is used as the 1.8 V XTAL_IN/OUT supply. The XTAL_IN/OUT pins are not 3.3 V or 2.5 V tolerant.

Refer to the 'Oscillator Level Shifting' (MV-S301630-00) application note for details on how to convert a $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ clock source to 1.8 V clock.

2.19.4 DVDD

DVDD is used for the digital logic. DVDD is the 1.0 V digital supply.

2.19.5 VDDOL

VDDOL supplies the digital I/O pins for RESETn ${ }^{1}$, LED, CONFIG, and INTn.
V18_L should be tied to VSS if the VDDOL voltage is set to 2.5 V or 3.3 V .
V18_L should be floating if the VDDOL voltage is set to 1.8 V .

2.19.6 VDDOR

VDDOR supplies the digital I/O pins for TDO, TDI, TMS, TCK, TRST, REF_CLKP/N, or CLK_ SEL[1:0].

V18_R should be tied to VSS if the VDDOR voltage is set to 2.5 V or 3.3 V .
V18_R should be floating if the VDDOR voltage is set to 1.8 V .
For the $88 \mathrm{E} 1543, \mathrm{VDDOR}$ is 2.5 V or 3.3 V .
For the $88 \mathrm{E} 1545, \mathrm{VDDOR}$ is 2.5 V or 3.3 V .

[^1]
2.19.7 VDDOM

VDDOM supplies the digital I/O pins for MDC, MDIO, and TEST.
V12_EN should be tied to VSS if the VDDOM voltage is set to 2.5 V or 3.3 V .
V12_EN should be floating if the VDDOM voltage is set to 1.2 V or 1.8 V
For the 88 E 1543 , VDDOM is 2.5 V or 3.3 V .
For the $88 \mathrm{E} 1545, \mathrm{VDDOM}$ is 1.2 V or 1.8 V .

2.19.8 Power Supply Sequencing

On power-up, no special power supply sequencing is required.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

3

PHY Register Description

The device supports both Clause 22 MDIO register access protocol and Clause 45 XMDIO register access protocol. The device also supports Clause 22 MDIO access to registers in Clause 45 XMDIO space using Page 0 register 13 and 14.

Table 84 below defines the register types used in the register map.
Table 84: Register Types

Type	Description
C	Clear after read.
LH	Register field with latching high function. If status is high, then the register is set to one and remains set until a read operation is performed through the management interface or a reset occurs.
LL	Register field with latching low function. If status is low, then the register is cleared to zero and remains zero until a read operation is performed through the management interface or a reset occurs.
Retain	The register value is retained after software reset is executed.
RES	Reserved for future use. All reserved bits are read as zero unless otherwise noted.
RO	Read only.
ROS	Read only, Set high after read.
ROC	Read only clear. After read, register field is cleared.
R/W	This bit or these bits must be read and left unchanged when performing a write.
RWR	Read/Write clear on read. All field bits are readable and writable. After reset, register field is cleared to 0.
RWS	Read/Write set. All field bits are readable and writable. After reset, register field is set to a non-zero value specified in the text.
SC	Self-Clear. Writing a one to this register causes the desired function to be immediately executed, then the register field is automatically cleared to zero when the function is complete.
Update	Value written to the register field doesn't take effect until soft reset is executed.
WO	Write only. Reads to this type of register field return undefined data.

For all binary equations appearing in the register map, the symbol \| is equal to a binary OR operation.

3.1 PHY MDIO Register Description

The IEEE defines only 32 registers address space for the PHY. In order to extend the number of registers address space available a paging mechanism is used. Register 22 bits 7 to 0 are used to specify the page. There is no paging for register 22.
In this document, the short hand used to specify the registers take the form register_page.bit:bit, register_page.bit, register.bit:bit, or register.bit.

For example:
Register 16 page 2 bits 5 to 2 is specified as 16_2.5:2.
Register 16 page 2 bits 5 is specified as 16_2.5.
Register 2 bit 3 to 0 is specified as 2.3:0.
Note that in this context the setting of the page register (register 22) has no effect.
Register 2 bit 3 is specified as 2.3.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 30: Device Register Map Summary - Page 0 - Page 7

		Page Address							
		0	1	2	3	4	5	6	7
		Copper Adv	SGMII	MAC Ctrl/Status	LED	QSGMII	Advanced VCT	Pakcet Gen/Chk	Cable Diagnostics
	0	Copper Control Register	Fiber Control Register			QSGM IIControl Register			
	1	Copper Status Register	$\begin{gathered} \hline \text { Fiber Status } \\ \text { Register } \\ \hline \end{gathered}$			QSGM II Status Register			
	2	PHY Identifier 1	PHY Identifier 1						
	3	PHY Identifier 2	PHY Identifier 2						
	4	Copper AutoNegotiation Advertisement Register				QSGM II AutoNegotiation Advertisement Register			
	5	Copper Link Partner Ability Register-Base Page	Fiber Link P artner A bility Register			QSGMIILink Partner A bility Register			
	6	$\begin{gathered} \hline \text { Copper Auto- } \\ \text { Negotiation } \\ \text { Expansion } \\ \text { Register } \\ \hline \end{gathered}$	Fiber Auto Negotaition Expansion Register			QSGM II Auto- Negotiation Expansion Register			
	7	Copper Next Page Transmit Register	Fiber Next P age Transmit Register						
	8	Copper Link Partner Next Page Register	Fiber Link P artner Next P age Register						
	9	1000BASE-T Control Register							
	10	1000BASE-T Status Register							
	11								
	12								
	13	MMD access control register							
	14	$\begin{gathered} \text { M M D access } \\ \text { Address/Data } \\ \text { register } \\ \hline \end{gathered}$							
	15	Extended Status Register	Extended Status Register						
	16	Copper Specific Control Register 1	Fiber Specific Control Register 1	M AC Specific Control Register 1	LED[3:0] Function Control Register	QSGM II Specific Control Register	Advanced VCT TX to M DI[0] Rx Coupling	Packet Generation	$\begin{array}{\|c\|} \hline \text { PHY Cable } \\ \text { Diagnostics Pair 0 } \\ \text { Length } \\ \hline \end{array}$
S	17	Copper Specific Status Register 1	Fiber Specific Status Register		LED[3:0] P olarity Control Register	QSGM II Specific Status Register	$\begin{array}{\|c} \hline \text { Advanced VCT TX } \\ \text { to M DI[1] Rx } \\ \text { Coupling } \\ \hline \end{array}$	CRC Counters	PHY Cable Diagnostics P air 1 Length
${ }_{\text {d }}^{\text {A }}$	18	Copper Specific Interrupt Enable Register	Fiber Specific Interrupt Enable Register	M AC Specific Interrupt Enable Register	LED Timer Control Register	QSGM IISpecific Interrupt Enable Register		Checker Control	$\begin{gathered} \text { PHY Cable } \\ \text { Diagnostics P air 2 } \\ \text { Length } \end{gathered}$
g_{R}	19	Copper Interrupt Status Register	Fiber Interrupt Status Register		LED[5:4] Function Control and Polarity Register	QSGM II Interrupt Status Register		Copper Port P acket Generator IP G Control	$\begin{gathered} \text { PHY Cable } \\ \text { Diagnostics P air 3 } \\ \text { Length } \end{gathered}$
	20	Copper Specific Control Register 2				QSGMIIRX_ER Byte Capture	1000B A SE-T P air Skew Register		PHY Cable Diagnostics Results
	21	Copper Specific Receive Error Counter	Fiber Specific Receive Error Counter	M AC Specific Control Register 2		QSGM II Specific Receive Error Counter	1000B A SE-T P air Swap and Po larity		PHYCable Diagnostics Control
	22				Page A	ddress			
	23	Global Interrupt Status	PRBS Control			PRBS Control	Advance VCT Control	Late Collision Counters 1\& 2	
	24		PRBS Error Counter LSB			PRBS Error Counter LSB	Advanced VCT Sample Point Distance	Late Collision Counters 3 \& 4	
	25		PRBS Error Counter M SB			PRBS Error Counter M SB	Advanced VCT Cross Pair Positive Threshold	Late Collision Window Adjust	Advanced VCT Cross Pair Negative Threshold
	26		Fiber Specific Control Register 2			QSGM II Global Control Register 1	Advanced VCT Same Pair Impedance Positive Threshold 0 and 1	M isc Test	Advanced VCT Same Pair Impedance Negative Threshold 0 and 1
	27					QSGM II Glo bal Control Register 2	Advanced VCT Same Pair Impedance Positive Threshold 2 and 3		$\begin{aligned} & \text { Advanced VCT } \\ & \text { Same Pair } \\ & \text { Impedance } \\ & \text { Negative } \\ & \text { Threshold } 2 \text { and } 3 \end{aligned}$
	28						Advanced VCT Same Pair Impedance Positive Threshold 4 and Transmit Pulse Control		Advanced VCT Same P air Impedance Negative Threshold 4
	29								
	30								
	31								

Figure 31: Device Register Map Summary - Page 8 - Page 255

		Page Address													
		8	9	10,11	12	13	14	15	16	17	18	19	20	21 to 254	255
											Common				
	0										EEE C ontrol Register 1				Factory Test Modes
	1										EEE C ontrol Register 2				Factory Test Modes
	2										EEE Control Register 3				$\begin{aligned} & \text { Factory Test } \\ & \text { Modes } \end{aligned}$
	3														Factory Test Modes
	4														Factory Test Modes
	5														Factory Test Modes
	6														Factory Test Modes
	7														Factory Test Modes
	8														Factory Test Modes
	9														Factory Test Modes
	10														Factory Test Modes
	11														Factory Test Modes
	12														
															Factory Test
	13														Modes
	14														Factory Test Modes
嵃	15														$\underset{\substack{\text { Factory Test } \\ \text { Modes }}}{ }$
¢	16										Packet Generation				Factory Test Modes
-	17										CRC Counters				Factory Test Modes
	18														Factory Test
	19										Packet Generator IPG Control				$\begin{gathered} \text { Factory Test } \\ \text { Modes } \end{gathered}$
	20										General Control Register 1				Factory Test Modes
	21														Factory Test Modes
	22							ddres							
	23														Factory Test Modes
	24														Factory Test Modes
	25										Link Dis connect Count				Factory Test Modes
	26										$\begin{gathered} \hline \text { RX_ER byte } \\ \text { capture } \end{gathered}$				Factory Test Modes
	27														$\begin{gathered} \text { Factory Test } \\ \text { Modes } \end{gathered}$
	28														Factory Test Modes
	29														
	30														Factory Test
	31														Modes

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 85: Register Map

Register Name	Register Address	Table and Page
Copper Control Register	Page 0, Register 0	Table 86, p. 104
Copper Status Register	Page 0, Register 1	Table 87, p. 106
PHY Identifier 1	Page 0, Register 2	Table 88, p. 107
PHY Identifier 2	Page 0, Register 3	Table 89, p. 107
Copper Auto-Negotiation Advertisement Register	Page 0, Register 4	Table 90, p. 108
Copper Link Partner Ability Register - Base Page	Page 0, Register 5	Table 91, p. 110
Copper Auto-Negotiation Expansion Register	Page 0, Register 6	Table 92, p. 111
Copper Next Page Transmit Register	Page 0, Register 7	Table 93, p. 112
Copper Link Partner Next Page Register	Page 0, Register 8	Table 94, p. 113
1000BASE-T Control Register	Page 0, Register 9	Table 95, p. 113
1000BASE-T Status Register	Page 0, Register 10	Table 96, p. 114
MMD Access Control Register	Page 0, Register 13	Table 97, p. 115
MMD Access Address/Data Register	Page 0, Register 14	Table 98, p. 115
Extended Status Register	Page 0, Register 15	Table 99, p. 116
Copper Specific Control Register 1	Page 0, Register 16	Table 100, p. 116
Copper Specific Status Register 1	Page 0, Register 17	Table 101, p. 117
Copper Specific Interrupt Enable Register	Page 0, Register 18	Table 102, p. 118
Copper Interrupt Status Register	Page 0, Register 19	Table 103, p. 120
Copper Specific Control Register 2	Page 0, Register 20	Table 104, p. 121
Copper Specific Receive Error Counter Register	Page 0, Register 21	Table 105, p. 121
Page Address	Page Any, Register 22	Table 106, p. 121
Global Interrupt Status	Page 0, Register 23	Table 107, p. 122
Fiber Control Register	Page 1, Register 0	Table 108, p. 122
Fiber Status Register	Page 1, Register 1	Table 109, p. 124
PHY Identifier	Page 1, Register 2	Table 110, p. 125
PHY Identifier	Page 1, Register 3	Table 111, p. 125
Fiber Auto-Negotiation Advertisement Register -1000BASE-X Mode (Register 16_1.1:0 = 01)	Page 1, Register 4	Table 112, p. 126
Fiber Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16_1.1:0 = 10)	Page 1, Register 4	Table 113, p. 127
Fiber Auto-Negotiation Advertisement Register - SGMII (Media mode) (Register 16_1.1:0 = 11)	Page 1, Register 4	Table 114, p. 128
Fiber Link Partner Ability Register - 1000BASE-X Mode (Register 16_1.1:0 = 01)	Page 1, Register 5	Table 115, p. 128
Fiber Link Partner Ability Register - SGMII (System mode) (Register 16_1.1:0 = 10)	Page 1, Register 5	Table 116, p. 129
Fiber Link Partner Ability Register - SGMII (Media mode) (Register 16_1.1:0 = 11)	Page 1, Register 5	Table 117, p. 129
Fiber Auto-Negotiation Expansion Register	Page 1, Register 6	Table 118, p. 130
Fiber Next Page Transmit Register	Page 1, Register 7	Table 119, p. 131
Fiber Link Partner Next Page Register	Page 1, Register 8	Table 120, p. 132

Table 85: Register Map (Continued)

Register Name	Register Address	Table and Page
Extended Status Register	Page 1, Register 15	Table 121, p. 132
Fiber Specific Control Register 1	Page 1, Register 16	Table 122, p. 132
Fiber Specific Status Register	Page 1, Register 17	Table 123, p. 133
Fiber Interrupt Enable Register	Page 1, Register 18	Table 124, p. 134
Fiber Interrupt Status Register	Page 1, Register 19	Table 125, p. 135
Fiber Receive Error Counter Register	Page 1, Register 21	Table 126, p. 136
PRBS Control	Page 1, Register 23	Table 127, p. 136
PRBS Error Counter LSB	Page 1, Register 24	Table 128, p. 137
PRBS Error Counter MSB	Page 1, Register 25	Table 129, p. 137
Fiber Specific Control Register 2	Page 1, Register 26	Table 130, p. 137
MAC Specific Control Register 1	Page 3, Register 16	Table 131, p. 138
MAC Specific Control Register 2	Page 2, Register 21	Table 132, p. 138
LED[3:0] Function Control Register	Page 3, Register 16	Table 133, p. 139
LED[3:0] Polarity Control Register	Page 3, Register 17	Table 134, p. 140
LED Timer Control Register	Page 3, Register 18	Table 135, p. 141
LED[5:4] Function Control and Polarity Register	Page 3, Register 19	Table 136, p. 142
QSGMII Control Register	Page 4, Register 0	Table 137, p. 143
QSGMII Status Register	Page 4, Register 1	Table 138, p. 144
QSGMII Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16_4.0 = 0)	Page 4, Register 4	Table 139, p. 145
QSGMII Link Partner Ability Register - SGMII (System mode) Mode (Register 16_4.0 = 0)	Page 4, Register 5	Table 140, p. 145
QSGMII Link Partner Ability Register - SGMII (Media mode) Mode (Register 16_4.0 = 1)	Page 4, Register 5	Table 141, p. 146
QSGMII Auto-Negotiation Expansion Register	Page 4, Register 6	Table 142, p. 147
QSGMII Specific Control Register 1	Page 4, Register 16	Table 143, p. 147
QSGMII Specific Status Register	Page 4, Register 17	Table 144, p. 148
QSGMII Interrupt Enable Register	Page 4, Register 18	Table 145, p. 149
QSGMII Interrupt Status Register	Page 4, Register 19	Table 146, p. 150
QSGMII Receive Error Counter Register	Page 4, Register 21	Table 147, p. 150
PRBS Control	Page 4, Register 23	Table 148, p. 150
PRBS Error Counter LSB	Page 4, Register 24	Table 149, p. 151
PRBS Error Counter MSB	Page 4, Register 25	Table 150, p. 151
QSGMII Global Control Register 1	Page 4, Register 26	Table 151, p. 151
QSGMII Global Control Register 2	Page 4, Register 27	Table 152, p. 152
1000BASE-T Pair Skew Register	Page 5, Register 20	Table 153, p. 153
1000BASE-T Pair Swap and Polarity	Page 5, Register 21	Table 154, p. 153
Copper Port Packet Generation	Page 6, Register 16	Table 155, p. 153
Copper Port CRC Counters	Page 6, Register 17	Table 156, p. 154
Checker Control	Page 6, Register 18	Table 157, p. 155
Copper Port Packet Generator IPG Control	Page 6, Register 19	Table 158, p. 155

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 85: Register Map (Continued)

Register Name	Register Address	Table and Page
Misc Test	Page 6, Register 26	Table 159, p. 155
Packet Generation	Page 18, Register 16	Table 160, p. 156
CRC Counters	Page 18, Register 17	Table 161, p. 156
Checker Control	Page 18, Register 18	Table 162, p. 157
Packet Generator IPG Control	Page 18, Register 19	Table 163, p. 157
General Control Register 1	Page 18, Register 20	Table 164, p. 158

Table 86: Copper Control Register
Page 0, Register 0

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Copper Reset	R/W, SC	0x0	SC	Copper Software Reset. Affects pages 0, 2, 3, 5, and 7 . Writing a 1 to this bit causes the PHY state machines to be reset. When the reset operation is done, this bit is cleared to 0 automatically. The reset occurs immediately. 1 = PHY reset $0=$ Normal operation
14	Loopback	R/W	0×0	0×0	When loopback is activated, the transmitter data presented on TXD is looped back to RXD internally. Link is broken when loopback is enabled. Loopback speed is determined by Registers 21_2.2:0. 1 = Enable Loopback $0=$ Disable Loopback
13	Speed Select (LSB)	R/W	0×0	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. A write to this register bit does not take effect until any one of the following also occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Bit 6, 13 11 = Reserved $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$

PHY Register Description PHY MDIO Register Description

Table 86: Copper Control Register (Continued) Page 0, Register 0

Bits	Field	Mode	HW Rst	SW Rst	Description
12	Auto-Negotiation Enable	R/W	0x1	Update	Changes to this bit are disruptive to the normal operation. A write to this register bit does not take effect until any one of the following occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation If Register $0 _0.12$ is set to 0 and speed is manually forced to 1000 Mbps in Registers 0.13 and 0.6, then Auto-Negotiation will still be enabled and only 1000BASE-T full-duplex is advertised if register $0 _0.8$ is set to 1 , and 1000BASE-T half-duplex is advertised if 0.8 is set to 0 . Registers 4.8:5 and 9.9:8 are ignored. Auto-Negotiation is mandatoryperIEEE forproperoperationin1000BASE-T. 1 = Enable Auto-Negotiation Process $0=$ Disable Auto-Negotiation Process
11	Power Down	R/W	See Descr	Retain	Power down is controlled via register 0_0.11 and 16_0.2. Both bits must be set to 0 before the PHY will transition from power down to normal operation. When the port is switched from power down to normal operation, software reset and restart Auto-Negotiation are performed even when bits Reset (0_0.15) and Restart Auto-Negotiation (0_0.9) are not set by the user. Upon hardware reset this bit takes on the value of PDOWN and (MODE[2:0] = 00x or 11x) 1 = Power down $0=$ Normal operation
10	Isolate	RO	0x0	0x0	This bit has no effect.
9	Restart Copper Auto-Negotiation	R/W, SC	0x0	SC	Auto-Negotiation automatically restarts after hardware or software reset regardless of whether or not the restart bit (0_0.9) is set. 1 = Restart Auto-Negotiation Process $0=$ Normal operation
8	Copper Duplex Mode	R/W	0x1	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. A write to this register bit does not take effect until any one of the following also occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation 1 = Full-duplex 0 = Half-duplex
7	Collision Test	RO	0x0	0×0	This bit has no effect.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 86: Copper Control Register (Continued)
 Page 0, Register 0

Bits	Field	Mode	HW Rst	SW Rst	Description
6	Speed Selection (MSB)	R/W	0×1	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. A write to this register bit does not take effect until any one of the following occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation bit 6, 13 $11=$ Reserved $10=1000$ Mbps 01 = 100 Mbps $00=10 \mathrm{Mbps}$
$5: 0$	Reserved	RO	Always 000000	Always 000000	Reserved

Table 87: Copper Status Register
 Page 0, Register 1

| Bits | Field | Mode | HW Rst | SW Rst |
| :--- | :--- | :--- | :--- | :--- | Description | 15 | 100BASE-T4 | RO | Always 0 |
| :--- | :--- | :--- | :--- |
| 14 | Always 0 | 100 BASE-T4.
 This protocol is not available.
 100BASE-X
 Full-Duplex | RO |

