Matrix Opto Co．，Ltd

MG1A01 GaAs Hall

MG1A01 砷化镓霍尔元件

－Linear GaAs Hall Element

线性砷化镓霍尔元件
－Excellent Thermal Characteristics

卓越的热稳定特性

－Thin－type DFN Package

超薄 DFN封装

－外形尺寸图 Dimensional Drawing（Unit MM）

Sensing center diameter $\Phi=0.3 \mathrm{~mm}$

－最大额定值 Absolute Maximum Rating

Operating Temperature Range工作温度
Storage Temperature Range $\quad-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
存储温度
Maximum Input Voltage $V_{c}[\mathrm{~V}] 9.5 \mathrm{~V}$
最大输入电压 $V_{c}[\mathrm{~V}]$
Maximum Input Power $P_{0}[\mathrm{~mW}] 105 \mathrm{~mW}$
最大输入功率

－电气特性（室温 $25^{\circ} \mathrm{C}$ ）Electrical Characteristics（ $\mathrm{RT}=25^{\circ} \mathrm{C}$ ）

MATRIXOPTO

Table 1．Electrical Characteristics of MG1A01．
表1．MG1A01电气特性

项目 Item	符号 Symbol	测量条件 Test Condi．	最小 Min．	标准 Typ．	最大 Max．	单位 Unit
霍尔电压 Hall Voltage	$V_{\text {H }}$	$\begin{gathered} B=50 \mathrm{mT}, \mathrm{~V}_{\mathrm{C}}=6 \mathrm{~V} \\ T_{\mathrm{a}}=\mathrm{RT} \end{gathered}$	55		75	mV
输入电阻 Input Resistance	$R_{\text {in }}$	$\begin{gathered} B=0 \mathrm{mT}, \ell_{\mathrm{C}}=0.1 \mathrm{~mA} \\ T_{\mathrm{a}}=\mathrm{RT} \end{gathered}$	650		850	Ω
输出电阻 Output Resistance	$R_{\text {out }}$	$\begin{gathered} B=0 \mathrm{mT}, \ell_{\mathrm{C}}=0.1 \mathrm{~mA} \\ T_{\mathrm{a}}=\mathrm{RT} \end{gathered}$	650		850	Ω
非平衡电压 Offset Voltage	V os	$\begin{gathered} B=0 \mathrm{mT}, \mathrm{~V}_{\mathrm{C}}=6 \mathrm{~V} \\ T_{\mathrm{a}}=\mathrm{RT} \end{gathered}$	－5		＋5	mV
输出电压温度系数 Temp．Coeffi．of V_{H}	$\left\|\alpha V_{\text {H }}\right\|$	$\begin{gathered} B=50 \mathrm{mT}, l_{\mathrm{C}}=5 \mathrm{~mA}, \\ T_{\mathrm{a}}=25^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C} \end{gathered}$			0.06	\％／${ }^{\circ} \mathrm{C}$
输入电阻温度系数 Temp．Coeffi．of $R_{\text {in }}$	$\alpha R_{\text {in }}$	$\begin{gathered} B=0 \mathrm{mT}, I_{\mathrm{C}}=0.1 \mathrm{~mA}, \\ T_{\mathrm{a}}=25^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C} \end{gathered}$			0.3	\％／${ }^{\circ} \mathrm{C}$
线性度 linearity	ΔK	$\begin{gathered} B=0.1 \sim 0.5 \mathrm{~T}, \\ t_{C}=5 \mathrm{~mA}, T_{\mathrm{a}}=\mathrm{RT} \end{gathered}$	－2		2	\％

Note：
1． $\boldsymbol{V}_{\mathrm{H}}=\boldsymbol{V}_{\mathrm{H}-\mathrm{M}}-\boldsymbol{V}_{\mathrm{os}}$
in which $\boldsymbol{V}_{\mathrm{H}-\mathrm{M}}$ is the Output Hall Voltage， $\boldsymbol{V}_{\mathrm{H}}$ is the Hall Voltage and $\boldsymbol{V}_{\text {os }}$ is the offset Voltage under the identical electrical stimuli．

2．$\alpha \boldsymbol{V}_{\mathrm{H}}=\frac{1}{\boldsymbol{V}_{\mathrm{H}}\left(\boldsymbol{T}_{a 1}\right)} \times \frac{\boldsymbol{V}_{\mathrm{H}}\left(\boldsymbol{T}_{a 2}\right)-\boldsymbol{V}_{\mathrm{H}}\left(\boldsymbol{T}_{a 1}\right)}{\boldsymbol{T}_{a 2}-\boldsymbol{T}_{a 1}} \times 100$

$$
\boldsymbol{T}_{a 1}=25^{\circ} \mathrm{C}, \quad \boldsymbol{T}_{a 2}=125^{\circ} \mathrm{C}
$$

3．$\alpha \boldsymbol{R}_{\text {in }}=\frac{1}{\boldsymbol{R}_{\text {in }}\left(\boldsymbol{T}_{a 1}\right)} \times \frac{\boldsymbol{R}_{\text {in }}\left(\boldsymbol{T}_{a 2}\right)-\boldsymbol{R}_{\text {in }}\left(\boldsymbol{T}_{a 1}\right)}{\boldsymbol{T}_{a 2}-\boldsymbol{T}_{a 1}} \times 100$

$$
\boldsymbol{T}_{a 1}=25^{\circ} \mathrm{C}, \quad \boldsymbol{T}_{a 2}=125^