Table 87: Copper Status Register (Continued) Page 0, Register 1

Bits	Field	Mode	HW Rst	SW Rst	Description
4	Copper Remote Fault	RO,LH	0×0	0×0	$1=$ Remote fault condition detected o Remote fault condition not detected
3	Auto-Negotiation Ability	RO	Always 1	Always 1	$1=$ PHY able to perform Auto-Negotiation
2	Copper Link Status	RO,LL	0×0	0×0	This register bit indicates when link was lost since the last read. For the current link status, either read this register back-to-back or read Register 17_0.10 Link Real Time. $1=$ Link is up = Link is down
1	Jabber Detect	RO,LH	0×0	0×0	$1=$ Jabber condition detected $0=$ Jabber condition not detected
0	Extended Capability	RO	Always 1	Always 1	$1=$ Extended register capabilities

Table 88: PHY Identifier 1
Page 0, Register 2

Bits	Field	Mode	HW Rst	SW Rst	Description
15:0	Organizationally Unique Identifier Bit 3:18	RO	0x0141	0x0141	Marvell ${ }^{\circledR}$ OUI is 0×005043 000000000101000001000011 bit 1. \qquad .bit 24 Register 2.[15:0] show bits 3 to 18 of the OUI. 0000000101000001 bit 3 . \qquad bit18

Table 89: PHY Identifier 2
Page 0, Register 3

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 10$	OUI LSb	RO	Always 000011	Always 000011	Organizationally Unique Identifier bits 19:24 000011 ^........ bit 19...bit24
$9: 4$	Model Number	RO	Always 101010	Always 101010	Model Number 101010
$3: 0$	Revision Number	RO	See Descr	See Descr	Rev Number See relevant product Release Notes for details.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 90: Copper Auto-Negotiation Advertisement Register
 Page 0, Register 4

| Bits | Field | Mode | HW Rst | SW Rst | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | Next Page |
| :--- |
| 15 |

PHY Register Description PHY MDIO Register Description

Table 90: Copper Auto-Negotiation Advertisement Register (Continued) Page 0, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description
8	100BASE-TX Full-Duplex	R/W	See Descr.	Update	A write to this register bit does not take effect until any one of the following occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Copper link goes down. If register $0 _0.12$ is set to 0 and speed is manually forced to 1000 Mbps in Registers $0 _0.13$ and 0_0.6, then Auto-Negotiation will still be enabled and only 1000BASE-T full-duplex is advertised if register 0_0.8 is set to 1 , and 1000BASE-T half-duplex is advertised if $0 _0.8$ set to 0 . Registers 4_0.8:5 and 9_0.9:8 are ignored. Auto-Negotiation is mandatory per IEEE for proper operation in 1000BASE-T. Upon hardware reset this bit takes on the value of C_{-} ANEG[1]. 1 = Advertise $0=$ Not advertised
7	100BASE-TX Half-Duplex	R/W	See Descr.	Update	A write to this register bit does not take effect until any one of the following occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Copper link goes down. If register $0 _0.12$ is set to 0 and speed is manually forced to 1000 Mbps in Registers 0.13 and 0.6, then Auto-Negotiation will still be enabled and only 1000BASE-T full-duplex is advertised if register 0_0.8 is set to 1 , and 1000BASE-T half-duplex is advertised if 0.8 set to 0 . Registers 4.8:5 and 9.9:8 are ignored. Auto-Negotiation is mandatory per IEEE for proper operation in 1000BASE-T. Upon hardware reset this bit takes on the value of C_{-} ANEG[1]. 1 = Advertise $0=$ Not advertised

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 90: Copper Auto-Negotiation Advertisement Register (Continued) Page 0, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description
6	10BASE-TX Full-Duplex	R/W	See Descr.	Update	A write to this register bit does not take effect until any one of the following occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Copper link goes down. If register $0 _0.12$ is set to 0 and speed is manually forced to 1000 Mbps in Registers 0_0.13 and 0_0.6, then Auto-Negotiation will still be enabled and only 1000BASE-T full-duplex is advertised if register $0 _0.8$ is set to 1 , and 1000BASE-T half-duplex is advertised if $0 _0.8$ set to 0 . Registers 4_0.8:5 and 9_0.9:8 are ignored. Auto-Negotiation is mandatory per IEEE for proper operation in 1000BASE-T. Upon hardware reset this bit takes on the value of C_{-} ANEG[1]. 1 = Advertise $0=$ Not advertised
5	10BASE-TX Half-Duplex	R/W	See Descr.	Update	A write to this register bit does not take effect until any one of the following occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Copper link goes down. If register $0 _0.12$ is set to 0 and speed is manually forced to 1000 Mbps in Registers $0 _0.13$ and 0_0.6, then Auto-Negotiation will still be enabled and only 1000BASE-T full-duplex is advertised if register $0 _0.8$ is set to 1 , and 1000BASE-T half-duplex is advertised if $0 _0.8$ set to 0 . Registers 4_0.8:5 and 9_0.9:8 are ignored. Auto-Negotiation is mandatory per IEEE for proper operation in 1000BASE-T. Upon hardware reset this bit takes on the value of C_{-} ANEG[1]. 1 = Advertise $0=$ Not advertised
4:0	Selector Field	R/W	0×01	Retain	Selector Field mode $00001=802.3$

Table 91: Copper Link Partner Ability Register - Base Page
Page 0, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Next Page	RO	0×0	0×0	Received Code Word Bit 15 $1=$ Link partner capable of next page $0=$ Link partner not capable of next page

Table 91: Copper Link Partner Ability Register - Base Page (Continued) Page 0, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
14	Acknowledge	RO	0x0	0x0	Acknowledge Received Code Word Bit 14 1 = Link partner received link code word $0=$ Link partner does not have Next Page ability
13	Remote Fault	RO	0x0	0×0	Remote Fault Received Code Word Bit 13 1 = Link partner detected remote fault $0=$ Link partner has not detected remote fault
12	Technology Ability Field	Ro	0x0	0x0	Received Code Word Bit 12
11	Asymmetric Pause	RO	0x0	0x0	Received Code Word Bit 11 1 = Link partner requests asymmetric pause $0=$ Link partner does not request asymmetric pause
10	Pause Capable	RO	0x0	0x0	Received Code Word Bit 10 1 = Link partner is capable of pause operation $0=$ Link partner is not capable of pause operation
9	100BASE-T4 Capability	RO	0x0	0x0	Received Code Word Bit 9 1 = Link partner is 100BASE-T4 capable $0=$ Link partner is not 100BASE-T4 capable
8	100BASE-TX Full-Duplex Capability	RO	0x0	0x0	Received Code Word Bit 8 1 = Link partner is 100BASE-TX full-duplex capable $0=$ Link partner is not 100BASE-TX full-duplex capable
7	100BASE-TX Half-Duplex Capability	RO	0x0	0x0	Received Code Word Bit 7 1 = Link partner is 100BASE-TX half-duplex capable $0=$ Link partner is not 100BASE-TX half-duplex capable
6	10BASE-T Full-Duplex Capability	RO	0x0	0x0	Received Code Word Bit 6 1 = Link partner is 10BASE-T full-duplex capable $0=$ Link partner is not 10BASE-T full-duplex capable
5	10BASE-T Half-Duplex Capability	Ro	0x0	0x0	Received Code Word Bit 5 1 = Link partner is 10BASE-T half-duplex capable $0=$ Link partner is not 10BASE-T half-duplex capable
4:0	Selector Field	RO	0x00	0x00	Selector Field Received Code Word Bit 4:0

Table 92: Copper Auto-Negotiation Expansion Register Page 0, Register 6

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 5$	Reserved	RO	0×000	0×000	Reserved.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 92: Copper Auto-Negotiation Expansion Register (Continued) Page 0, Register 6

Bits	Field	Mode	HW Rst	SW Rst	Description
4	Parallel Detection Fault	RO,LH	0x0	0x0	Register 6_0.4 is not valid until the Auto-Negotiation complete bit (Reg 1_0.5) indicates completed. 1 = A fault has been detected via the Parallel Detection function $0=A$ fault has not been detected via the Parallel Detection function
3	Link Partner Next page Able	RO	0x0	0x0	Register 6_0.3 is not valid until the Auto-Negotiation complete bit (Reg 1_0.5) indicates completed. 1 = Link Partner is Next Page able $0=$ Link Partner is not Next Page able
2	Local Next Page Able	RO	0x1	0x1	Register 6_0.2 is not valid until the Auto-Negotiation complete bit (Reg 1_0.5) indicates completed. 1 = Local Device is Next Page able $0=$ Local Device is not Next Page able
1	Page Received	RO, LH	0x0	0x0	Register 6_0.1 is not valid until the Auto-Negotiation complete bit (Reg 1_0.5) indicates completed. 1 = A New Page has been received $0=$ A New Page has not been received
0	Link Partner Auto-Negotiation Able	RO	0x0	0x0	Register 6_0.0 is not valid until the Auto-Negotiation complete bit (Reg 1_0.5) indicates completed. 1 = Link Partner is Auto-Negotiation able $0=$ Link Partner is not Auto-Negotiation able

Table 93: Copper Next Page Transmit Register Page 0, Register 7

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Next Page	R/W	0×0	0×0	A write to register 7_0 implicitly sets a variable in the Auto-Negotiation state machine indicating that the next page has been loaded. Link fail will clear Reg 7_0. Transmit Code Word Bit 15
14	Reserved	RO	0×0	0×0	Reserved
13	Message Page Mode	R/W	0×1	0×1	Transmit Code Word Bit 13
12	Acknowledge2	R/W	0×0	0×0	Transmit Code Word Bit 12
11	Toggle	RO	0×0	0×0	Transmit Code Word Bit 11
$10: 0$	Message/ Unformatted Field	R/W	0×001	0×001	Transmit Code Word Bit 10:0

Table 94: Copper Link Partner Next Page Register

 Page 0, Register 8| Bits | Field | Mode | HW Rst | SW Rst | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | Next Page | RO | 0×0 | 0×0 | Received Code Word Bit 15 |
| 14 | Acknowledge | RO | 0×0 | 0×0 | Received Code Word Bit 14 |
| 13 | Message Page | RO | 0×0 | 0×0 | Received Code Word Bit 13 |
| 12 | Acknowledge2 | RO | 0×0 | 0×0 | Received Code Word Bit 12 |
| 11 | Toggle | RO | 0×0 | 0×0 | Received Code Word Bit 11 |
| $10: 0$ | Message/
 Unformatted Field | RO | 0×000 | 0×000 | Received Code Word Bit 10:0 |

Table 95: 1000BASE-T Control Register Page 0, Register 9

Bits	Field	Mode	HW Rst	SW Rst	Description
15:13	Test Mode	R/W	0x0	Retain	TX_CLK comes from the RX_CLK pin for jitter testing in test modes 2 and 3 . After exiting the test mode, hardware reset or software reset (Register 0_0.15) should be issued to ensure normal operation. A restart of Auto-Negotiation will clear these bits. $000=$ Normal Mode 001 = Test Mode 1 - Transmit Waveform Test $010=$ Test Mode $2-$ Transmit Jitter Test (MASTER mode) 011 = Test Mode 3 - Transmit Jitter Test (SLAVE mode) 100 = Test Mode 4 - Transmit Distortion Test 101, 110, 111 = Reserved
12	MASTER/SLAVE Manual Configuration Enable	R/W	0×0	Update	A write to this register bit does not take effect until any of the following also occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Copper link goes down. 1 = Manual MASTER/SLAVE configuration $0=$ Automatic MASTER/SLAVE configuration
11	MASTER/SLAVE Configuration Value	R/W	See Descr.	Update	A write to this register bit does not take effect until any of the following also occurs: Software reset is asserted (Register 0_0.15) Restart Auto-Negotiation is asserted (Register 0_0.9) Power down (Register 0_0.11, 16_0.2) transitions from power down to normal operation Copper link goes down. Upon hardware reset this bit takes on the value of SEL_ MS. 1 = Manual configure as MASTER $0=$ Manual configure as SLAVE

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 95: 1000BASE-T Control Register (Continued)
 Page 0, Register 9

| Bits | Field | Mode | HW Rst | SW Rst |
| :--- | :--- | :--- | :--- | :--- | Description | Port Type |
| :--- |
| 10 |

Table 96: 1000BASE-T Status Register
Page 0, Register 10

Bits	Field	Mode	HW Rst	SW Rst	Description
15	MASTER/SLAVE Configuration Fault	RO,LH	0×0	0×0	This register bit will clear on read. $1=$ MASTER/SLAVE configuration fault detected $0=$ No MASTER/SLAVE configuration fault detected
14	MASTER/SLAVE Configuration Resolution	RO	0×0	0×0	$1=$ Local PHY configuration resolved to MASTER = Local PHY configuration resolved to SLAVE
13	Local Receiver Status	RO	0×0	0×0	$1=$ Local Receiver OK $0=$ Local Receiver is Not OK

PHY Register Description PHY MDIO Register Description

Table 96: 1000BASE-T Status Register (Continued)
Page 0, Register 10

Bits	Field	Mode	HW Rst	SW Rst	Description
12	Remote Receiver Status	RO	0×0	0×0	$1=$ Remote Receiver OK o Remote Receiver Not OK
11	Link Partner 1000BASE-T Full-Duplex Capability	RO	0×0	0×0	$1=$ Link Partner is capable of 1000BASE-T full-duplex $0=$ Link Partner is not capable of 1000BASE-T full-duplex
10	Link Partner 1000BASE-T Half-Duplex Capability	RO	0×0	0×0	$1=$ Link Partner is capable of 1000BASE-T half-duplex = Link Partner is not capable of 1000BASE-T half-duplex
$9: 8$	Reserved	RO	0×0	0×0	Reserved
$7: 0$	Idle Error Count	RO, SC	0×00	0×00	MSB of Idle Error Counter These register bits report the idle error count since the last time this register was read. The counter pegs at 11111111 and will not roll over.

Table 97: MMD Access Control Register
Page 0, Register 13

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 14$	Function	R/W	0×0	0×0	$15: 14$ $11=$ Data, post increment on writes only $10=$ Data, post increment on reads and writes 01= Data, no post increment 00= Address
$13: 5$	Reserved	RO	0×000	0×000	Reserved
$4: 0$	DEVAD	RO	0×00	0×00	Device address

Table 98: MMD Access Address/Data Register
Page 0, Register 14

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	Address Data	R/W	0×0000	0×0000	If 13.15:14 $=00$, MMD DEVAD's address register. Otherwise, MMD DEVADís data register as indicated by the contents of its address register

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 99: Extended Status Register

Page 0, Register 15

Bits	Field	Mode	HW Rst	SW Rst	Description
15	1000BASE-X Full-Duplex	RO	Always 0	Always 0	$0=$ not 1000BASE-X full-duplex capable
14	1000BASE-X Half-Duplex	RO	Always 0	Always 0	$0=$ not 1000BASE-X half-duplex capable
13	1000BASE-T Full-Duplex	RO	Always 1	Always 1	$1=1000 B A S E-T$ full-duplex capable
12	1000BASE-T Half-Duplex	RO	Always 1	Always 1	$1=1000 B A S E-T$ half-duplex capable
$11: 0$	Reserved	RO	0×000	0×000	Reserved

Table 100: Copper Specific Control Register 1
Page 0, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
15:10	Reserved				Reserved.
9:8	Energy Detect	R/W	See Descr.	Update	Upon hardware reset both bits takes on the inverted value of DIS_SLEEP. $0 x=0 \text { Off }$ $10=$ Sense only on Receive (Energy Detect) 11 = Sense and periodically transmit NLP (Energy Detect+TM)
7	Reserved				Reserved.
6:5	MDI Crossover Mode	R/W	See Descr.	Update	Changes to these bits are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. Upon hardware reset bits defaults as follows: $\begin{array}{ll} \text { ENA_XC } & \text { Bits } 6: 5 \\ 0 & 01 \\ 1 & 11 \\ 11 & =\text { Enable automatic crossover for all modes } \\ 10= & \text { Reserved } \\ 01= & \text { Manual MDIX configuration } \\ 00= & \text { Manual MDI configuration } \end{array}$
4	Reserved	R/W	0×0	Retain	Reserved
3	Reserved				Reserved.

PHY Register Description PHY MDIO Register Description

Table 100: Copper Specific Control Register 1 (Continued)
Page 0, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
2	Power Down	R/W	0x0	Retain	Power down is controlled via register $0 _0.11$ and $16 _0.2$. Both bits must be set to 0 before the PHY will transition from power down to normal operation. When the port is switched from power down to normal operation, software reset and restart Auto-Negotiation are performed even when bits Reset (0_0.15) and Restart Auto-Negotiation (0_0.9) are not set by the user. 1 = Power down $0=$ Normal operation
1	Polarity Reversal Disable	R/W	0x0	Retain	If polarity is disabled, then the polarity is forced to be normal in 10BASE-T. 1 = Polarity Reversal Disabled 0 = Polarity Reversal Enabled The detected polarity status is shown in Register 17_0.1, or in 1000BASE-T mode, 21_5.3:0.
0	Disable Jabber	R/W	0x0	Retain	Jabber has effect only in 10BASE-T half-duplex mode. 1 = Disable jabber function 0 = Enable jabber function

Table 101: Copper Specific Status Register 1
Page 0, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
15:14	Speed	RO	0x2	Retain	These status bits are valid only after resolved bit 17_0.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. 11 = Reserved $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$
13	Duplex	RO	0x0	Retain	This status bit is valid only after resolved bit 17_0.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. 1 = Full-duplex 0 = Half-duplex
12	Page Received	RO, LH	0x0	0×0	1 = Page received $0=$ Page not received
11	Speed and Duplex Resolved	RO	0x0	0×0	When Auto-Negotiation is not enabled 17_0.11 = 1 . 1 = Resolved $0=$ Not resolved
10	Copper Link (real time)	Ro	0x0	0×0	$\begin{aligned} & 1=\text { Link up } \\ & 0=\text { Link down } \end{aligned}$

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 101: Copper Specific Status Register 1 (Continued)
Page 0, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
9	Transmit Pause Enabled	RO	0x0	0x0	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17_0.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. 1 = Transmit pause enabled $0=$ Transmit pause disable
8	Receive Pause Enabled	RO	0x0	0x0	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17_0.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. 1 = Receive pause enabled $0=$ Receive pause disabled
7	Reserved	RO	0x0	0x0	Reserved
6	MDI Crossover Status	RO	0x1	Retain	This status bit is valid only after resolved bit 17_0.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. This bit is 0 or 1 depending on what is written to 16.6:5 in manual configuration mode. Register 16.6:5 are updated with software reset. $\begin{aligned} & 1=\text { MDIX } \\ & 0=\text { MDI } \end{aligned}$
5	Reserved				Reserved.
4	Copper Energy Detect Status	RO	0x0	0x0	$\begin{aligned} & 1=\text { Sleep } \\ & 0=\text { Active } \end{aligned}$
3	Global Link Status	RO	0x0	0x0	$\begin{aligned} & 1=\text { Copper link is up } \\ & 0=\text { Copper link is down } \end{aligned}$
2	Reserved				Reserved.
1	Polarity (real time)	RO	0x0	0x0	1 = Reversed $0=$ Normal Polarity reversal can be disabled by writing to Register 16_0.1. In 1000BASE-T mode, polarity of all pairs are shown in Register 21_5.3:0.
0	Jabber (real time)	RO	0x0	0x0	$\begin{aligned} & 1=\text { Jabber } \\ & 0=\text { No jabber } \end{aligned}$

Table 102: Copper Specific Interrupt Enable Register Page 0, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Auto-Negotiation Error Interrupt Enable	R/W	0×0	Retain	$1=$ Interrupt enable $0=$ Interrupt disable

Table 102: Copper Specific Interrupt Enable Register (Continued) Page 0, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
14	Speed Changed Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
13	Duplex Changed Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
12	Page Received Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
11	Auto-Negotiation Completed Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable 0 = Interrupt disable
10	Link Status Changed Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
9	Symbol Error Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
8	False Carrier Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
7	Reserved	R/W	0x0	Retain	Reserved
6	MDI Crossover Changed Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable 0 = Interrupt disable
5	Downshift Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
4	Copper Energy Detect Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
3	FLP Exchange Complete but no Link Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable 0 = Interrupt disable
2	Reserved				Reserved.
1	Polarity Changed Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
0	Jabber Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 103: Copper Interrupt Status Register
Page 0, Register 19

| Bits | Field | Mode | HW Rst | SW Rst |
| :--- | :--- | :--- | :--- | :--- | De scription | 15 | Copper Auto-
 Negotiation Error | RO,LH | 0×0 |
| :--- | :--- | :--- | :--- |

Table 104: Copper Specific Control Register 2
Page 0, Register 20

Bits	Field	Mode	HW Rst	SW Rst	Description
15:8	Reserved	R/W	0x000	Retain	Reserved
7:4	Reserved				Reserved.
3	Reverse MDIP/N[3] Transmit Polarity	R/W	0x0	Retain	1 = Reverse Transmit Polarity 0 = Normal Transmit Polarity
2	Reverse MDIP/N[2] Transmit Polarity	R/W	0x0	Retain	1 = Reverse Transmit Polarity $0=$ Normal Transmit Polarity
1	Reverse MDIP/N[1] Transmit Polarity	R/W	0x0	Retain	1 = Reverse Transmit Polarity 0 = Normal Transmit Polarity
0	Reverse MDIP/N[0] Transmit Polarity	R/W	0x0	Retain	1 = Reverse Transmit Polarity 0 = Normal Transmit Polarity

Table 105: Copper Specific Receive Error Counter Register Page 0, Register 21

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	Receive Error Count	RO, LH	0×0000	Retain	Counter will peg at $0 \times$ FFFF and will not roll over. Both False carrier and symbol errors are reported.

Table 106: Page Address
Page Any, Register 22

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Ignore PHYAD[4:2]	R/W	0×0	Retain	$1=$ Ignore PHYAD[4:2] to decode write commands $0=$ Use PHYAD[4:2] to decode write commands
14	Ignore PHYAD[1:0]	R/W	0×0	Retain	$1=$ Ignore PHYAD[1:0] to decode write commands $0=$ Use PHYAD[1:0] to decode write commands
$13: 8$	Reserved	RO	0×00	0×00	Reserved
$7: 0$	Page select for registers 0 to 28	R/W	0×00	Retain	Page Number

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 107: Global Interrupt Status
Page 0, Register 23

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 4$	Reserved	RO	0×000	0×000	Reserved
$3: 0$	Port X Interrupt	RO	0×0	0×0	$1=$ Interrupt active on port X $0=$ No interrupt active on port X

Table 108: Fiber Control Register
Page 1, Register 0

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Fiber Reset	R/W	0x0	SC	Fiber Software Reset. Affects page 1. Writing a 1 to this bit causes the PHY state machines to be reset. When the reset operation is done, this bit is cleared to 0 automatically. The reset occurs immediately. $1=$ PHY reset $0=$ Normal operation
14	Loopback	R/W	0x0	0x0	When loopback is activated, the transmitter data presented on TXD of the internal bus is looped back to RXD of the internal bus. Link is broken when loopback is enabled. Loopback speed is determined by the mode the device is in. 1000BASE-X - loopback is always in 1000 Mbps . 100BASE-FX - loopback is always in 100Mbps. 1 = Enable Loopback $0=$ Disable Loopback
13	Speed Select (LSB)	RO, R/W	0x0	Retain	If register 16_1.1:0 (MODE[1:0]) $=00$ then this bit is always 1. If register 16_1.1:0 (MODE[1:0]) $=01$ then this bit is always 0. If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=10$ then this bit is 1 when the PHY is at 100 Mbps , else it is 0 . If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=11$ then this bit is R/W. bit 6,13 $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$
12	Auto-Negotiation Enable	R/W	See Descr	Retain	If the value of this bit is changed, the link will be broken and Auto-Negotiation Restarted This bit has no effect when in 100BASE-FX mode When this bit gets set/reset, Auto-negotiation is restarted (bit $0 _1.9$ is set to 1). On hardware reset this bit takes on the value of S_ANEG 1 = Enable Auto-Negotiation Process 0 = Disable Auto-Negotiation Process

PHY Register Description PHY MDIO Register Description

Table 108: Fiber Control Register (Continued)
Page 1, Register 0

| Bits | Field | Mode | HW Rst | SW Rst | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| 11 | Power Down | R/W | See Descr |
| :--- | :--- | :--- | :--- |

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 109: Fiber Status Register
 Page 1, Register 1

Bits	Field	Mode	HW Rst	SW Rst	Description
15	100BASE-T4	RO	Always 0	Always 0	100BASE-T4. This protocol is not available. $0=$ PHY not able to perform 100BASE-T4
14	100BASE-X Full-Duplex	Ro	See Descr	See Descr	If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=00$ then this bit is 1 , else this bit is 0 . bit 6,13 $1=$ PHY able to perform full duplex 100BASE-X $0=$ PHY not able to perform full duplex 100BASE-X
13	100BASE-X Half-Duplex	Ro	See Descr	See Descr	If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=00$ then this bit is 1 , else this bit is 0 . bit 6,13 1 = PHY able to perform half-duplex 100BASE-X $0=$ PHY not able to perform half-duplex 100BASE-X
12	10 Mbps Full Duplex	RO	Always 0	Always 0	$0=$ PHY not able to perform full-duplex 10BASE-T
11	10 Mbps Half-Duplex	RO	Always 0	Always 0	$0=$ PHY not able to perform half-duplex 10BASE-T
10	100BASE-T2 Full-Duplex	Ro	Always 0	Always 0	This protocol is not available. $0=$ PHY not able to perform full-duplex
9	100BASE-T2 Half-Duplex	RO	Always 0	Always 0	This protocol is not available. $0=$ PHY not able to perform half-duplex
8	Extended Status	RO	Always 1	Always 1	1 = Extended status information in Register 15
7	Reserved	RO	Always 0	Always 0	Reserved
6	MF Preamble Suppression	RO	Always 1	Always 1	1 = PHY accepts management frames with preamble suppressed
5	Fiber AutoNegotiation Complete	RO	0x0	0x0	1 = Auto-Negotiation process complete $0=$ Auto-Negotiation process not complete Bit is not set when link is up due of Fiber Auto-negotiation Bypass or if Auto-negotiation is disabled.
4	Fiber Remote Fault	RO,LH	0x0	0x0	1 = Remote fault condition detected $0=$ Remote fault condition not detected This bit is always 0 in SGMII modes.
3	Auto- Negotiation Ability	Ro	See Descr	See Descr	If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=00$ then this bit is 0 , else this bit is 1 . bit 6,13 $1=$ PHY able to perform Auto-Negotiation $0=$ PHY not able to perform Auto-Negotiation
2	Fiber Link Status	RO,LL	0x0	0x0	This register bit indicates when link was lost since the last read. For the current link status, either read this register back-to-back or read Register 17_1.10 Link Real Time. 1 = Link is up $0=$ Link is down

Table 109: Fiber Status Register (Continued)

Page 1, Register 1

Bits	Field	Mode	HW Rst	SW Rst	Description
1	Reserved	RO,LH	Always 0	Always 0	Reserved
0	Extended Capability	RO	Always 1	Always 1	1 = Extended register capabilities

Table 110: PHY Identifier

Page 1, Register 2

Bits	Field	Mode	HW Rst	SW Rst	Description
15:0	Organizationally Unique Identifier Bit 3:18	RO	0x0141	0x0141	Marvell ${ }^{\circledR}$ OUI is 0×005043 000000000101000001000011 bit 1. \qquad bit 24 Register 2.[15:0] show bits 3 to 18 of the OUI. 0000000101000001 bit 3. \qquad .bit18

Table 111: PHY Identifier
Page 1, Register 3

Bits	Field	Mode	HW Rst	SW Rst	Description
15:10	OUI LSb	RO	Always 000011	Always 000011	Organizationally Unique Identifier bits 19:24 000011 ^.........^ bit 19...bit24
9:4	Model Number	RO	Always 101010	Always 101010	Model Number 101010
3:0	Revision Number	RO	See Descr	See Descr	Rev Number See relevant product Release Notes for details.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 112: Fiber Auto-Negotiation Advertisement Register - 1000BASE-X Mode (Register 16_1.1:0 = 01)

Page 1, Register 4

| Bits | Field | Mode | HW Rst | SW Rst |
| :--- | :--- | :--- | :--- | :--- | Description | Dext Page |
| :--- |
| 15 |

PHY Register Description PHY MDIO Register Description

Table 112: Fiber Auto-Negotiation Advertisement Register - 1000BASE-X Mode (Register 16_1.1:0 = 01) (Continued)

Page 1, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description
6	1000BASE-X Half-Duplex	R/W	See Descr.	Retain	A write to this register bit does not take effect until any one of the following also occurs: Software reset is asserted (Register 0_1.15) Re-start Auto-Negotiation is asserted (Register 0_1.9) Power down (Register 0_1.11) transitions from power down to normal operation Link goes down Upon hardware reset this bit takes on the value of C_ ANEG[0]. 1 = Advertise $0=$ Not advertised
5	1000BASE-X Full-Duplex	R/W	0x1	Retain	A write to this register bit does not take effect until any one of the following also occurs: Software reset is asserted (Register 0_1.15) Re-start Auto-Negotiation is asserted (Register 0_1.9) Power down (Register 0_1.11) transitions from power down to normal operation Link goes down 1 = Advertise $0=$ Not advertised
4:0	Reserved	R/W	0x00	0x00	Reserved

Table 113: Fiber Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16
1.1:0 = 10)

Page 1, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Link Status	RO	0x0	0x0	1 = Link is up on the Copper Interface $0=$ Link is Not up on the Copper Interface
14	Reserved	RO	Always 0	Always 0	Reserved
13	Reserved	RO	Always 0	Always 0	Reserved
12	Duplex Status	RO	0x0	0x0	1 = Interface Resolved to Full-duplex 0 = Interface Resolved to Half-duplex
11:10	Speed[1:0]	RO	0x0	0x0	$\begin{aligned} & 11=\text { Reserved } \\ & 10=\text { Interface speed is } 1000 \mathrm{Mbps} \\ & 01=\text { Interface speed is } 100 \mathrm{Mbps} \\ & 00=\text { Interface speed is } 10 \mathrm{Mbps} \end{aligned}$
9	Transmit Pause	Ro	0x0	0x0	Note that if register 16_1.7 is set to 0 then this bit is always forced to 0 . 1 = Enabled 0 = Disabled

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 113: Fiber Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16 1.1:0 = 10) (Continued)

Page 1, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description
8	Receive Pause	RO	0×0	0×0	Note that if register 16_1.7 is set to 0 then this bit is always forced to 0. $1=$ Enabled $0=$ Disabled
7	Fiber/Copper	RO	0×0	0×0	Note that if register 16_1.7 is set to 0 then this bit is always forced to 0. = Fiber media = Copper media
$6: 0$	Reserved	RO	Always 0000001	Always 0000001	Reserved

Table 114: Fiber Auto-Negotiation Advertisement Register - SGMII (Media mode) (Register 16_1.1:0 = 11)
Page 1, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	Reserved	RO	Always 0×0001	Always 0×0001	Reserved

Table 115: Fiber Link Partner Ability Register - 1000BASE-X Mode (Register 16_1.1:0 = 01) Page 1, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Next Page	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 15 1 = Link partner capable of next page $0=$ Link partner not capable of next page
14	Acknowledge	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Acknowledge Received Code Word Bit 14 1 = Link partner received link code word $0=$ Link partner has not received link code word
13:12	Remote Fault 21 Remote Fault 1	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 13:12 $11=$ Auto-Negotiation Error $10=$ Offline $01=$ Link Failure $00=$ No error, link OK (default)
11:9	Reserved	RO	0x0	0x0	Reserved

PHY Register Description PHY MDIO Register Description

Table 115: Fiber Link Partner Ability Register - 1000BASE-X Mode (Register 16_1.1:0 = 01) (Continued)

Bits	Field	Mode	HW Rst	SW Rst	Description
$8: 7$	Asymetric Pause	RO	0×0	0×0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 8:7 $11=$ Both Symmetric PAUSE and Asymmetric PAUSE toward local device. $10=$ Asymmetric PAUSE toward link partner 01 = Symmetric PAUSE $00=$ No PAUSE
6	1000BASE-X Half-Duplex	RO	0×0	0×0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word bit 6 $1=$ Link partner capable of 1000BASE-X half-duplex. 0 Link partner not capable of 1000BASE-X half-duplex.
5	1000BASE-X Full-Duplex	RO	0×0	0×0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word bit 5 $1=$ Link partner capable of 1000BASE-X full-duplex. $0=$ Link partner not capable of 1000BASE-X full-duplex.
$4: 0$	Reserved	RO	0×00	0×00	Reserved

Table 116: Fiber Link Partner Ability Register - SGMII (System mode) (Register 16_1.1:0 = 10) Page 1, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	RO	0×0	0×0	Reserved
14	Acknowledge	RO	0×0	0×0	Acknowledge Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 14 = Link partner received link code word = Link partner has not received link code word
$13: 0$	Reserved	RO	0×0000	0×0000	Reserved

Table 117: Fiber Link Partner Ability Register - SGMII (Media mode) (Register 16_1.1:0 = 11) Page 1, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
$\mathbf{1 5}$	Link	RO	0×0	0×0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 15 = Copper Link is up on the link partner = Copper Link is not up on the link partner

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 117: Fiber Link Partner Ability Register - SGMII (Media mode) (Register 16_1.1:0 = 11) (Continued)

Bits	Field	Mode	HW Rst	SW Rst	Description
14	Acknowledge	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Acknowledge Received Code Word Bit 14 1 = Link partner received link code word $0=$ Link partner has not received link code word
13	Reserved	RO	0x0	0x0	Reserved
12	Duplex Status	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 12 1 = Copper Interface on the link Partner is capable of Full-duplex $0=$ Copper Interface on the link partner is capable of Half-duplex
11:10	Speed Status	RO	0x0	0x0	Register bits are cleared when link goes down and loaded when a base page is received Received Code Word Bit 11:10 11 = Reserved $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$
9	Transmit Pause Status	RO	0x0	0x0	This bit is non-zero only if the link partner supports enhanced SGMII auto negotiation. Received Code Word Bit 9 1 = Enabled $0=$ Disabled
8	Receive Pause Status	RO	0x0	0x0	This bit is non-zero only if the link partner supports enhanced SGMII auto negotiation. Received Code Word Bit 8 1 = Enabled $0=$ Disabled
7	Fiber/Copper Status	RO	0x0	0x0	This bit is non-zero only if the link partner supports enhanced SGMII auto negotiation. Received Code Word Bit 7 1 = Fiber media 0 = Copper media
6:0	Reserved	RO	0x00	0x00	Reserved

Table 118: Fiber Auto-Negotiation Expansion Register
Page 1, Register 6

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 4$	Reserved	RO	0×000	0×000	Reserved

PHY Register Description PHY MDIO Register Description

Table 118: Fiber Auto-Negotiation Expansion Register (Continued)
Page 1, Register 6

Bits	Field	Mode	HW Rst	SW Rst	Description
3	Link Partner Next page Able	RO	0x0	0x0	SGMII and 100BASE-FX modes this bit is always 0 . In 1000BASE-X mode register 6_1.3 is set when a base page is received and the received link control word has bit 15 set to 1 . The bit is cleared when link goes down. 1 = Link Partner is Next Page able $0=$ Link Partner is not Next Page able
2	Local Next Page Able	RO	Always 1	Always 1	1 = Local Device is Next Page able
1	Page Received	RO, LH	0x0	0x0	Register 6_1.1 is set when a valid page is received. 1 = A New Page has been received $0=\mathrm{A}$ New Page has not been received
0	Link Partner Auto-Negotiation Able	RO	0x0	0x0	This bit is set when there is sync status, the fiber receiver has received 3 non-zero matching valid configuration code groups and Auto-negotiation is enabled in register 0_1.12 1 = Link Partner is Auto-Negotiation able $0=$ Link Partner is not Auto-Negotiation able

Table 119: Fiber Next Page Transmit Register
Page 1, Register 7

Bits	Field	Mode	HW Rst	SW Rst	Description				
15	Next Page	R/W	0×0	0×0	A write to register 7_1 implicitly sets a variable in the Auto-Negotiation state machine indicating that the next page has been loaded. Register 7_1 only has effect in the 1000BASE-X mode. Transmit Code Word Bit 15				
14	Reserved	RO	0×0	0×0	Transmit Code Word Bit 14	$	$	Message Page	R/W
:---	:---								
13	Mode								

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 120: Fiber Link Partner Next Page Register
Page 1, Register 8

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Next Page	RO	0×0	0×0	Register 8_1 only has effect in the 1000BASE-X mode. The register is loaded only when a next page is received from the link partner. It is cleared each time the link goes down. Received Code Word Bit 15
14	Acknowledge	RO	0×0	0×0	Received Code Word Bit 14
13	Message Page	RO	0×0	0×0	Received Code Word Bit 13
12	Acknowledge2	RO	0×0	0×0	Received Code Word Bit 12
11	Toggle	RO	0×0	0×0	Received Code Word Bit 11
$10: 0$	Message/ Unformatted Field	RO	0×000	0×000	Received Code Word Bit 10:0

Table 121: Extended Status Register
Page 1, Register 15

Bits	Field	Mode	HW Rst	SW Rst	Description
15	1000BASE-X Full-Duplex	RO	See Descr	See Descr	If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=00$ then this bit is 0 , else this bit is 1 . $1=1000 B A S E-X$ full duplex capable $0=$ Not 1000BASE-X full duplex capable
14	1000BASE-X Half-Duplex	RO	See Descr	See Descr	If register 16_1.1:0 $(\operatorname{MODE}[1: 0])=00$ then this bit is 0 , else this bit is 1 . $1=1000 B A S E-X$ half duplex capable $0=$ Not 1000BASE-X half duplex capable
13	1000BASE-T Full-Duplex	RO	0x0	0×0	$0=$ Not 1000BASE-T full duplex capable
12	1000BASE-T Half-Duplex	RO	0x0	0×0	$0=$ Not 1000BASE-T half duplex capable
11:0	Reserved	RO	0x000	0x000	Reserved

Table 122: Fiber Specific Control Register 1
Page 1, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description							
$15: 13$	Reserved				Reserved.	$	$	12	SERDES Loopback	R/W	0×0	0×0
:---	:---	:---	:---	:---								
Register 16_1.8 selects the line loopback path. $1=$ Enable loopback from SERDES input to SERDES output $0=$ Normal Operation												

PHY Register Description PHY MDIO Register Description

Table 122: Fiber Specific Control Register 1 (Continued)
Page 1, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
11:10	Reserved				Reserved.
9	Reserved	R/W	0x0	Retain	Reserved
8	SERDES Loopback Type	R/W	0x0	Retain	$0=$ Loopback Through PCS (Tx and Rx can be asynchronous) 1 = Loopback raw 10 bit data (Tx and Rx must be synchronous)
7:6	Reserved				Reserved.
5:4	Reserved	R/W	0x0	Retain	Reserved
3	MAC Interface Power Down	R/W	0x1	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. This bit determines whether MAC interface powers down when Register 0_1.11 is used to power down the device or when the PHY enters the energy detect state. 1 = Always power up 0 = Can power down
2	Reserved	R/W	0x1	Retain	Must set to 1
1:0	MODE[1:0]	RO	See Desc.	See Desc.	These bits reflects the mode as programmed in register of 20_18.2:0 11 = SGMII Media mode $10=$ SGMII System mode $01=1000 B A S E-X$ $00=100 B A S E-F X$

Table 123: Fiber Specific Status Register
Page 1, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
15:14	Speed	RO	0x0	Retain	These status bits are valid only after resolved bit 17_1.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. In 100BASE-FX mode this bit is always 01. $\begin{aligned} & 11=\text { Reserved } \\ & 10=1000 \mathrm{Mbps} \\ & 01=100 \mathrm{Mbps} \\ & 00=10 \mathrm{Mbps} \end{aligned}$
13	Duplex	RO	0x0	Retain	This status bit is valid only after resolved bit 17_1.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. In 100BASE-FX mode this bit follows register 0_1.8. 1 = Full-duplex 0 = Half-duplex
12	Page Received	RO, LH	0x0	0×0	In 100BASE-FX mode this bit is always 0 . 1 = Page received $0=$ Page not received

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 123: Fiber Specific Status Register (Continued)
Page 1, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
11	Speed and Duplex Resolved	RO	0x0	0x0	When Auto-Negotiation is not enabled or in 100BASE-FX mode this bit is always 1. 1 = Resolved $0=$ Not resolved If bit $26 _1.5$ is 1 , then this bit will be 0 .
10	Link (real time)	RO	0×0	0×0	$\begin{aligned} & 1=\text { Link up } \\ & 0=\text { Link down } \end{aligned}$
9:6	Reserved	Ro	Always 00000	Always 00000	Reserved
5	Sync status	RO	0×0	0x0	$\begin{aligned} & 1=\text { Sync } \\ & 0=\text { No Sync } \end{aligned}$
4	Fiber Energy Detect Status	RO	0×1	0×1	1 = No energy detected 0 = Energy Detected
3	Transmit Pause Enabled	Ro	0×0	0×0	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17_1.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. In 100BASE-FX mode this bit is always 0 . 1 = Transmit pause enabled 0 = Transmit pause disable
2	Receive Pause Enabled	RO	0×0	0×0	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17_1.11 = 1 . The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. In 100BASE-FX mode this bit is always 0 . 1 = Receive pause enabled $0=$ Receive pause disabled
1:0	Reserved	RO	Always 00	Always 00	Reserved

Table 124: Fiber Interrupt Enable Register

Page 1, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	RO	Always 0	Always 0	Reserved
14	Speed Changed Interrupt Enable	R/W	0×0	Retain	$1=$ Interrupt enable $0=$ Interrupt disable
13	Duplex Changed Interrupt Enable	R/W	0×0	Retain	$1=$ Interrupt enable $0=$ Interrupt disable
12	Page Received Interrupt Enable	R/W	0×0	Retain	$1=$ Interrupt enable $0=$ Interrupt disable

Table 124: Fiber Interrupt Enable Register (Continued)
Page 1, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
11	Auto-Negotiation Completed Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
10	Link Status Changed Interrupt Enable	R/W	0×0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
9	Symbol Error Interrupt Enable	R/W	0×0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
8	False Carrier Interrupt Enable	R/W	0×0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
7	FIFO Over/Underflow Interrupt Enable	R/W	0×0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
6:5	Reserved	RO	Always 00	Always 00	Reserved
4	Fiber Energy Detect Interrupt Enable	R/W	0×0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
3:0	Reserved	RO	Always 0000	Always 0000	Reserved

Table 125: Fiber Interrupt Status Register
Page 1, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	RO	Always 0	Always 0	Reserved
14	Speed Changed	RO,LH	0×0	0×0	$1=$ Speed changed $0=$ Speed not changed
13	Duplex Changed	RO,LH	0×0	0×0	$1=$ Duplex changed $0=$ Duplex not changed
12	Page Received	RO,LH	0×0	0×0	$1=$ Page received $0=$ Page not received
11	Auto-Negotiation Completed	RO,LH	0×0	0×0	$1=$ Auto-Negotiation completed $0=$ Auto-Negotiation not completed
10	Link Status Changed	RO,LH	0×0	0×0	$1=$ Link status changed $0=$ Link status not changed
9	Symbol Error	RO,LH	0×0	0×0	$1=$ Symbol error $0=$ No symbol error
8	False Carrier	RO,LH	0×0	0×0	$1=$ False carrier $0=$ No false carrier
7	FIFO Over/Underflow	RO,LH	0×0	0×0	$1=$ Over/Underflow Error $0=$ No FIFO Error

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 125: Fiber Interrupt Status Register (Continued)
Page 1, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
$6: 5$	Reserved	RO	Always 00	Always 00	Reserved
4	Fiber Energy Detect Changed	RO,LH	0×0	0×0	$1=$ Energy Detect state changed $0=$ No Energy Detect state change detected
$3: 0$	Reserved	RO	Always 00000	Always 00000	Reserved

Table 126: Fiber Receive Error Counter Register
Page 1, Register 21

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	Receive Error Count	RO, LH	0×0000	Retain	Counter will peg at 0xFFFF and will not roll over. Both False carrier and symbol errors are reported.

Table 127: PRBS Control
Page 1, Register 23

Bits	Field	Mode	HW Rst	SW Rst	Description
15:8	Reserved	R/W	0x00	Retain	Reserved
7	Invert Checker Polarity	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Invert } \\ & 0=\text { Normal } \end{aligned}$
6	Invert Generator Polarity	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Invert } \\ & 0=\text { Normal } \end{aligned}$
5	PRBS Lock	R/W	0×0	Retain	1 = Do not start counting until PRBS locks first 0 = Counter Free Runs
4	Clear Counter	R/W, SC	0x0	0x0	$\begin{aligned} & 1=\text { Clear Counter } \\ & 0=\text { Normal } \end{aligned}$
3:2	Pattern Select	R/W	0x0	Retain	$\begin{aligned} & 11=\text { Generate } 1010101010 \ldots \text { pattern } \\ & 10=\text { PRBS } 31, x 31+x 28+1=0 \\ & 01=\text { PRBS } 23, x 23+x 18+1=0 \\ & 00=\text { PRBS } 7, x 7+x 6+1=0 \end{aligned}$
1	PRBS Checker Enable	R/W	0×0	0x0	$\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$
0	PRBS Generator Enable	R/W	0x0	0x0	$\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$

PHY Register Description PHY MDIO Register Description

Table 128: PRBS Error Counter LSB
Page 1, Register 24

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	PRBS Error Count LSB	RO	0×0000	Retain	A read to this register freezes register 25_1. Cleared only when register 23_1.4 is set to 1.

Table 129: PRBS Error Counter MSB

Page 1, Register 25

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	PRBS Error Count MSB	RO	0×0000	Retain	This register does not update unless register 24_1 is read first. Cleared only when register 23_1.4 is set to 1.

Table 130: Fiber Specific Control Register 2
 Page 1, Register 26

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	R/W	0x0	Retain	Reserved
14	1000BASE-X Noise Filtering	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$
13	100BASE-FX Noise Filtering	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$
12:10	Reserved	R/W	0x0	Update	Reserved
9	FEFI Enable	R/W	0x0	Retain	$\begin{aligned} & \text { 100BASE-FX FEFI } \\ & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$
8:7	Reserved	R/W	0x0	Retain	Reserved
6	Serial Interface Auto- Negotiation bypass enable	R/W	0x1	Update	Changes to this bit are disruptive to the normal operation; hence, any changes to these registers must be followed by software reset to take effect. 1 = Bypass Allowed $0=$ No Bypass Allowed
5	Serial Interface AutoNegotiation bypass status	RO	0x0	0x0	1 = Serial interface link came up because bypass mode timer timed out and fiber Auto-Negotiation was bypassed. $0=$ Serial interface link came up because regular fiber Auto-Negotiation completed. If this bit is 1 , then bit 17_1.11 will be 0 .
4	Reserved	R/W	0x0	Update	Reserved
3	Fiber Transmitter Disable	R/W	0x0	Retain	1 = Transmitter Disable 0 = Transmitter Enable

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 130: Fiber Specific Control Register 2 (Continued)
Page 1, Register 26

Bits	Field	Mode	HW Rst	SW Rst	Description
2:0	SGMII/Fiber Output Amplitude	R/W	0x2	Retain	Differential voltage peak measured. See AC/DC section for valid VOD values. $\begin{aligned} & 111=700 \mathrm{mV} \\ & 110=602 \mathrm{mV} \\ & 101=504 \mathrm{mV} \\ & 100=406 \mathrm{mV} \\ & 011=308 \mathrm{mV} \\ & 010=210 \mathrm{mV} \\ & 001=112 \mathrm{mV} \\ & 000=14 \mathrm{mV} \end{aligned}$

Table 131: MAC Specific Control Register 1
Page 2, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 4$	Reserved	R/W	$0 \times E 00$	Retain	Reserved
3	MAC Interface Power Down	R/W	0×1	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. This bit determines whether the MAC Interface powers down when Register 0_0.11,16_0.2 are used to power down the device or when the PHY enters the energy detect state.
$2: 0$	Reserved	R/W	0×0	Retain	= Always power up 0 Can power down
Reserved					

Table 132: MAC Specific Control Register 2
Page 2, Register 21

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	R/W	0×0	0×0	Reserved
14	Copper Line Loopback	R/W	0×0	0×0	$1=$ Enable Loopback of MDI to MDI $0=$ Normal Operation
$13: 3$	Reserved	R/W	0×208	Retain	Reserved.

PHY Register Description PHY MDIO Register Description

Table 132: MAC Specific Control Register 2 (Continued)
Page 2, Register 21

Bits	Field	Mode	HW Rst	SW Rst	Description
2:0	Default MAC interface speed	R/W	0x6	Update	Changes to these bits are disruptive to the normal operation; therefore, any changes to these registers must be followed by software reset to take effect. MAC Interface Speed during Link down while Auto-Negotiation is enabled. Bit Speed 111 = Reserved $110=1000 \mathrm{Mbps}$ $101=100 \mathrm{Mbps}$ $100=10 \mathrm{Mbps}$ OXX = Reserved

Table 133: LED[3:0] Function Control Register
Page 3, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
15:12	LED[3] Control	R/W	0x1	Retain	If $16 _3.11: 10$ is set to 11 then 16_3.15:12 has no effect $0000=$ On - Fiber Link, Off - Else 0001 = On - Link, Blink - Activity, Off - No Link $0010=$ On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity $0100=$ Blink - Activity, Off - No Activity $0101=$ Reserved $0110=$ On - 10 Mbps or 1000 Mbps Master, Off - Else $0111=$ On - Full-duplex, Off - Half-duplex $1000=$ Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 11xx = Reserved
11:8	LED[2] Control	R/W	0x7	Retain	```0000 = On - Link, Off - No Link 0001 = On - Link, Blink - Activity, Off - No Link \(0010=\) Reserved 0011 = On - Activity, Off - No Activity \(0100=\) Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit \(0110=\) On - 10/1000 Mbps Link, Off - Else 0111 = On - 10 Mbps Link, Off - Else \(1000=\) Force Off 1001 = Force On \(1010=\) Force Hi-Z 1011 = Force Blink \(1100=\) MODE 1 (Dual LED mode) 1101 = MODE 2 (Dual LED mode) 1110 = MODE 3 (Dual LED mode) 1111 = MODE 4 (Dual LED mode)```

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 133: LED[3:0] Function Control Register (Continued)
Page 3, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
7:4	LED[1] Control	R/W	0x7	Retain	If $16 _3.3: 2$ is set to 11 then $16 _3.7: 4$ has no effect $0000=$ On - Copper Link, Off - Else 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity $0100=$ Blink - Activity, Off - No Activity 0101 = On - 100 Mbps Link or Fiber Link, Off - Else $0110=$ On - 100/1000 Mbps Link, Off - Else $0111=$ On - 100 Mbps Link, Off - Else $1000=$ Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 11xx = Reserved
3:0	LED[0] Control	R/W	0x7	Retain	```\(0000=\) On - Link, Off - No Link 0001 = On - Link, Blink - Activity, Off - No Link \(0010=3\) blinks -1000 Mbps 2 blinks - 100 Mbps 1 blink - 10 Mbps 0 blink - No Link 0011 = On - Activity, Off - No Activity \(0100=\) Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit \(0110=\) On - Copper Link, Off - Else 0111 = On - 1000 Mbps Link, Off - Else \(1000=\) Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 1100 = MODE 1 (Dual LED mode) 1101 = MODE 2 (Dual LED mode) \(1110=\) MODE 3 (Dual LED mode) 1111 = MODE 4 (Dual LED mode)```

Table 134: LED[3:0] Polarity Control Register
Page 3, Register 17
$\left.\begin{array}{|ll|l|l|l|l|}\hline \text { Bits } & \text { Field } & \text { Mode } & \text { HW Rst } & \text { SW Rst } & \text { Description } \\ \hline 15: 12 & \begin{array}{l}\text { LED[5], LED[3], } \\ \text { LED[1] mix } \\ \text { percentage }\end{array} & \text { R/W } & 0 \times 8 & \text { Retain } & \begin{array}{l}\text { When using 2 terminal bi-color LEDs the mixing } \\ \text { percentage should not be set greater than } 50 \% . \\ 0000=0 \%, 0001=12.5 \%, \ldots, 0111=87.5 \%, 1000=100 \% \\ 1001 \text { to } 1111=\text { Reserved }\end{array} \\ \hline 11: 8 & \begin{array}{l}\text { LED[4], LED[2], } \\ \text { LED[0] mix } \\ \text { percentage }\end{array} & \text { R/W } & 0 \times 8 & \text { Retain } & \begin{array}{l}\text { When using 2 terminal bi-color LED } \\ \text { percentage should not be set greater than } 50 \% .\end{array} \\ 0000=0 \%, 0001=12.5 \%, \ldots, 0111=87.5 \%, 1000=100 \% \\ 1001 \text { to } 1111=\text { Reserved }\end{array}\right]$

PHY Register Description PHY MDIO Register Description

Table 134: LED[3:0] Polarity Control Register (Continued)
Page 3, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
7:6	LED[3] Polarity	R/W	0x0	Retain	11 = On - drive LED[3] high, Off - tristate LED[3] $10=$ On - drive LED[3] low, Off - tristate LED[3] 01 = On - drive LED[3] high, Off - drive LED[3] low $00=$ On - drive LED[3] low, Off - drive LED[3] high
5:4	LED[2] Polarity	R/W	0x0	Retain	11 = On - drive LED[2] high, Off - tristate LED[2] $10=$ On - drive LED[2] low, Off - tristate LED[2] 01 = On - drive LED[2] high, Off - drive LED[2] low $00=$ On - drive LED[2] low, Off - drive LED[2] high
3:2	LED[1] Polarity	R/W	0x0	Retain	11 = On - drive LED[1] high, Off - tristate LED[1] $10=$ On - drive LED[1] low, Off - tristate LED[1] 01 = On - drive LED[1] high, Off - drive LED[1] low $00=$ On - drive LED[1] low, Off - drive LED[1] high
1:0	LED[0] Polarity	R/W	0×0	Retain	11 = On - drive LED[0] high, Off - tristate LED[0] $10=$ On - drive LED[0] low, Off - tristate LED[0] 01 = On - drive LED[0] high, Off - drive LED[0] low $00=$ On - drive LED[0] low, Off - drive LED[0] high

Table 135: LED Timer Control Register
Page 3, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Force INT	R/W	0x0	Retain	1 = Interrupt pin forced to be asserted $0=$ Normal Operation
14:12	Pulse stretch duration	R/W	0x4	Retain	$\begin{aligned} & 111=1.3 \mathrm{~s} \text { to } 2.7 \mathrm{~s} \\ & 110=670 \mathrm{~ms} \text { to } 1.3 \mathrm{~s} \\ & 101=340 \mathrm{~ms} \text { to } 670 \mathrm{~ms} \\ & 100=170 \mathrm{~ms} \text { to } 340 \mathrm{~ms} \\ & 011=84 \mathrm{~ms} \text { to } 170 \mathrm{~ms} \\ & 010=42 \mathrm{~ms} \text { to } 84 \mathrm{~ms} \\ & 001=21 \mathrm{~ms} \text { to } 42 \mathrm{~ms} \\ & 000=\text { no pulse stretching } \end{aligned}$
11	Reserved	R/W	0x1	Retain	Reserved
10:8	Blink Rate	R/W	0×3	Retain	101 to 111 = Reserved $100=670 \mathrm{~ms}$ $011=340 \mathrm{~ms}$ $010=170 \mathrm{~ms}$ $001=84 \mathrm{~ms}$ $000=42 \mathrm{~ms}$
7:4	Reserved	R/W	0x0	Retain	0000
3:2	Speed Off Pulse Period	R/W	0x1	Retain	$\begin{aligned} & 11=670 \mathrm{~ms} \\ & 10=340 \mathrm{~ms} \\ & 01=170 \mathrm{~ms} \\ & 00=84 \mathrm{~ms} \end{aligned}$

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 135: LED Timer Control Register (Continued)
Page 3, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
$1: 0$	Speed On Pulse Period	R/W	0×1	Retain	$11=670 \mathrm{~ms}$ $10=340 \mathrm{~ms}$ $01=170 \mathrm{~ms}$

Table 136: LED[5:4] Function Control and Polarity Register
Page 3, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
15	LED[3] function pin mapping	R/W	0x0	Retain	1 = Map LED[5] function to LED[3] pin 0 = Map LED[3] function to LED[3] pin
14	LED[2] function pin mapping	R/W	0x0	Retain	1 = Map LED[4] function to LED[2] pin 0 = Map LED[2] function to LED[2] pin
13:12	Reserved	R/W	0x0	Retain	Reserved
11:10	LED[5] Polarity	R/W	0x0	Retain	11 = On - drive LED[5] high, Off - tristate LED[5] 10 = On - drive LED[5] low, Off - tristate LED[5] 01 = On - drive LED[5] high, Off - drive LED[5] low 00 = On - drive LED[5] low, Off - drive LED[5] high
9:8	LED[4] Polarity	R/W	0x0	Retain	11 = On - drive LED[4] high, Off - tristate LED[4] $10=$ On - drive LED[4] low, Off - tristate LED[4] 01 = On - drive LED[4] high, Off - drive LED[4] low $00=$ On - drive LED[4] low, Off - drive LED[4] high
7:4	LED[5] Control	R/W	0x7	Retain	If 19_3.3:2 is set to 11 then 19_3.7:4 has no effect $0000=$ On - Receive, Off - No Receive 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity $0100=$ Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit $0110=$ On - Full-duplex, Off - Half-duplex 0111 = On - Full-duplex, Blink - Collision Off - Half-duplex $1000=$ Force Off 1001 = Force On 1010 = Force Hi-Z 1011 = Force Blink 11xx = Reserved

PHY Register Description PHY MDIO Register Description

Table 136: LED[5:4] Function Control and Polarity Register (Continued)
Page 3, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
3:0	LED[4] Control	R/W	0x3	Retain	$0000=$ On - Receive, Off - No Receive 0001 = On - Link, Blink - Activity, Off - No Link 0010 = On - Link, Blink - Receive, Off - No Link 0011 = On - Activity, Off - No Activity 0100 = Blink - Activity, Off - No Activity 0101 = On - Transmit, Off - No Transmit $0110=$ On - Full-duplex, Off - Half-duplex 0111 = On - Full-duplex, Blink - Collision Off - Half-duplex $1000=$ Force Off 1001 = Force On $1010=$ Force Hi-Z 1011 = Force Blink $1100=$ MODE 1 (Dual LED mode) 1101 = MODE 2 (Dual LED mode) 1110 = MODE 3 (Dual LED mode) 1111 = MODE 4 (Dual LED mode)

Table 137: QSGMII Control Register
Page 4, Register 0

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reset	R/W, SC	0x0	0x0	QSGMII Port Software Reset. Affects bank 4. Writing a 1 to this bit causes the PHY state machines to be reset. When the reset operation is done, this bit is cleared to 0 automatically. The reset occurs immediately. 1 = PHY reset $0=$ Normal operation
14	Loopback	R/W	0x0	0x0	When loopback is activated, the transmitter data presented on TXD of the internal bus is looped back to RXD of the internal bus. Link is broken when loopback is enabled. 1 = Enable Loopback 0 = Disable Loopback
13	Speed Select (LSB)	RO, R/W	0x0	See Descr/ Retain	If register 16_4.0 $=0$ then this bit follows the network speed. If register 16_4.0 = 1 then this bit is R/W. bit 6,13 $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$
12	Auto-Negotiation Enable	R/W	See Descr	Retain	If the value of this bit is changed, the link will be broken and Auto-Negotiation Restarted When this bit gets set/reset, Auto-negotiation is restarted (bit 0_4.9 is set to 1). On hardware reset this bit takes on the value of S_ANEG 1 = Enable Auto-Negotiation Process 0 = Disable Auto-Negotiation Process

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 137: QSGMII Control Register (Continued)
Page 4, Register 0

Bits	Field	Mode	HW Rst	SW Rst	Description
11	Power Down	R/W	See Descr	Retain	On hardware reset this register takes on the value of 1 if PDOWN = 1 and MODE[2:0] is 101 else takes on a value of 0. 1 = Power down $0=$ Normal operation
10	Reserved	R/W	0x0	Retain	Reserved
9	Restart Fiber Auto-Negotiation	R/W, SC	0x0	SC	Auto-Negotiation automatically restarts after hardware, software reset (0_4.15) or change in auto-negotiation enable (0_4.12) regardless of whether or not the restart bit ($0 _4.9$) is set. The bit is set when Auto-negotiation is Enabled or Disabled in 0_4.12 1 = Restart Auto-Negotiation Process $0=$ Normal operation
8	Reserved	RO	0x1	0x1	Reserved
7	Reserved	RO	0x0	0x0	Reserved
6	Speed Selection (MSB)	RO, R/W	0x1	See Descr/ Retain	If register 16_4.0 $=0$ then this bit follows the network speed. If register 16_4.0 = 1 then this bit is R/W. bit 6,13 $\begin{aligned} & 10=1000 \mathrm{Mbps} \\ & 01=100 \mathrm{Mbps} \end{aligned}$
5:0	Reserved	RO	0x00	0x00	Reserved

Table 138: QSGMII Status Register
Page 4, Register 1

Bits	Field	Mode	HW Rst	SW Rst	Description
15:6	Reserved	RO	0x000	0x000	Reserved
5	Fiber AutoNegotiation Complete	RO	0x0	0x0	1 = Auto-Negotiation process complete $0=$ Auto-Negotiation process not complete Bit is not set when link is up due of Fiber Auto-negotiation Bypass or if Auto-negotiation is disabled.
4	Reserved	RO	0x0	0x0	Reserved
3	Reserved	RO	0x0	0x0	Reserved
2	Fiber Link Status	RO,LL	0x0	0x0	This register bit indicates when link was lost since the last read. For the current link status, either read this register back-to-back or read Register 17_4.10 Link Real Time. 1 = Link is up $0=$ Link is down
1	Reserved	RO	0x0	0x0	Reserved
0	Reserved	RO	0x0	0x0	Reserved

Table 139: QSGMII Auto-Negotiation Advertisement Register - SGMII (System mode) (Register 16 $4.0=0$)
Page 4, Register 4

Bits	Field	Mode	HW Rst	SW Rst	Description							
15	Link Status	RO	0×0	0×0	$0=$ Link is Not up on the Copper Interface $1=$ Link is up on the Copper Interface							
14	Reserved	RO	0×0	0×0	Reserved	$	$		RO	0×0	0×0	Reserved
:---	:---	:---	:---	:---								

Table 140: QSGMII Link Partner Ability Register - SGMII (System mode) Mode (Register 16_4.0 = 0) Page 4, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	RO	0×0	0×0	Reserved
14	Acknowledge	RO	0×0	0×0	Acknowledge Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 14 1 $=$ Link partner received link code word = Link partner has not received link code word
$13: 0$	Reserved	RO	0×0000	0×0000	Reserved

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R VELL® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 141: QSGMII Link Partner Ability Register - SGMII (Media mode) Mode (Register 16_4.0 = 1) Page 4, Register 5

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Link	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 15 1 = Copper Link is up on the link partner $0=$ Copper Link is not up on the link partner
14	Acknowledge	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Acknowledge Received Code Word Bit 14 1 = Link partner received link code word $0=$ Link partner has not received link code word
13	Reserved	RO	0x0	0x0	Reserved
12	Duplex Status	RO	0x0	0x0	Register bit is cleared when link goes down and loaded when a base page is received Received Code Word Bit 12 1 = Copper Interface on the link Partner is capable of Full-duplex $0=$ Copper Interface on the link partner is capable of Half-duplex
11:10	Speed Status	RO	0x0	0x0	Register bits are cleared when link goes down and loaded when a base page is received Received Code Word Bit 11:10 11 = Reserved $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$
9	Transmit Pause Status	RO	0x0	0x0	This bit is non-zero only if the link partner supports enhanced SGMII auto negotiation. Received Code Word Bit 9 1 = Enabled 0 = Disabled
8	Receive Pause Status	RO	0x0	0x0	This bit is non-zero only if the link partner supports enhanced SGMII auto negotiation. Received Code Word Bit 8 1 = Enabled $0=$ Disabled
7	Fiber/Copper Status	RO	0x0	0x0	This bit is non-zero only if the link partner supports enhanced SGMII auto negotiation. Received Code Word Bit 7 1 = Fiber media 0 = Copper media
6:0	Reserved	RO	0x00	0x00	Reserved

PHY Register Description PHY MDIO Register Description

Table 142: QSGMII Auto-Negotiation Expansion Register
Page 4, Register 6

Bits	Field	Mode	HW Rst	SW Rst	Description
15:4	Reserved	RO	0x000	0x000	Reserved
3	Link Partner Next page Able	RO	0x0	0x0	1 = Link Partner is Next Page able $0=$ Link Partner is not Next Page able
2	Local Next Page Able	RO	0×0	0x0	1 = Local Device is Next Page able
1	Page Received	RO, LH	0×0	0x0	Register 6_4.1 is set when a valid page is received. 1 = A New Page has been received $0=$ A New Page has not been received
0	Link Partner Auto-Negotiation Able	RO	0x0	0x0	This bit is set when there is sync status, the fiber receiver has received 3 non-zero matching valid configuration code groups and Auto-negotiation is enabled in register 0_4.12 1 = Link Partner is Auto-Negotiation able $0=$ Link Partner is not Auto-Negotiation able

Table 143: QSGMII Specific Control Register 1
Page 4, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
15:13	Reserved				Reserved.
12	QSGMII Loopback	R/W	0x0	0x0	1 = Enable loopback from QSGMII input to QSGMII output $0=$ Normal operation
11	Reserved	R/W	0x0	Retain	Reserved
10	Force Link Good	R/W	0x0	Retain	If link is forced to be good, the link state machine is bypassed and the link is always up. 1 = Force link good $0=$ Normal operation
9	Serial Interface AutoNegotiation bypass enable	R/W	0x1	Update	Changes to this bit are disruptive to the normal operation; hence, any changes to these registers must be followed by software reset to take effect. 1 = Bypass Allowed $0=$ No Bypass Allowed
8	Reserved	R/W	0×0	Retain	Reserved
7:6	Reserved				Reserved.
5:2	Reserved	R/W	0x1	Retain	Reserved
1	Reserved				Reserved.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 143: QSGMII Specific Control Register 1 (Continued)
Page 4, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
0	Mode	R/W	See Desc.	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. On hardware reset the register default to 1 if MODE[2:0] is 101, else the register defaults to 0. $0=$ SGMII System mode $1=$ SGMII Media mode

Table 144: QSGMII Specific Status Register
Page 4, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
15:14	Speed	RO	0x0	Retain	These status bits are valid only after resolved bit 17_4.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. 11 = Reserved $10=1000 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$
13	Duplex	RO	0x0	Retain	This status bit is valid only after resolved bit 17_4.11=1. The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. 1 = Full-duplex 0 = Half-duplex
12	Page Received	RO, LH	0x0	0×0	1 = Page received $0=$ Page not received
11	Speed and Duplex Resolved	RO	0x0	0×0	When Auto-Negotiation is not enabled this bit is always 1. 1 = Resolved $0=$ Not resolved
10	Link (real time)	RO	0x0	0×0	$\begin{aligned} & 1=\text { Link up } \\ & 0=\text { Link down } \end{aligned}$
9	Serial Interface AutoNegotiation bypass status	RO	0x0	0×0	1 = Serial interface link came up because bypass mode timer timed out and fiber Auto-Negotiation was bypassed. $0=$ Serial interface link came up because regular fiber Auto-Negotiation completed. If this bit is 1 , then bit 17_ 4.11 will be 0 .
8:6	Reserved	RO	0x0	0×0	Reserved
5	Sync status	RO	0x0	0×0	$\begin{aligned} & 1=\text { Sync } \\ & 0=\text { No Sync } \end{aligned}$
4	Reserved	RO	0x0	0×0	Reserved

PHY Register Description PHY MDIO Register Description

Table 144: QSGMII Specific Status Register (Continued)
Page 4, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
3	Transmit Pause Enabled	RO	0×0	0×0	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17_4.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. In 100BASE-FX mode this bit is always 0. $1=$ Transmit pause enabled 0 = Transmit pause disable
2	Receive Pause Enabled	RO	0×0	0×0	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17_4.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-Negotiation is disabled. In 100BASE-FX mode this bit is always 0. $1=$ Receive pause enabled 0 = Receive pause disabled
$1: 0$	Reserved	RO	0×0	0×0	Reserved

Table 145: QSGMII Interrupt Enable Register

Page 4, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	R/W	0x0	Retain	Reserved
14	Speed Changed Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
13	Duplex Changed Interrupt Enable	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Interrupt enable } \\ & 0=\text { Interrupt disable } \end{aligned}$
12	Page Received Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
11	Auto-Negotiation Completed Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable 0 = Interrupt disable
10	Link Status Changed Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
9	Symbol Error Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
8	False Carrier Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
7	FIFO Over/Underflow Interrupt Enable	R/W	0x0	Retain	1 = Interrupt enable $0=$ Interrupt disable
6:0	Reserved	R/W	0x00	Retain	Reserved

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 146: QSGMII Interrupt Status Register
Page 4, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved	RO	0×0	0×0	Reserved
14	Speed Changed	RO,LH	0×0	0×0	$1=$ Speed changed $0=$ Speed not changed
13	Duplex Changed	RO,LH	0×0	0×0	$1=$ Duplex changed $0=$ Duplex not changed
12	Page Received	RO,LH	0×0	0×0	$1=$ Page received $0=$ Page not received
11	Auto-Negotiation Completed	RO,LH	0×0	0×0	$1=$ Auto-Negotiation completed $0=$ Auto-Negotiation not completed
10	Link Status Changed	RO,LH	0×0	0×0	$1=$ Link status changed $0=$ Link status not changed
9	Symbol Error	RO,LH	0×0	0×0	$1=$ Symbol error $0=$ No symbol error
8	False Carrier	RO,LH	0×0	0×0	$1=$ False carrier $0=$ No false carrier
7	FIFO	RO,LH	0×0	0×0	$1=$ Over/Underflow Error $0=$ No FIFO Error
$6: 0$	Reserved	RO	0×0	0×0	Reserved

Table 147: QSGMII Receive Error Counter Register Page 4, Register 21

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	Receive Error Count	RO, LH	0×0000	Retain	Counter will peg at 0xFFFF and will not roll over. Both False carrier and symbol errors are reported.

Table 148: PRBS Control
Page 4, Register 23

Bits	Field	Mode	HW Rst	SW Rst	Description
15:8	Reserved	R/W	0x00	Retain	Reserved
7	Invert Checker Polarity	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Normal } \\ & 0=\text { Invert } \end{aligned}$
6	Invert Generator Polarity	R/W	0x0	Retain	$\begin{aligned} & 1=\text { Normal } \\ & 0=\text { Invert } \end{aligned}$
5	PRBS Lock	R/W	0x0	Retain	0 = Counter Free Runs $1=$ Do not start counting until PRBS locks first

Table 148: PRBS Control (Continued)
Page 4, Register 23

Bits	Field	Mode	HW Rst	SW Rst	Description
4	Clear Counter	R/W, SC	0×0	0×0	$0=$ Normal $1=$ Clear Counter
$3: 2$	Pattern Select	R/W	0×0	Retain	$11=$ Generate $1010101010 \ldots$ pattern $10=$ PRBS $31, x^{31}+x^{28}+1=0$ $01=$ PRBS $23, x^{23}+x^{18}+1=0$ $00=$ PRBS $7, x^{7}+x^{6}+1=0$
1	PRBS Checker Enable	R/W	0×0	0×0	$1=$ Enable $0=$ Disable
0	PRBS Generator Enable	R/W	0×0	0×0	$1=$ Enable $0=$ Disable

Table 149: PRBS Error Counter LSB
Page 4, Register 24

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	PRBS Error Count LSB	RO	0×0000	Retain	A read to this register freezes register 25_4. Cleared only when register 23_4.4 is set to 1.

Table 150: PRBS Error Counter MSB
Page 4, Register 25

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 0$	PRBS Error Count MSB	RO	0×0000	Retain	This register does not update unless register 24_4 is read first. Cleared only when register 23_4.4 is set to 1.

Table 151: QSGMII Global Control Register 1
Page 4, Register 26

Bits	Field	Mode	HW Rst	SW Rst	Description
15	QSGMII Global Reset	R/W, SC	0x0	SC	QSGMII Global Software Reset. Writing a 1 to this bit cause all four ports as well as the common circuit to be reset. When the reset operation is done, this bit is cleared to 0 automatically. The reset occurs immediately. $1=$ PHY reset $0=$ Normal operation
14	QSGMII Reference Clock Source Select	R/W	0x0	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. = Reserved = Use XTAL_IN/REF_CLKP/N as source

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 151: QSGMII Global Control Register 1 (Continued)
Page 4, Register 26

Bits	Field	Mode	HW Rst	SW Rst	Description
13	Invert Q_INP/N Polarity	R/W	0×1	Retain	$1=$ Normal $0=$ Invert
12	Invert Q_OUTP/N Polarity	R/W	0×1	Retain	$1=$ Normal $0=$ Invert
11	QSGMII Global Power down	R/W	See Desc.	Retain	$1=$ Power down all four ports as well as the common circuit $0=$ Power up common circuit. Per port power state is a function of register 0_4.11. On hardware reset this register takes on the value of 1 if MODE[2:0] is 001 else takes on a value of 0.
10	Reserved	R/W	0×0	Update	Reserved
9	Raw 10-bit Line Loopback	R/W	0×0	0×0	$1=$ Loopback raw 10 bit data from QSGMII input to QSGMII output (Tx and Rx must be synchronous) $0=$ Normal
$8: 4$	Reserved	R/W	0×0	Retain	Reserved.
3	Enable Running Disparity Checking	R/W	0×0	Retain	$1=$ Output error symbol if running disparity is incorrect. $0=$ Ignore running disparity when determining whether symbol error occurred.
$2: 0$	Reserved	R/W	0×2	Retain	Reserved

Table 152: QSGMII Global Control Register 2
Page 4, Register 27

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Chip Hardware Reset	R/W, SC	0x0	0x0	Writing a 1 to this bit cause the entire chip to hard reset 1 = PHY reset $0=$ Normal operation
14	Internal QSGMII Loopback	R/W	0x0	Retain	1 = Loopback QSGMII data on internal bus and power down 5.0G SERDES $0=$ Pass data through 5.0G SERDES
13:9	Reserved	R/W	0x3F	Retain	Reserved
8:7	Reserved	R/W	0x3	Retain	Reserved.
1	QSGMII Output Crossover 2, 3	R/W	0x0	Retain	1 = Port 2 to QSGMII Lane 3, Port 3 to QSGMII Lane 2 $0=$ Port 2 to QSGMII Lane 2, Port 3 to QSGMII Lane 3
0	QSGMII Output Crossover 0, 1	R/W	0x0	Retain	1 = Port 0 to QSGMII Lane 1, Port 1 to QSGMII Lane 0 $0=$ Port 0 to QSGMII Lane 0, Port 1 to QSGMII Lane 1

PHY Register Description PHY MDIO Register Description

Table 153: 1000BASE-T Pair Skew Register
Page 5, Register 20

Bits	Field	Mode	HW Rst	SW Rst	Description
15:12	Pair 7,8 (MDI[3] \pm)	RO	0x0	0x0	Skew $=$ bit value $\times 8$ ns. Value is correct to within ± 8 ns. The contents of 20_5.15:0 are valid only if Register 21_5.6 = 1
11:8	Pair 4,5 (MDI[2] \pm)	RO	0x0	0x0	Skew $=$ bit value $\times 8$ ns. Value is correct to within ± 8 ns.
7:4	Pair 3,6 (MDI[1] \pm)	RO	0x0	0x0	Skew $=$ bit value $\times 8 \mathrm{~ns}$. Value is correct to within $\pm 8 \mathrm{~ns}$.
3:0	Pair 1,2 (MDI[0] \pm)	RO	0x0	0x0	Skew $=$ bit value $\times 8$ ns. Value is correct to within $\pm 8 \mathrm{~ns}$.

Table 154: 1000BASE-T Pair Swap and Polarity
Page 5, Register 21

Bits	Field	Mode	HW Rst	SW Rst	Description
15:7	Reserved	RO	0x000	0x000	Reserved
6	Register 20_5 and 21_5 valid	RO	0x0	0x0	The contents of 21_5.5:0 and 20_5.15:0 are valid only if Register 21_5.6 = 1 1= Valid $0=$ Invalid
5	C, D Crossover	RO	0x0	0x0	1 = Channel C received on MDI[2] \pm Channel D received on MDI[3] \pm $0=$ Channel D received on MDI[2] \pm Channel C received on MDI[3] \pm
4	A, B Crossover	RO	0x0	0x0	1 = Channel A received on MDI[0] \pm Channel B received on MDI[1] \pm $0=$ Channel B received on MDI[0] \pm Channel A received on MDI[1] \pm
3	Pair 7,8 (MDI[3] \pm) Polarity	Ro	0x0	0x0	1 = Negative $0=$ Positive
2	Pair 4,5 (MDI[2] \pm) Polarity	Ro	0x0	0x0	1 = Negative $0=$ Positive
1	Pair 3,6 (MDI[1] \pm) Polarity	RO	0x0	0x0	$\begin{aligned} & 1=\text { Negative } \\ & 0=\text { Positive } \end{aligned}$
0	Pair 1,2 (MDI[0] \pm) Polarity	Ro	0x0	0x0	1 = Negative 0 = Positive

Table 155: Copper Port Packet Generation
Page 6, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 8$	Packet Burst	R/W	0×00	Retain	$0 \times 00=$ Continuous 0×01 to 0xFF = Burst 1 to 255 packets

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 155: Copper Port Packet Generation (Continued)
Page 6, Register 16

| Bits | Field | Mode | HW Rst | SW Rst |
| :--- | :--- | :--- | :--- | :--- | Description | Dacket Generator |
| :--- |
| Transmit
 Trigger/Status |

Table 156: Copper Port CRC Counters
Page 6, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 8$	Packet Count	RO	0×00	Retain	0x00 $=$ No packets received 0xFF $=256$ packets received (max count). Bit $16 _6.4$ must be set to 1 in order for register to be valid.
$7: 0$	CRC Error Count	RO	0×00	Retain	0x00=NoCRCerrorsdetectedinthepacketsreceived. $0 \times F F=256$ CRC errors detected in the packets received (max count). Bit $16 _6.4$ must be set to 1 in order for register to be valid.

Table 157: Checker Control

Page 6, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
15:5	Reserved	R/W	0x000	Retain	Reserved
4	CRC Counters Reset	R/W, SC	0x0	0x0	Writing ' 1 ' to this bit clears the Packet/CRC Counters Register (Reg 17_6). After writing ' 1 ', this bit self-clears to '0' 1 = Resets/Clears the Packet/CRC Counters Register
3	Enable Stub Test	R/W	0x0	Retain	1 = Enable stub test $0=$ Normal Operation
2:0	Reserved	R/W	0x0	Retain	Reserved

Table 158: Copper Port Packet Generator IPG Control
Page 6, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 8$	Reserved	R/W	0×00	Retain	Reserved
$7: 0$	IPG Length	R/W	$0 \times B$	Retain	These bits define the length of inter-packet-gap (IPG) between packets sent by the packet generator. The IPG length is the programmed value +1. Unit is in number of bytes.

Table 159: Misc Test
Page 6, Register 26

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reserved				Reserved.
$14: 13$	Reserved	R/W	0×0	Retain	Reserved
$12: 8$	Temperature Threshold	R/W	0×19	Retain	Temperature in $C=5 \times 26 _6.4: 0-25$ i.e. for 100 C the value is 11001
7	Temperature Sensor Interrupt Enable	R/W	0×0	Retain	$1=$ Interrupt Enable $0=$ Interrupt Disable
6	Temperature Sensor Interrupt	RO, LH	0×0	0×0	$1=$ Temperature Reached Threshold $0=$ Temperature Below Threshold
5	Reserved	R/W	$0 x 0$	Retain	Reserved
$4: 0$	Temperature Sensor (5-bit)	RO	xxxxx	xxxxx	Temperature in C $=5 \times 26 _6.4: 0-25$ i.e. for $100 C$ the value is 11001

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

Table 160: Packet Generation

Page 18, Register 16

Bits	Field	Mode	HW Rst	SW Rst	Description
15:8	Packet Burst	R/W	0x00	Retain	$0 \times 00=$ Continuous $0 x 01$ to $0 x F F=$ Burst 1 to 255 packets
7:5	Enable Packet Generator	R/W, SC	0x0	Retain	$\begin{aligned} & 000=\text { Normal Operation } \\ & 010=\text { Generate Packets on Copper Interface } \\ & 100=\text { Generate Packets on SGMII } \\ & 110=\text { Generate Packets on QSGMII } \\ & \text { else }=\text { Reserved } \end{aligned}$
4	Packet Generator Transmit Trigger/Status	R/W	0x0	Retain	This bit is used to trigger the packet generator to send another burst packets and also indicates the status of the packet generator in burst mode. This bit is valid only when Reg 16_18.3 = ' 1 ' and Reg 16_ 18.15:8 is not equal to zero Read: 1 = Packet generator is done transmitting data $0=$ Packet generator is transmitting data Write: When this bit is 1 , writing ' 0 ' will trigger the packet generator to send another burst of packets. When this bit is 0 , Writing ' 0 ' or ' 1 ' will have no effect.
3	Packet Generator Self Clear Control	R/W	0x0	Retain	This bit controls the behavior of Reg 16_18.7:5 (Enable Packet Generator Bits) to stay in the packet generator mode or resume normal operation after all packets are sent. This bit is valid only in burst mode and ignored in continuous mode. 1 = Reg 16_18.7:5 stays in packet generator mode after all packets are sent $0=$ Reg 16_18.7:5 self clears after all packets are sent
2	Payload of packet to transmit	R/W	0x0	Retain	$\begin{aligned} & 1=5 \mathrm{~A}, \mathrm{~A} 5,5 \mathrm{~A}, \mathrm{~A} 5, \ldots \\ & 0=\text { Pseudo-random } \end{aligned}$
1	Length of packet to transmit	R/W	0x0	Retain	$\begin{aligned} & 1=1518 \text { bytes } \\ & 0=64 \text { bytes } \end{aligned}$
0	Transmit an Errored packet	R/W	0x0	Retain	1 = Tx packets with CRC errors \& Symbol Error $0=$ No error

Table 161: CRC Counters
Page 18, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 8$	Packet Count	RO	0×00	Retain	0x00 $=$ No packets received 0xFF $=256$ packets received (max count). Bit $16 _18.4$ must be set to enable the counter in order for register to be valid.

PHY Register Description PHY MDIO Register Description

Table 161: CRC Counters (Continued)
Page 18, Register 17

Bits	Field	Mode	HW Rst	SW Rst	Description
$7: 0$	CRC Error Count	RO	0×00	Retain	0x00=NoCRCerrorsdetectedinthepacketsreceived. 0xFF $=256$ CRC errors detected in the packets received (max count). Bit $16 _18.4$ must be set to enable the counter in order for register to be valid.

Table 162: Checker Control
Page 18, Register 18

Bits	Field	Mode	HW Rst	SW Rst	Description
15:5	Reserved	R/W	0x0	Retain	Reserved
4	CRC Counters Reset	R/W, SC	0x0	Retain	Writing ' 1 ' to this bit clears the Packet/CRC Counters Register (Reg 17_18). After writing ' 1 ', this bit self-clears to '0' 1 = Resets/Clears the Packet/CRC Counters Register
3	Reserved	R/W	0x0	Retain	Reserved
2:0	Enable CRC Checker	R/W	0x00	Retain	$\begin{aligned} & 000=\text { Disable/reset CRC Checker } \\ & 010=\text { Check data from Copper interface } \\ & 100=\text { Check data from SGMII } \\ & 110=\text { Check data from QSGMII } \\ & \text { else }=\text { Reserved } \end{aligned}$

Table 163: Packet Generator IPG Control

Page 18, Register 19

Bits	Field	Mode	HW Rst	SW Rst	Description
$15: 8$	Reserved	R/W	0×00	Retain	Reserved
$7: 0$	IPG Length	R/W	$0 \times B$	Retain	These bits define the length of inter-packet-gap (IPG) between packets sent by the packet generator. The IPG length is the programmed value +1. Unit is in number of bytes.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R V EL L® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 164: General Control Register 1
Page 18, Register 20

Bits	Field	Mode	HW Rst	SW Rst	Description
15	Reset	R/W, SC	0x0	0x0	Mode Software Reset. Affects page 6 and 18. Writing a 1 to this bit causes the PHY state machines to be reset. When the reset operation is done, this bit is cleared to 0 automatically. The reset occurs immediately. $1=$ PHY reset 0 = Normal operation
14:7	Reserved	R/W	0x4	Retain	Reserved
6:4	Reserved	R/W	0x0	Retain	Reserved
3	Reserved	R/W	0x0	Retain	Reserved
2:0	MODE[2:0]	R/W	See Descr.	Update	Changes to this bit are disruptive to the normal operation; therefore, any changes to these registers must be followed by a software reset to take effect. On hardware reset these bits take on the value of MODE[2:0].
			0x0	0×0	$000=$ QSGMII (System mode) to Copper 001 = SGMII (System mode) to Copper $010=$ QSGMII (System mode) to 1000BASE-X 011 = QSGMII (System mode) to 100BASE-FX (Reg 20_ 18.6 = '0') QSGMII (System mode) to Auto Media Detect Copper/100BASE-FX (Reg 20_18.6 = '1') $100=$ Reserved 101 = Reserved $110=$ Reserved $111=$ Reserved

4

Electrical Specifications

4.1 Absolute Maximum Ratings

Table 165: Absolute Maximum Ratings ${ }^{1}$
Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Symbol	Parameter	Min	Typ	Max	Units
$V_{\text {DDA18 }}$	Power Supply Voltage on AVDD18 with respect to VSS	-0.5		2.5	V
$V_{\text {DD }}$	Power Supply Voltage on DVDD with respect to VSS	-0.5		1.5	V
$V_{\text {DDA33 }}$	Power Supply Voltage on AVDD33 with respect to VSS	-0.5		3.6	V
$V_{\text {DDOL }}$	Power Supply Voltage on VDDOL with respect to VSS	-0.5		3.6	V
$V_{\text {DDOR }}$	Power Supply Voltage on VDDOR with respect to VSS	-0.5		3.6	V
$V_{\text {DDOM }}$	Power Supply Voltage on VDDOM with respect to VSS	-0.5		3.6	V
$V_{\text {DDC }}$	Power Supply Voltage on VDDC with respect to VSS	-0.5		2.5	V
$V_{\text {PIN }}$	Voltage applied to any digital input pin	-0.5		5.0 or VDDO + 0.7 , whichever is less	V
T Storage	Storage temperature	-55		+125 ${ }^{2}$	${ }^{\circ} \mathrm{C}$

1. On power-up, no special power supply sequencing is required.
2. $125^{\circ} \mathrm{C}$ is only used as bake temperature for not more than 24 hours. Long term storage (e.g weeks or longer) should be kept at $85^{\circ} \mathrm{C}$ or lower.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.2 Recommended Operating Conditions

Table 166: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {DDA1 }}{ }^{1}$	AVDD18 supply	For AVDD18	1.71	1.8	1.89	V
$V_{\text {DDC }}{ }^{1}$	VDDC supply	For VDDC	1.71	1.8	1.89	V
$V_{\text {DDA } 33}$	AVDD33 supply	For AVDD33	3.13	3.3	3.47	V
$V_{D D}{ }^{1}$	DVDD supply	For DVDD at 1.0 V	0.95	1.0	1.05	V
$\mathrm{V}_{\mathrm{DDOL}}{ }^{1}$	VDDOL supply	For VDDOL at 1.8 V	1.71	1.8	1.89	V
		For VDDOL at 2.5 V	2.38	2.5	2.63	V
		For VDDOL at 3.3 V	3.13	3.3	3.47	V
$\mathrm{V}_{\mathrm{DDOR}}{ }^{1}$	VDDOR supply	For VDDOR at 1.8 V	1.71	1.8	1.89	V
		For VDDOR at 2.5 V	2.38	2.5	2.63	V
		For VDDOR at 3.3 V	3.13	3.3	3.47	V
$\mathrm{V}_{\mathrm{DDOM}}{ }^{1}$	VDDOM supply	For VDDOM at 1.2 V	1.14	1.2	1.26	V
		For VDDOM at 1.8 V	1.71	1.8	1.89	V
		For VDDOM at 2.5 V	2.38	2.5	2.63	V
		For VDDOM at 3.3 V	3.13	3.3	3.47	V
RSET	Internal bias reference	Resistor connected to $\mathrm{V}_{\text {SS }}$		$5000 \pm 1 \%$ Tolerance		W
$\mathrm{T}_{\text {A }}$	Commercial Ambient operating temperature		0		70^{2}	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature				125^{3}	${ }^{\circ} \mathrm{C}$

1. Maximum noise allowed on supplies is 50 mV peak-peak.
2. Commercial operating temperatures are typically below $70^{\circ} \mathrm{C}$, e.g, $45^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$. The $70^{\circ} \mathrm{C}$ max is Marvell ${ }^{\circledR}$ specification limit
3. Refer to white paper on TJ Thermal Calculations for more information.

4.3 Package Thermal Information

4.3.1 Thermal Conditions for 128-pin LQFP Package

Table 167: Thermal Conditions for 128-pin LQFP Package

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\theta_{J A}$	Thermal resistance ${ }^{1}$ - junction to ambient for the 128-Pin, LQFP package	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow		24.9		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 1 meter/sec air flow		21.8		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{J A}=\left(T_{J}-T_{A}\right) / P$ $\mathrm{P}=$ Total power dissipation	JEDEC 3 in. x 4.5 in. 4-layer PCB with 2 meter/sec air flow		20.9		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 3 meter/sec air flow		20.3		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{J T}$	Thermal characteristic parameter ${ }^{\text {a }}$ - junction to top center of the 128-Pin, LQFP package $\psi_{\mathrm{JT}}=\left(\mathrm{T}_{\mathrm{J}}-T_{\mathrm{top}}\right) / \mathrm{P}$ $\mathrm{P}=$ Total power dissipation, $\mathrm{T}_{\text {top: }}$ Temperature on the top center of the package.	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow		0.50		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 1 meter/sec air flow		0.75		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 2 meter/sec air flow		0.90		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 3 meter/sec air flow		1.01		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J C}$	Thermal resistance ${ }^{\mathrm{a}}$ - junction to case for the $128-\mathrm{Pin}$, LQFP package $\theta_{\mathrm{JC}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}\right) / \mathrm{P}_{\mathrm{top}}$ $P_{\text {top }}=$ Power dissipation from the top of the package	JEDEC with no air flow		9.8		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JB }}$	Thermal resistance ${ }^{\mathrm{a}}$ - junction to board for the 128-Pin, LQFP package $\theta_{\mathrm{JB}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{B}}\right) / \mathrm{P}_{\text {bottom }}$ $\mathrm{P}_{\text {bottom }}=$ Power dissipation from the bottom of the package to the PCB surface.	JEDEC with no air flow		15.1		${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. Refer to white paper on TJ Thermal Calculations for more information.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.3.2 Thermal Conditions for 196-pin TFBGA Package

Table 168: Thermal Conditions for 196-pin TFBGA Package

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\theta_{J A}$	Thermal resistance ${ }^{1}$ - junction to ambient for the 196-Pin, TFBGA package	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow		29.16		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 1 meter/sec air flow		27.05		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\begin{aligned} & \theta_{J A}=\left(T_{J}-T_{A}\right) / P \\ & P=\text { Total power dissipation } \end{aligned}$	JEDEC 3 in. x 4.5 in. 4-layer PCB with 2 meter/sec air flow		26.23		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 3 meter/sec air flow		25.70		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{J T}$	Thermal characteristic parameter ${ }^{\text {a }}$ - junction to top center of the 196-Pin, TFBGA package $\psi_{\mathrm{JT}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\text {top }}\right) / \mathrm{P}$ $P=$ Total power dissipation, $T_{\text {top: }}$ Temperature on the top center of the package.	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow		0.43		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 1 meter/sec air flow		0.54		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 2 meter/sec air flow		0.62		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		JEDEC 3 in. x 4.5 in. 4-layer PCB with 3 meter/sec air flow		0.68		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J C}$	Thermal resistance ${ }^{\text {a }}$ - junction to case for the 196-Pin, TFBGA package $\begin{aligned} & \theta_{\mathrm{JC}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}\right) / \mathrm{P}_{\text {top }} \\ & \mathrm{P}_{\text {top }}=\text { Power dissipation from } \\ & \text { the top of the package } \end{aligned}$	JEDEC with no air flow		8.94		${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JB}	Thermal resistance ${ }^{\mathrm{a}}$ - junction to board for the 196-Pin, TFBGA package $\theta_{\mathrm{JB}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{B}}\right) / \mathrm{P}_{\text {bottom }}$ $P_{\text {bottom }}=$ Power dissipation from the bottom of the package to the PCB surface.	JEDEC with no air flow		19.44		${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. Refer to white paper on TJ Thermal Calculations for more information.

4.4 Current Consumption

4.4.1 Current Consumption AVDD18 + VDDC

Table 169: Current Consumption AVDD18 + VDDC
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {AVDD18 }}$ $+I_{\text {VDDC }}$	1.8V Power	AVDD18, VDDC	QSGMII to 1000BASE-T link with traffic		321		mA
			QSGMII to 1000BASE-T EEE		155		mA
			QSGMII to 100BASE-TX link with traffic		171		mA
			QSGMII to 100BASE-TX EEE		129		mA
			QSGMII to 10BASE-T link with traffic		135		mA
			QSGMII to 10BASE-Te EEE with traffic		132		mA
			QSGMII to Copper Energy Detect		108		mA
			QSGMII to Copper Energy Detect with System Interface Power Down		65		mA
			QSGMII to Copper IEEE Power Down		82		mA
			QSGMII to Copper IEEE Power Down with System Interface Power Down		37		mA
			QSGMII to Fiber (1000BASE-X/100BASE-FX/SGMII) link with traffic		321		mA
			SGMII to 1000BASE-T link with traffic		358		mA
			SGMII to 1000BASE-T EEE		191		mA
			SGMII to 100BASE-TX link with traffic		207		mA
			SGMII to 100BASE-TX EEE		165		mA
			SGMII to 10BASE-T link with traffic		171		mA
			SGMII to 10BASE-Te EEE with traffic		168		mA
			SGMII to Copper Energy Detect		150		mA
			SGMII to Copper Energy Detect with System Interface Power Down		87		mA
			SGMII to Copper IEEE Power Down		119		mA
			SGMII to Copper IEEE Power Down with System Interface Power Down		58		mA
			SGMII to Fiber (1000BASE-X/100BASE-FX/ SGMII) link with traffic ${ }^{1}$		116		mA
			SGMII to Fiber (1000BASE-X/100BASE-FX/ SGMII) IEEE Power Down ${ }^{1}$		77		mA
			SGMII to Fiber (1000BASE-X/100BASE-FX/ SGMII) IEEE Power Down with System Interface Power Down ${ }^{1}$		39		mA
			Reset		26		mA

1. Applicable when device is configured as two ports SGMII (system) to Fiber (media) with QSGMII crossover enabled.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.4.2 Current Consumption AVDD33

Table 170: Current Consumption AVDD33
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {VDDA33 }}$	3.3V Power	AVDD33	QSGMII to 1000BASE-T link with traffic		224		mA
			QSGMII to 1000BASE-T EEE		35		mA
			QSGMII to 100BASE-TX link with traffic		59		mA
			QSGMII to 100BASE-TX EEE		11		mA
			QSGMII to 10BASE-T link with traffic		120		mA
			QSGMII to 10BASE-Te EEE with traffic		100		mA
			QSGMII to Copper Energy Detect		3		mA
			QSGMII to Copper Energy Detect with System Interface Power Down		3		mA
			QSGMII to Copper IEEE Power Down		3		mA
			QSGMII to Copper IEEE Power Down with System Interface Power Down		3		mA
			SGMII to 1000BASE-T link with traffic		224		mA
			SGMII to 1000BASE-T EEE		35		mA
			SGMII to 100BASE-TX link with traffic		59		mA
			SGMII to 100BASE-TX EEE		11		mA
			SGMII to 10BASE-T link with traffic		120		mA
			SGMII to 10BASE-Te EEE with traffic		100		mA
			SGMII to Copper Energy Detect		3		mA
			SGMII to Copper Energy Detect with System Interface Power Down		3		mA
			SGMII to Copper IEEE Power Down		3		mA
			SGMII to Copper IEEE Power Down with System Interface Power Down		3		mA
			Reset		3		mA

AVDD33 is not used when the device is in Fiber only mode of operations

Electrical Specifications
 Current Consumption

4.4.3 Current Consumption DVDD

Table 171: Current Consumption DVDD
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {DVDD }}$	Power to digital core at 1.0 V	DVDD	QSGMII to 1000BASE-T link with traffic		278		mA
			QSGMII to 1000BASE-T EEE		49		mA
			QSGMII to 100BASE-TX link with traffic		62		mA
			QSGMII to 100BASE-TX EEE		37		mA
			QSGMII to 10BASE-T link with traffic		36		mA
			QSGMII to 10BASE-Te EEE with traffic		33		mA
			QSGMII to Copper Energy Detect		27		mA
			QSGMII to Copper Energy Detect with System Interface Power Down		23		mA
			QSGMII to Copper IEEE Power Down		25		mA
			QSGMII to Copper IEEE Power Down with System Interface Power Down		21		mA
			QSGMII to Fiber (1000BASE-X/SGMII) link with 1000 Mbps traffic		194		mA
			QSGMII to Fiber (100BASE-FX/SGMII) link with 100 Mbps traffic		97		mA
			QSGMII to Fiber (SGMII) link with 10 Mbps traffic		85		mA
			QSGMII to Fiber (1000BASE-X/100BASE-FX/SGMII) IEEE Power Down		76		mA
			SGMII to 1000BASE-T link with traffic		280		mA
			SGMII to 1000BASE-T EEE		54		mA
			SGMII to 100BASE-TX link with traffic		64		mA
			SGMII to 100BASE-TX EEE		42		mA
			SGMII to 10BASE-T link with traffic		37		mA
			SGMII to 10BASE-Te EEE with traffic		36		mA
			SGMII to Copper Energy Detect		33		mA
			SGMII to Copper Energy Detect with System Interface Power Down		22		mA
			SGMII to Copper IEEE Power Down		30		mA
			SGMII to Copper IEEE Power Down with System Interface Power Down		19		mA

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 171: Current Consumption DVDD (Continued)
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
IDVDD (Cont.)	Power to digital core at 1.0 V (Cont.)	DVDD (Cont.)	SGMII to Fiber (1000BASE-X/100BASE-FX/SGMII) link with traffic ${ }^{1}$		48		mA
			SGMII to Fiber (1000BASE-X/100BASE-FXI SGMII) IEEE Power Down ${ }^{1}$		16		mA
			SGMII to Fiber (1000BASE-X/100BASE-FX/SGMII) IEEE Power Down with System Interface Power Down ${ }^{1}$		16		mA
			Reset		14		mA

1. Applicable when device is configured as two ports SGMII (system) to Fiber (media) with QSGMII crossover enabled.

4.4.4 Current Consumption VDDOL

Table 172: Current Consumption VDDOL
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {VDDOL }}$	1.8V I/O Supply	VDDOL			1		mA
	2.5V I/O Supply				1		mA
	3.3V I/O Supply				1		mA

4.4.5 Current Consumption VDDOR

Table 173: Current Consumption VDDOR
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
${ }^{\text {VDDOR }}$	1.8V I/O Supply	VDDOR			1		mA
	2.5 V I/O Supply				1		mA
	3.3 V I/O Supply				1		mA

4.4.6 Current Consumption VDDOM

Table 174: Current Consumption VDDOM
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {VDDOM }}$	1.2V I/O Supply	VDDOM			1		mA
	1.8 V I/O Supply				1		mA
	$\begin{aligned} & 2.5 \mathrm{~V} \text { I/O } \\ & \text { Supply } \end{aligned}$				1		mA
	3.3V I/O Supply				1		mA

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.5 DC Operating Conditions

4.5.1 Digital Pins

Table 175: Digital Pins
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
VIH	Input high voltage	All digital inputs	$\mathrm{VDDO}=3.3 \mathrm{~V}$	2.0		VDDO + 0.6V	V
			$\mathrm{VDDO}=2.5 \mathrm{~V}$	1.75		VDDO + 0.6V	V
			$\mathrm{V} D \mathrm{DO}=1.8 \mathrm{~V}$	1.26		VDDO + 0.6V	V
			VDDO $=1.2 \mathrm{~V}$	0.84		VDDO +0.6 V	V
VIL	Input low voltage	All digital inputs	VDDO $=3.3 \mathrm{~V}$	-0.3		0.8	V
			$\mathrm{VDDO}=2.5 \mathrm{~V}$	-0.3		0.75	V
			$\mathrm{VDDO}=1.8 \mathrm{~V}$	-0.3		0.54	V
			$\mathrm{VDDO}=1.2 \mathrm{~V}$	-0.3		0.36	V
VOH	High level output voltage	All digital outputs	$\mathrm{IOH}=-4 \mathrm{~mA}$	VDDO - 0.4V			V
VOL	Low level output voltage	All digital outputs	$\mathrm{IOL}=4 \mathrm{~mA}$			0.4	V
ILK	Input leakage current	With internal pull-up resistor				$\begin{gathered} 10 \\ -50 \end{gathered}$	uA
		All others without resistor				10	uA
CIN	Input capacitance	All pins				5	pF

4.5.2 LED Pins

Table 176: LED Pins
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
VOH	High level output voltage	All LED outputs	IOH $=-15 \mathrm{~mA}$	VDDO - 0.75V			V
VOL	Low level output voltage	All LED outputs	IOL $=15 \mathrm{~mA}$			0.75	V
I MAX	Total maximum current per port	All LED pins				35	mA
ILK	Input leakage current	All LED pins				10	UA
CIN	Input capacitance	All LED pins				50	pF

1. Each port can support up to four LED outputs. The maximum current per LED is dependent on the number of LED outputs used per port. For example, when using two LEDs per port, the maximum current per LED is 65/2 $=32.5 \mathrm{~mA}$.

4.5.3 RESETn Pin

Table 177: RESETn Pin

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
VIH	Input high voltage	RESETn	$\mathrm{VDDO}=2.5 \mathrm{~V} / 3.3 \mathrm{~V}$	1.75		VDDO + 0.6V	V
			$\mathrm{VDDO}=1.8 \mathrm{~V}$	1.26		VDDO + 0.6V	V
VIL	Input low voltage	RESETn	$\mathrm{VDDO}=2.5 \mathrm{~V} / 3.3 \mathrm{~V}$	-0.3		0.75	V
			$\mathrm{V} D \mathrm{DO}=1.8 \mathrm{~V}$	-0.3		0.54	V

4.5.3.1 Internal Resistor Description

Table 178: Internal Resister Description

Pin \#	Pin Name	Resistor
62	TRSTn	Internal Pull-up
58	TDI	Internal Pull-up
55	TMS	Internal Pull-up
54	TCK	Internal Pull-up

4.5.4 IEEE DC Transceiver Parameters

Table 179: IEEE DC Transceiver Parameters

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$V_{\text {ODIFF }}$	Absolute peak differential output voltage	MDIP/N[1:0]	10BASE-T no cable	2.2	2.5	2.8	V
		MDIP/N[1:0]	10BASE-T cable model	$585{ }^{1}$			mV
		MDIP/N[1:0]	100BASE-TX mode	0.950	1.0	1.050	V
		MDIP/N[3:0]	1000BASE- ${ }^{2}$	0.67	0.75	0.82	V
	Overshoot ${ }^{2}$	MDIP/N[1:0]	100BASE-TX mode	0		5\%	V
	Amplitude Symmetry (positive/negative)	MDIP/N[1:0]	100BASE-TX mode	0.98x		1.02x	V+/V-
$\mathrm{V}_{\text {IDIFF }}$	Peak Differential Input Voltage	MDIP/N[1:0]	10BASE-T mode	$585{ }^{3}$			mV
	Signal Detect Assertion	MDIP/N[1:0]	100BASE-TX mode	1000	$460{ }^{4}$		mV peak-peak
	Signal Detect De-assertion	MDIP/N[1:0]	100BASE-TX mode	200	$360{ }^{5}$		mV peak-peak

1. IEEE 802.3 Clause 14, Figure 14.9 shows the template for the "far end" wave form. This template allows as little as 495 mV peak differential voltage at the far end receiver.
2. IEEE 802.3ab Figure $40-19$ points $A \& B$.
3. The input test is actually a template test; IEEE 802.3 Clause 14, Figure 14.17 shows the template for the receive wave form.
4. The ANSI TP-PMD specification requires that any received signal with peak-to-peak differential amplitude greater than 1000 mV should turn on signal detect (internal signal in 100BASE-TX mode). The device will accept signals typically with 460 mV peak-to-peak differential amplitude.
5. The ANSI-PMD specification requires that any received signal with peak-to-peak differential amplitude less than 200 mV should de-assert signal detect (internal signal in 100BASE-TX mode). The Alaska Quad will reject signals typically with peak-to-peak differential amplitude less than 360 mV .

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.5.5 SGMII

SGMII specification is a de-facto standard proposed by Cisco. It is available at the Cisco website $\mathrm{ftp}: / / f t \mathrm{p}-\mathrm{eng} . \mathrm{cisco} / \mathrm{smii} /$ sgmii.pdf. It uses a modified LVDS specification based on the IEEE standard 1596.3. Refer to that standard for the exact definition of the terminology used in the following table. The device adds flexibility by allowing programmable output voltage swing and supply voltage option.

4.5.5.1 Transmitter DC Characteristics

Table 180: Transmitter DC Characteristics

Symbol	Parameter ${ }^{1}$	Min	Typ	Max	Units
V_{OH}	Output Voltage High			1600	mV
$\mathrm{V}_{\text {OL }}$	Output Voltage Low	700			mV
$\mathrm{V}_{\text {RING }}$	Output Ringing			10	\%
$\left\|\mathrm{V}_{\text {OD }}\right\|^{2}$	Output Voltage Swing (differential, peak)	Programmable - see Table 181. Variable - see Section 4.5.5.2, Common Mode Voltage (Voffset) Calculations, on page 171 for details.			mV peak
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage (also called Common mode voltage)				mV
R_{O}	Output Impedance (single-ended) (50 ohm termination)	40		60	$\Omega \mathrm{s}$
Delta R_{O}	Mismatch in a pair			10	\%
Delta V_{OD}	Change in V_{OD} between 0 and 1			25	mV
Delta V_{OS}	Change in $\mathrm{V}_{\text {OS }}$ between 0 and 1			25	mV
$\mathrm{I}_{\mathrm{S}+}, \mathrm{I}_{\mathrm{S}-}$	Output current on short to VSS			40	mA
$\mathrm{I}_{\text {+ }+}$	Output current when S_OUT+ and S_OUTare shorted			12	mA
$\mathrm{I}_{\mathrm{X}+}, \mathrm{I}_{\mathrm{X}}$	Power off leakage current			10	mA

1. Parameters are measured with outputs AC connected with 100 ohm differential load.
2. Output amplitude is programmable by writing to Register 26_1.2:0.

Table 181: Programming SGMII Output Amplitude

Register 26_1 Bits	Field	Description
2:0	SGMII/Fiber Output Amplitude ${ }^{1}$	Differential voltage peak measured. Note that internal bias minus the differential peak voltage must be greater than 700 mV . $\begin{aligned} & 000=14 \mathrm{mV} \\ & 001=112 \mathrm{mV} \\ & 010=210 \mathrm{mV} \\ & 011=308 \mathrm{mV} \\ & 100=406 \mathrm{mV} \\ & 101=504 \mathrm{mV} \\ & 110=602 \mathrm{mV} \\ & 111=700 \mathrm{mV} \end{aligned}$

1. Cisco SGMII specification limits are \mid VOD $=150 \mathrm{mV}-400 \mathrm{mV}$ peak differential.

Figure 32: CML I/Os

4.5.5.2 Common Mode Voltage (Voffset) Calculations

There are four different main configurations for the SGMII/Fiber interface connections. These are:

- DC connection to an LVDS receiver
- AC connection to an LVDS receiver
- DC connection to an CML receiver
- AC connection to an CML receiver

If AC coupling or DC coupling to an LVDS receiver is used, the DC output levels are determined by the following:

- Internal bias. See Figure 32 for details. (If AVDD18 is used to generate the internal bias, the internal bias value will typically be 1.05 V .)

- The output voltage swing is programmed by Register 26_1.2:0 (see Table 181 on page 170). Voffset (i.e., common mode voltage) = internal bias - single-ended peak-peak voltage swing. See Figure 33 on page 172 for details.

If DC coupling is used with a CML receiver, then the DC levels will be determined by a combination of the MACs output structure and the input structure shown in the CML Inputs diagram in Figure 34 on page 173. Assuming the same MAC CML voltage levels and structure, the common mode output levels will be determined by:

Voffset (i.e., common mode voltage) = internal bias - single-ended peak-peak voltage swing/2. See Figure 34 for details.
If DC coupling is used, the output voltage DC levels are determined by the AC coupling considerations above, plus the I/O buffer structure of the MAC.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 33: AC connections (CML or LVDS receiver) or DC connection LVDS receiver

Single-ended Voltage details

Figure 34: DC Connection to a CML Receiver

4.5.5.3 Receiver DC Characteristics

Table 182: Receiver DC Characteristics

Symbol	Parameter	Min	Typ	Max	Units
$V_{\text {I }}$	Input Voltage range a or b	675		1725	mV
$\mathrm{V}_{\text {IDTH }}$	Input Differential Threshold	-50		+50	mV
$\mathrm{V}_{\text {HYST }}$	Input Differential Hysteresis	25			mV
$\mathrm{R}_{\text {IN }}$	Receiver 100Ω Differential Input Impedance	80		120	W

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 35: Input Differential Hysteresis

4.5.6 QSGMII

QSGMII specification is a de-facto standard proposed by Cisco. It is available at the Cisco website ftp://ftp-eng.cisco/smii/sgmii.pdf. It uses a modified LVDS specification based on the IEEE standard 1596.3. Refer to that standard for the exact definition of the terminology used in the following table. The device adds flexibility by allowing programmable output voltage swing and supply voltage option.

4.5.6.1 Transmitter DC Characteristics

Table 183: Transmitter DC Characteristics

Symbol	Parameter	Min	Typ	Max	Units
T_Band	Baud Rate ${ }^{1}$		5000		Gsym/s
T_Vdiff	Output Differential Voltage (into floating Load Rload=100 Ohm) ${ }^{2}$	400		900	mVppd
T_Rd	Differential Resistance	80	100	120	Ohms
T_SDD22	Differential Output Return Loss (100 MHz to 2.5 $\mathrm{GHz})^{3}$			-8	dB
T_SDD22	Differential Output Return Loss (2.5 GHz to 5 $\mathrm{GHz})^{4}$				dB
T_SCC22	Common Mode Return Loss (100 MHz to 2.5 $\mathrm{GHz})^{5}$			-6	dB
T_Ncm	Transmitter Common Mode Noise			5% of T-Vdiff	mVppd
	Output current into or out of driver pins when either SHORT to GND or each other ${ }^{6}$			100	mA
T_Vcm	Output Common Mode Voltage See Note ${ }^{7}$, See Note ${ }^{8}$, See Note ${ }^{9}$	0.0		1.8	V - Load Type0 ${ }^{10}$
		735		1135	mV - Load Type1

1. CEI-6G-SR is defined to operate between baud rates of 4.976 and $6.375 \mathrm{Gsym} / \mathrm{s}$, However QSGMII will operate at $5 \mathrm{Gsym} / \mathrm{s}$ with a tolerance of $+/-100 \mathrm{ppm}$.
2. Absolute driver output voltage shall be between -0.1 V and 1.9 V with respect to local ground. See Figure 40 on page 179 for details.
3. See Figure 39 on page 178
4. See Figure 39
5. See Figure 39
6. $\pm 100 \mathrm{~mA}$
7. For both Load Types: R_Rdin=100 Ohms+/- 20 Ohms.For Vcm definition, see Figure 40 on page 179.
8. For Load Type 1: $\mathrm{R} _\mathrm{ZVtt}<300 \mathrm{hms}$; Vtt is defined follows: Load Type 1: $\mathrm{R} _\mathrm{Vtt}=1.2 \mathrm{~V}+5 \% /-8 \%$
9. DC Coupling compliance is Type 1. It is acceptable for a Transmitter to restrict the range of T_Vdiff in order to comply with the specified T_ Vcm range. For a transmitter which supports multiple T_Vdiff levels, it is acceptable for a Transmitter to claim DC Compliance if it meets the $T_{-} V c m$ ranges for at least one of its $T_{-} V$ diff setting as long as those settings that are compliant are indicated.
10.Load Type 0 with min T_Vdiff, AC Coupling or floating load.

Figure 36: CML I/Os

4.5.6.2 Common Mode Voltage (Voffset) Calculations

There are four different main configurations for the SGMII/Fiber interface connections. These are:

- DC connection to an LVDS receiver
- AC connection to an LVDS receiver
- DC connection to an CML receiver
- AC connection to an CML receiver

If AC coupling or DC coupling to an LVDS receiver is used, the DC output levels are determined by the following:

- Internal bias. See Figure 32 on page 171 for details. (If AVDD18 is used to generate the internal bias, the internal bias value will typically be 1.05 V .)

$$
\begin{aligned}
& \text { For QSGMII, internal bias is also generated from the AVDDH supply and is typically } \\
& \text { Note } 1.38 \mathrm{~V} \text { for output termination, and } 1.2 \mathrm{~V} \text { for input termination. }
\end{aligned}
$$

- The output voltage swing is programmed by Register 26_1.2:0 (see Table 181 on page 170). Voffset (i.e., common mode voltage) = internal bias - single-ended peak-peak voltage swing. See Figure 33 on page 172 for details.

If DC coupling is used with a CML receiver, then the DC levels will be determined by a combination of the MACs output structure and the input structure shown in the CML Inputs diagram in Figure 34 on page 173. Assuming the same MAC CML voltage levels and structure, the common mode output levels will be determined by:

Voffset (i.e., common mode voltage) = internal bias - single-ended peak-peak voltage swing/2. See Figure 34 for details.
If DC coupling is used, the output voltage DC levels are determined by the AC coupling considerations above, plus the I/O buffer structure of the MAC.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 37: AC connections (CML or LVDS receiver) or DC connection LVDS receiver

Single-ended Voltage details

Figure 38: DC Connection to a CML Receiver

4.5.6.3 Receiver DC Characteristics

Table 184: Receiver DC Characteristics

Symbol	Parameter	Min	Typ	Max	Units
R_Baud	RX Baud Rate 1		5.00		GSym/s
R_Vdiff	Input Differential Voltage 2	100		900	mVppd
R_Rdin	Differential Resistance	80	100	120	Ohms
R_Zvtt	Bias Voltage Source Impedance (Load Type 1) 3			30	Ohms

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 184: Receiver DC Characteristics (Continued)

Symbol	Parameter	Min	Typ	Max	Units
R_SDD1	Differential Input Return Loss (100MHz to 2.5 GHz)			-8	dB
R_SDD1	Differential Input Return Loss (2.5 GHz to 5 GHz)				dB
R_SCC1	Common Mode Input Return Loss (100 MHz to $2.5 \mathrm{GHz})^{6}$			-6	dB
R_Vtt	Termination Voltage 7		Not Specified	Not Specified	Not Specified

1. CEI-6G-SR is defined to operate between baud rates of 4.976 and $6.375 \mathrm{Gsym} / \mathrm{s}$, However QSGMII will operate at 5 Gsym/s with a tolerance of + -100ppm.
2. Min Value is changed from the standard and reduced to 100 mV .
3. Load Type 1 is with DC Coupling.
4. See Figure 39 on page 178
5. See Figure 39
6. See Figure 39
7. For floating load, input resistance must be $>\mathrm{iK}$ Ohms.
8. Input Common Mode voltage for AC-Coupled or floating load input with min T_Vdiff
9. For Vcm definition, see Figure 40 on page 179.
10. See Figure 2-27 \& Figure 2-28 in CEI-6G-SR document for details

Figure 39: Driver and Receiver Differential Return Loss

Figure 40: Definition of Driver Amplitude and Swing

4.5.7 REFCLKP/N Receiver Specifications

Table 185: REFCLKP/N Receiver Specifications

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{i}	Input voltage range		0		AVDD18	V
$\mathrm{V}_{\text {icm }}$	Input common mode voltage range		300		1300	mV
$\mathrm{V}_{\text {icm_delta }}$	Variation of Input common mode				50	mV
$\mathrm{V}_{\text {id p-p }}$	Input differential voltage peak-to-peak		200^{1}		1200	mV
$\mathrm{R}_{\text {in }}$	Receiver differential input impedance		80	100	120	W

1. For 125 MHz single-ended clock, the minimum amplitude is 400 mV . The unused pin must be connected with $0.1 \mu \mathrm{~F}$ capacitor to ground.

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.6 AC Electrical Specifications

4.6.1 Reset Timing

Table 186: Reset Timing

(Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TPU_RESET	Valid power to RESET de-asserted		10			ms
T SU_XTAL_IN	Number of valid XTAL_IN cycles prior to RESET de-asserted		10			clks
TRESET	Minimum reset pulse width during normal operation		10			ms
TRESET_MDIO	Minimum wait time from RESET de-assertion to first MDIO access		50			ms

Figure 41: Reset Timing

4.6.2 XTAL_IN/XTAL_OUT Timing

Table 187: XTAL_IN/XTAL_OUT Timing ${ }^{1}$
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TP_XTAL_IN	XTAL_IN Period		40 -50 ppm	40	$\begin{gathered} 40 \\ +50 \mathrm{ppm} \end{gathered}$	ns
TH_XTAL_IN	XTAL_IN High time		13	20	27	ns
TL_XTAL_IN	XTAL_IN Low time		13	20	27	ns
$\mathrm{T}_{\mathrm{R} \text { _ XTAL_IN }}$	XTAL_IN Rise	10\% to 90\%	-	3.0	5.0	ns
$\mathrm{T}_{\text {F_XTAL_IN }}$	XTAL_IN Fall	90\% to 10\%	-	3.0	5.0	ns
TJ_XTAL_IN	XTAL_IN jitter ${ }^{2}$ (RMS)	$12 \mathrm{kHz}-20 \mathrm{MHz}$ (SGMII to Fiber/SGMII mode)			3	ps
		$12 \mathrm{kHz}-20 \mathrm{MHz}$ (QSGMII to copper/Fiber/SGMII mode)			1	ps

1. If the crystal option is used, ensure that the frequency is $25 \mathrm{MHz} \pm 50 \mathrm{ppm}$. Capacitors must be chosen carefully - see application note supplied by the crystal vendor.
2. PLL generated clocks are not recommended as input to XTAL_IN since they can have excessive jitter. Zero delay buffers are also not recommended for the same reason.

Figure 42: XTAL_IN/XTAL_OUT Timing

In order to meet the QSGMII transmit and receive jitter specifications, a 125 MHz or 156.25 MHz reference clock input is required. The 25 MHz reference clock input option should not be used for applications using the QSGMII.

4.6.3 REFCLKP/N Receiver Specifications

Table 188: REFCLKP/N Receiver Specifications
(Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified) All voltages are given with respect to receiver circuit ground voltage

Symbol	Parameter	Condition	Min	Typ	Max	Units
TP_25_REF_ CLK	25 MHz REF_CLK Period	CLK_SEL[1:0] = 10 ${ }^{1}$	$\begin{gathered} 40 \\ -50 \mathrm{ppm} \end{gathered}$	40	$\begin{gathered} 40 \\ +50 \mathrm{ppm} \end{gathered}$	ns
T_{H} 25_REF_ CLK	25 MHz REF_CLK High Time		13	20	27	ns
TL_25_REF_ CLK	25 MHz REF_CLK Low Time		13	20	27	ns
$\mathrm{T}_{\mathrm{r}} / \mathrm{T}_{\mathrm{f}}$	Rise and Fall Time (10\% 90\%)		260	3000	6400	ps
$\begin{aligned} & \mathrm{T}_{\mathrm{P} _125 _R E F} \\ & \text { CLK } \end{aligned}$	125 MHz REF_CLK Period	$\text { CLK_SEL[1:0] = 01 }{ }^{1}$	-50 ppm	8	$\begin{gathered} 8 \\ +50 \mathrm{ppm} \end{gathered}$	ns
$\begin{aligned} & \mathrm{T}_{\mathrm{H} _125 _R E F} \\ & \mathrm{CLK} \end{aligned}$	125 MHz REF_CLK High Time		2.6	4	5.4	ns
$\begin{aligned} & \text { TL_125_REF_ }_{-} \\ & \text {CLK } \end{aligned}$	125 MHz REF_CLK Low Time		2.6	4	5.4	ns
$\mathrm{T}_{\mathrm{r}} / \mathrm{T}_{\mathrm{f}}$	Rise and Fall Time (10\% 90\%)		260	600	1280	ps

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 188: REFCLKP/N Receiver Specifications (Continued)
(Over Full range of values listed in the Recommended Operating Conditions unless otherwise specified) All voltages are given with respect to receiver circuit ground voltage

Symbol	Parameter	Condition	Min	Typ	Max	Units
TP_156_REF_ CLK	156.25 MHz REF_CLK Period	CLK_SEL[1:0] $=00^{1}$	$\begin{gathered} 6.4 \\ -50 \mathrm{ppm} \end{gathered}$	6.4	$\begin{gathered} 6.4 \\ +50 \mathrm{ppm} \end{gathered}$	ns
$\begin{aligned} & \mathrm{T}_{\mathrm{H}-156 _R E F} \\ & \mathrm{CLK} \end{aligned}$	156.25 MHz REF_CLK High Time		2.1	3.2	4.3	ns
TL_156_REF_ CLK	156.25 MHz REF_CLK Low Time		2.1	3.2	4.3	ns
$\mathrm{T}_{\mathrm{r}} / \mathrm{T}_{\mathrm{f}}$	Rise and Fall Time (10\% 90\%)		260	480	1024	ps
$\mathrm{t}_{\text {skew }}$	Skew tolerable at receiver input to meet setup and hold time requirements				325	ps
TJ_REF_CLK	REF_CLK Jitter (RMS)	$12 \mathrm{kHz}-20 \mathrm{MHz}$ (SGMII mode)			3	ps
		$12 \mathrm{kHz}-20 \mathrm{MHz}$ (QSGMII mode)			1	ps

1. See Section 2.17, Configuring the Device, on page 88 for details.

Figure 43: REF_CLK Timing

4.6.4 LED to CONFIG Timing

Table 189: LED to CONFIG Timing

Symbol	Parameter	Condition	Min	Typ	Max	Units
$T_{\text {DLY_CONFIG }}$	LED to CONFIG Delay		0		25	ns

Figure 44: LED to CONFIG Timing

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.7 SGMII Timing

4.7.1 SGMII Output AC Characteristics

Table 190: SGMII Output AC Characteristics

Symbol	Parameter	Min	Typ	Max	Units
$\mathrm{T}_{\text {FALL }}$	$V_{\text {OD }}$ Fall time (20\%-80\%)	100		200	ps
T RISE	$\mathrm{V}_{\text {OD }}$ Rise time (20% - 80\%)	100		200	ps
CLOCK	Clock signal duty cycle @ 625 MHz	48		52	\%
$\mathrm{T}_{\text {SKEW } 1}{ }^{1}$	Skew between two members of a differential pair			20	ps
$\mathrm{T}_{\text {SOUTPUT }}{ }^{2}$	SERDES output to RxClk_P/N	360	400	440	ps
$\mathrm{T}_{\text {OutputJitter }}$	Total Output Jitter Tolerance (Deterministic + 14*rms Random)		127		ps

1. Skew measured at 50% of the transition.
2. Measured at 50% of the transition.

Figure 45: Serial Interface Rise and Fall Times

4.7.2 SGMII Input AC Characteristics

Table 191: SGMII Input AC Characteristics

| Symbol | Parameter | Min | Typ | Max |
| :--- | :--- | :--- | :---: | :---: | Units | $\mathrm{T}_{\text {Inputjitter }}$ | Total Input Jitter Tolerance (Deterministic +
 14^{\star} rms Random) | |
| :--- | :--- | :--- |

4.8 QSGMII Timing

4.8.1 QSGMII Output AC Characteristics

Table 192: QSGMII Output AC Characteristics

Symbol	Parameter	Min	Typ	Max
$\mathrm{T}_{\text {FALL }}$	V OD Fall time (20\%-80\%)	30		Units
$\mathrm{T}_{\text {RISE }}$	V OD Rise time (20\%-80\%)	30		ps
$\mathrm{T}_{\text {OutputJitter }}$	Total Output Jitter Tolerance		ps	

Figure 46: Serial Interface Rise and Fall Times

4.8.2 QSGMII Receiver Input Jitter Tolerance Specifications

Table 193: QSGMII Receiver Input Jitter Tolerance Specifications

Symbol	Parameter	Min	Typ	Max	Units
R_BHPJ	Bounded High Probability Jitter ${ }^{1}$			0.45	Ulpp
R_SJ-max	Sinusoidal Jitter, maximum			5	Ulpp
R_SJ-hf	Sinusoidal Jitter, High Frequency			0.05	Ulpp
R_TJ	Total Jitter (does not include Sinusoidal Jitter) ${ }^{2}$			0.60	Ulpp
R_X1	Eye Mask ${ }^{3}$			0.30	UI
R_Y1	Eye Mask ${ }^{4}$			50	mV
R_Y2	Eye Mask ${ }^{5}$			450	mV

1. This is the sum of Uncorrelated Bounded High Probability Jitter (0.15 UI) and Correlated Bounded High Probability Jitter (0.30 UI) Uncorrelated Bounded High Probability Jitter: Jitter distribution where the value of the jitter show no correlation to any signal level being transmitted. Formally defined as deterministic jitter, T_DJ Correlated Bounded High Probability Jitter: Jitter distribution where the value of the jitter shows a strong correlation to the signal level being transmitted. This jitter may considered as being equalisable due to its correlation to the signal level
2. The link will operate with a BER or 10^{-15}
3. See Figure 47 on page 186
4. See Figure 47
5. See Figure 47

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted M A R V E L L® Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 47: Driver and Receiver Eye Mask

4.9 MDC/MDIO Timing

Table 194: MDC/MDIO Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
$T_{\text {DLY_MDIO }}$	MDC to MDIO (Output) Delay Time		0		20	ns
$\mathrm{~T}_{\text {SU_MDIO }}$	MDIO (Input) to MDC Setup Time		10			ns
$\mathrm{~T}_{\text {HD_MDIO }}$	MDIO (Input) to MDC Hold Time		10			ns
$\mathrm{~T}_{\text {P_MDC }}$	MDC Period		80			$\mathrm{~ns}^{1}$
$\mathrm{~T}_{\mathrm{H} \text { _MDC }}$	MDC High		30			ns
$\mathrm{~T}_{\text {L_MDC }}$	MDC Low		30			ns
$\mathrm{~V}_{\text {HYST }}$	VDDO Input Hysteresis			360	mV	

1. Maximum frequency $=12.5 \mathrm{MHz}$.

Figure 48: MDC/MDIO Timing

Figure 49: MDC/MDIO Input Hysteresis

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted

4.9.1 JTAG Timing

Table 195: JTAG Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
T $_{\text {P_TCK }}$	TCK Period		60			ns
TH_TCK	TCK High		12			ns
TL_TCK	TCK Low		12			ns
TSU_TDI $^{\text {TCI }}$	TDI, TMS to TCK Setup Time		10			ns
THD_TDI	TDI, TMS to TCK Hold Time		10			ns
TDLY_TDO	TCK to TDO Delay		0		15	ns

Figure 50: JTAG Timing

4.10 IEEE AC Transceiver Parameters

Table 196: IEEE AC Transceiver Parameters

IEEE tests are typically based on templates and cannot simply be specified by number. For an exact description of the templates and the test conditions, refer to the IEEE specifications:

- 10BASE-T IEEE 802.3 Clause 14-2000
- 100BASE-TX ANSI X3.263-1995
- 1000BASE-T IEEE 802.3ab Clause 40 Section 40.6.1.2 Figure 40-26 shows the template waveforms for transmitter electrical specifications.
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Pins	Condition	Min	Typ	Max	Units
$\mathrm{T}_{\text {RISE }}$	Rise time	MDIP/N[1:0]	100BASE-TX	3.0	4.0	5.0	ns
$\mathrm{T}_{\text {FALL }}$	Fall Time	MDIP/N[1:0]	100BASE-TX	3.0	4.0	5.0	ns
TRISEIFALL Symmetry		MDIP/N[1:0]	100BASE-TX	0		0.5	ns
DCD		Duty Cycle Distortion	MDIP/N[1:0]	100BASE-TX	0		0.5^{1}
Transmit Jitter		MDIP/N[1:0]	100BASE-TX	0		1.4	ns, peak-peak

1. ANSI X3.263-1995 Figure 9-3

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

4.11 Latency Timing

4.11.1 10/100/1000BASE-T to SGMII Latency Timing

Table 197: 10/100/1000BASE-T to SGMII Latency Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_MDI_SERT X_1000	MDI SSD1 to S_OUTP/N Start of Packet		$292^{1,2}$		336	ns
TDA_MDI_ SERTX_1000	MDI CSReset, CSExtend, CSExtend_Err to S_OUTP/N /T/		$292^{1,2,3}$		336	ns
TAS_MDI_SERT X_100	MDI /J/ to S_OUTP/N Start of Packet		620^{2}		732	ns
TDA_MDI_ SERTX_100	MDI /T/ to S_OUTP/N /T/		$620^{2,3}$		732	ns
TAS_MDI_SERT X_10	MDI Preamble to S_OUTP/N Start of Packet		$4817^{2,4}$		5603	ns
TDA_MDI_- SERTX_10	MDI ETD to S_OUTP/N /T/		$4817^{2,3,4}$		5603	ns

1. In 1000BASE-T the signals on the 4 MDI pairs arrive at different times because of the skew introduced by the cable. All timing on MDIP/N[3:0] is referenced from the latest arriving signal.
2. Assumes Register 16.13:12 is set to 00, which is the minimum latency. Each increase in setting adds 8 ns of latency $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps, and 400 ns in 10 Mbps .
3. Minimum and maximum values on end of packet assume zero frequency drift between the received signal on MDI and S_OUTP/N. The worst case variation will be outside these limits if there is a frequency difference,
4. Actual values depend on number of bits in preamble and number of dribble bits, since nibbles on MII are aligned to start of frame delimiter and dribble bits are truncated.

Figure 51: 10/100/1000BASE-T to SGMII Latency Timing

4.11.2 SGMII to 10/100/1000BASE-T Latency Timing

Table 198: SGMII to 10/100/1000BASE-T Latency Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_SERRX_ MDI_1000	S_INP/N Start of Packet /S/ to MDI SSD1		192^{1}		216	ns
TDA_SERRX_ MDI_1000	S_INP/N /T/ to MDI CSReset, CSExtend, CSExtend_Err		$192^{1,2}$		216	ns
TAS_SERRX_ MDI_100	S_INP/N Start of Packet /S/ to MDI /J/		$528{ }^{1}$		612	ns
TDA_SERRX_ MDI_100	S_INP/N /T/ to MDI /T/		$528^{1,2}$		612	ns
TAS_SERRX_ MDI_10	S_INP/N Start of Packet /S/ to MDI Preamble		3822^{1}		4634	ns
TDA_SERRX_ MDI_10	S_INP/N /T/ to MDI ETD		$3822^{1,2}$		4634	ns

1. Assumes register $16.15: 14$ is set to 00 , which is the minimum latency. Each increase in setting adds 8 ns of latency in $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
2. Minimum and maximum values on end of packet assume zero frequency drift between the transmitted signal on MDI and the received signal on S_INP/N. The worst case variation will be outside these limits, if there is a frequency difference.

Figure 52: SGMII to 10/100/1000BASE-T Latency Timing

4.11.3 10/100/1000BASE-T to QSGMII Latency Timing

Table 199: 10/100/1000BASE-T to QSGMII Latency Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_MDI QSERTX_1000	MDI SSD1 to Q_OUTP/N Start of Packet		$308^{1,2}$		356	ns
TDA_MDI QSERTX_1000	MDI CSReset, CSExtend, CSExtend_Err to Q_OUTP/N /T/		$308^{1,2,3}$		356	ns
TAS_MDI QSERTX_100	MDI /J/ to Q_OUTP/N Start of Packet		628^{2}		744	ns

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 199: 10/100/1000BASE-T to QSGMII Latency Timing (Continued)
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TDA_MDI QSERTX_100	MDI /T/ to Q_OUTP/N /T/		$628^{2,3}$		744	ns
TASMDI QSERTX_10	MDI Preamble to Q_OUTP/N Start of Packet		$4825^{2,4}$		5615	ns
TDA_MDI QSERTX_10	MDI ETD to Q_OUTP/N /T/		$4825^{2,3,4}$		5615	ns

1. In 1000BASE-T the signals on the 4 MDI pairs arrive at different times because of the skew introduced by the cable. All timing on MDIP/N[3:0] is referenced from the latest arriving signal
2. Assumes Register $16.13: 12$ is set to 00 , which is the minimum latency. Each increase in setting adds 8 ns of latency $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
3. Minimum and maximum values on end of packet assume zero frequency drift between the received signal on MDI and Q_OUTP/N. The worst case variation will be outside these limits if there is a frequency difference.
4. Actual values depend on number of bits in preamble and number of dribble bits, since nibbles on MII are aligned to start of frame delimiter and dribble bits are truncated.

Figure 53: 10/100/1000BASE-T to QSGMII Latency Timing

4.11.4 QSGMII to 10/100/1000BASE-T Latency Timing

Table 200: QSGMII to 10/100/1000BASE-T Latency Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_QSERRX MDI_1000	Q_INP/N Start of Packet /S/ to MDI SSD1		222^{1}		250	ns
TDA_QSERRX MDI_1000	Q_INP/N /T/ to MDI CSReset, CSExtend, CSExtend_Err		$222^{1,2}$		250	ns
TAS_QSERRX MDI_100	Q_INP/N Start of Packet /S/ to MDI /J/		5061		614	ns
TDA_QSERRX_ MDI_100	Q_INP/N /T/ to MDI /T/		$506{ }^{1,2}$		614	ns
TAS_QSERRX_ MDI_10	Q_INP/N Start of Packet /S/ to MDI Preamble		3827^{1}		4644	ns
TDA_QSERRX MDI_10	Q_INP/N /T/ to MDI ETD		$3827^{1,2}$		4644	ns

1. Assumes register $16.15: 14$ is set to 00 , which is the minimum latency. Each increase in setting adds 8 ns of latency in $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
2. Minimum and maximum values on end of packet assume zero frequency drift between the transmitted signal on MDI and the received signal on Q_INP/N. The worst case variation will be outside these limits, if there is a frequency difference.

Figure 54: QSGMII to 10/100/1000BASE-T Latency Timing

4.11.5 QSGMII to SGMII Latency Timing

Table 201: QSGMII to SGMII Latency Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_QSERRX SERTX_100	Q_INP/N Start of Packet to S_ OUTP/N Start of Packet		156^{1}		232	ns
TDA_OSERRX SERTX_100	Q_INP/N /T/ to S_OUTP/N /T/		$156^{1,2}$		232	ns
TAS_OSERRX SERTX_100	Q_INP/N Start of Packet to S_ OUTP/N Start of Packet		520^{1}		700	ns

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 201: QSGMII to SGMII Latency Timing (Continued)
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TDA_OSERRX_ SERTX_100	Q_INP/N /T/ to S_OUTP/N /T/		$520^{1,2}$		700	ns
TAS_OSERRX_ SERTX_10	Q_INP/N Start of Packet to S_ OUTP/N Start of Packet		4212^{1}		5472	ns
TDA_OSERRX_ SERTX_10	Q_INP/N /T/ to S_OUTP/N /T/		$4212^{1,2}$		5472	ns

1. Assumes register 16.15:14 is set to 00, which is the minimum latency. Each increase in setting adds 8 ns of latency in $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
2. Minimum and maximum values on end of packet assume zero frequency drift between the transmitted signal on S_OUTP/N and the received signal on Q_INP/N. The worst case variation will be outside these limits, if there is a frequency difference.

Figure 55: QSGMII to SGMII Latency Timing

4.11.6 SGMII to QSGMII Latency Timing

Table 202: SGMII to QSGMII Latency Timing
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_SERRX QSERTX 1000	S_INP/N Start of Packet/S/ to Q_ OUTP/N Start of Packet /S/		$164{ }^{1}$		224	ns
TDA SERRX QSERTX 1000	S_INP/N/T/ to Q_OUTP/N/T/		$164^{1,2}$		224	ns
TAS SERRX QSERTX_100	S_INP/N Start of Packet/S/ to Q_ OUTP/N Start of Packet /S/		472^{1}		636	ns
TDA SERRX QSERTX_100	S_INP/N/T/ to Q_OUTP/N/T/		$472^{1,2}$		636	ns
TAS SERRX QSERTX_10	S_INP/N Start of Packet/S/ to Q_ OUTP/N Start of Packet /S/		$3804{ }^{1}$		5048	ns
TDA SERRX QSERTX_10	S_INP/N /T/ to Q_OUTP/N /T/		$3804{ }^{1,2}$		5048	ns

1. Assumes register $16.15: 14$ is set to 00 , which is the minimum latency. Each increase in setting adds 8 ns of latency in $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
2. Minimum and maximum values on end of packet assume zero frequency drift between the transmitted signal on Q_OUTP/N and the received signal on S_INP/N. The worst case variation will be outside these limits, if there is a frequency difference.

Figure 56: SGMII to QSGMII Latency Timing

4.11.7 SGMII to Auto-media Latency Timing

4.11.7.1 SGMII to SGMII/Fiber Latency Timing (Register 27_4.14 = $\mathbf{1}^{1}$)

Table 203: SGMII to SGMII/Fiber Latency Timing (Register 27_4.14 = 1)
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)
$\left.\begin{array}{|l|l|l|c|c|c|l|}\hline \text { Symbol } & \text { Parameter } & \text { Condition } & \text { Min } & \text { Typ } & \text { Max } & \text { Units } \\ \hline \begin{array}{l}\text { TAS_SERRX } \\ \text { SERTX_10 } \\ \text { SEO }\end{array} & \text { S_INP/N Start of Packet /S/ to S_ } & \text { OUTP/N Start of Packet /S/ }\end{array}\right)$

1. Assumes register $16.15: 14$ is set to 00 , which is the minimum latency. Each increase in setting adds 8 ns of latency in $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
2. Minimum and maximum values on end of packet assume zero frequency drift between the signal on S_OUTP/N and the signal on S_ INP/N. The worst case variation will be outside these limits, if there is a frequency difference.
[^2]Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 57: SGMII to SGMII/Fiber Latency Timing (Register 27_4.14 = 1)

4.11.7.2 $10 / 100 / 1000 B A S E-T$ to SGMII Latency Timing (Register 27_4.14 =11)

Table 204: 10/100/1000BASE-T to SGMII Latency Timing (Register 27_4.14 = 1)
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\begin{aligned} & \text { TAS_MDI_SERT } \\ & \times _1000 \end{aligned}$	MDI SSD1 to S_OUTP/N Start of Packet		$404^{1,2}$		484	ns
TDA_MDI_ SERTX_1000	MDI CSReset, CSExtend, CSExtend_Err to S_OUTP/N /T/		$404^{1,2,3}$		484	ns
TAS_MDI_SERT X_100	MDI /J/ to S_OUTP/N Start of Packet		$1048{ }^{2}$		1300	ns
TDA_MDI_ SERTX_100	MDI /T/ to S_OUTP/N /T/		$1048^{2,3}$		1300	ns
$\begin{aligned} & \text { TAS_MDI_SERT } \\ & \times _10 \end{aligned}$	MDI Preamble to S_OUTP/N Start of Packet		$8577^{2,4}$		10583	ns
TDA_MDI_ SERTX_10	MDI ETD to S_OUTP/N /T/		$8577^{2,3,4}$		10583	ns

1. In 1000BASE-T the signals on the 4 MDI pairs arrive at different times because of the skew introduced by the cable. All timing on MDIP/N[3:0] is referenced from the latest arriving signal.
2. Assumes Register 16.13:12 is set to 00, which is the minimum latency. Each increase in setting adds 8 ns of latency $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
3. Minimum and maximum values on end of packet assume zero frequency drift between the received signal on MDI and S_OUTP/N. The worst case variation will be outside these limits if there is a frequency difference.
4. Actual values depend on number of bits in preamble and number of dribble bits, since nibbles on MII are aligned to start of frame delimiter and dribble bits are truncated.
[^3]Figure 58: 10/100/1000BASE-T to SGMII Latency Timing (Register 27_4.14 = 1)

4.11.7.3 SGMII to 10/100/1000BASE-T Latency Timing (Register 27_4.14 = $\mathbf{1}^{\mathbf{1}}$)

Table 205: SGMII to 10/100/1000BASE-T Latency Timing (Register 27_4.14 = 1)
(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Units
TAS_SERRX MDI_1000	S_INP/N Start of Packet /S/ to MDI SSD1		$304{ }^{1}$		364	ns
TDA_SERRX MDI_1000	S_INP/N /T/ to MDI CSReset, CSExtend, CSExtend_Err		$304^{1,2}$		364	ns
TAS_SERRX MDI_100	S_INP/N Start of Packet/S/ to MDI /J/		952^{1}		1180	ns
TDA_SERRX MDI_100	S_INP/N /T/ to MDI /T/		$952^{1,2}$		1180	ns
TAS_SERRX_ MDI_10	S_INP/N Start of Packet /S/ to MDI Preamble		7582^{1}		9615	ns
$\begin{aligned} & \text { TDA_SERRX_ } \\ & \text { MDI_10 } \end{aligned}$	S_INP/N /T/ to MDI ETD		$7582^{1,2}$		9615	ns

1. Assumes register $16.15: 14$ is set to 00 , which is the minimum latency. Each increase in setting adds 8 ns of latency in $1000 \mathrm{Mbps}, 40 \mathrm{~ns}$ in 100 Mbps , and 400 ns in 10 Mbps .
2. Minimum and maximum values on end of packet assume zero frequency drift between the transmitted signal on MDI and the received signal on S_INP/N. The worst case variation will be outside these limits, if there is a frequency difference.
[^4]Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Figure 59: SGMII to 10/100/1000BASE-T Latency Timing (Register 27_4.14 = 1)

5 Mechanical Drawings

$5.1 \quad$ 128-Pin LQFP Package Drawing

Figure 60: 128-Pin LQFP Package

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 206: 128-Pin LQFP Package Dimensions in mm

Symbol	Dimension in mm		
	Min	Nom	Max
A	--	--	1.60
A_{1}	0.05	--	0.15
A_{2}	1.35	1.40	1.45
b	0.17	0.22	0.27
b_{1}	0.17	0.20	0.23
c	0.09	--	0.20
c_{1}	0.09	--	0.16
D	21.90	22.00	22.10
D_{1}	19.90	20.00	20.10
E	15.90	16.00	16.10
E_{1}	13.90	14.00	14.10
e	0.50 BSC		
L	0.45	0.60	0.75
L_{1}	1.00 REF		
R_{1}	0.08	--	--
R_{2}	0.08	--	0.20
S	0.20	--	--
q	0°	$3.5{ }^{\circ}$	7°
θ_{1}	$4^{\circ} \mathrm{TYP}$		
θ_{2}	$12^{\circ} \mathrm{TYP}$		
θ_{3}	$12^{\circ} \mathrm{TYP}$		

Exposed Pad Size	
D_{2}	6.40
E_{2}	3.91

5.2 196-Pin TFBGA Package Drawing

Figure 61: 196-Pin TFBGA Package

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

Table 207: 196-Pin TFBGA Package Dimensions in mm

Symbol	Dimension in mm		
	Min	Nom	Max
A	---	---	1.50
A1	0.30	0.40	0.50
A2	---	0.89	---
c	---	0.36	---
D	14.90	15.00	15.10
E	14.90	15.00	15.10
D1	---	13.00	---
E1	---	13.00	---
e	---	1.00	---
b	0.40	0.50	0.60
aaa		0.20	
bbb		0.25	
ccc		0.35	
ddd		0.12	
eee		0.25	
fff		0.10	
MD/ME		$14 / 14$	

1. CONTROLLING DIMENSION : MILLIMETER.
2. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
Note
3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
4. THERE SHALL BE A MINIMUM CLEARANCE OF 0.25mm BETWEEN THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.

Part Order Numbering/Package Marking

6.1 Part Order Numbering

Figure 62 shows the part order numbering scheme for the 88E1545/88E1543/88E1548. Refer to Marvell Field Application Engineers (FAEs) or representatives for further information when ordering parts.

Figure 62: Sample Part Number

Package Code
LKJ = 128-pin LQFP
BAM $=196-$ pin TFBGA

Table 208: 88E1545/88E1543/88E1548 Part Order Options

Package Type	Part Order Number
88E1545 128-pin LQFP	$88 E 1545-x x-L K J 2 C 000$ (Commercial, Green, RoHS 6/6 and Halogen-free package)
88E1543 128-pin LQFP	$88 E 1543-x x-L K J 2 C 000$ (Commercial, Green, RoHS 6/6 and Halogen-free package)
88E1548 196-pin TFBGA	$88 E 1548-x x-$ BAM2C000 (Commercial, Green, RoHS $6 / 6$ and Halogen-free package)

Alaska ${ }^{\circledR}$ 88E1545/88E1543/88E1548 Datasheet - Unrestricted Integrated 10/100/1000 Mbps Energy Efficient Ethernet Transceiver

6.2 Package Marking

The following figures show sample Commercial package markings and pin 1 location for the 88E1545/88E1543/88E1548:

- Figure 63 for 88E1545 128-pin LQFP
- Figure 64 for 88E1543 128-pin LQFP
- Figure 65 for 88E1548 196-pin TFBGA

Figure 63: 88E1545 128-pin LQFP Commercial Package Marking and Pin 1 Location

Note: The above drawing is not drawn to scale. Location of markings is approximate.

Figure 64: 88E1543 128-pin LQFP Commercial Package Marking and Pin 1 Location

Note: The above drawing is not drawn to scale. Location of markings is approximate.

Figure 65: 88E1548 196-pin TFBGA Commercial Package Marking and Pin 1 Location

Note: The above drawing is not drawn to scale. Location of markings is approximate.

Marvell Technology Group
http://www.marvell.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Ethernet ICs category:
Click to view products by Marvell manufacturer:
Other Similar products are found below :
EZFM6324A S LKA5 EZFM6364A S LKA7 12200BS23MM EZFM5224A S LKA3 VSC8522XJQ-02 WGI219LM SLKJ3 EZFM6348A S LKA6 WGI219V SLKJ5 BCM84793A1KFSBG BCM56680B1KFSBLG BCM53402A0KFSBG BCM56960B1KFSBG EZX557AT2 S LKVX BCM56842A1KFTBG BCM56450B1KFSBG EZX557AT S LKW4 LAN9254-I/JRX RTL8211FS-CG RTL8153-VC-CG CH395L KTI225IT S LNNK KTI225IT S LNNL VSC8562XKS-14 BCM56864A1IFSBG KSZ8462FHLI LAN9303MI-AKZE KSZ8841-16MVLI X550T2BLK KSZ8842-16MVLI KSZ8893MQL VSC8244XHG ADIN2111BCPZ ADIN2111CCPZ-R7 FIDO2100BGA128IR0 FIDO5210CBCZ FIDO5210BBCZ FIDO5110CBCZ FIDO5200CBCZ ADIN1110BCPZ ADIN1110CCPZ ADIN1100BCPZ ADIN1110CCPZ-R7 ADIN1100CCPZ-R7 ADIN1110BCPZ-R7 DM9000EP DM9161AEP HG82567LM S LAVY LAN9210-ABZJ LAN9221-ABZJ LAN9221I-ABZJ

[^0]: 1. VDDC supplies XTAL_IN/OUT
[^1]: 1. When VDDOL $=3.3 \mathrm{~V}$, the RESETn pin can operate at 2.5 V level. See Table 177 on page 169 for details.
[^2]: 1. SGMII to SGMII/Fiber latency timing only applies when QSGMII crossover loopback is enabled
[^3]: 1. $10 / 100 / 1000$ BASE-T to SGMII latency timing (Register $27 _4.14$ = 1) only applies when QSGMII crossover loopback is enabled.
[^4]: 1. SGMII to $10 / 100 / 1000$ BASE-T (Register $27 _4.14=1$) latency timing only applies when QSGMII crossover loopback is enabled.
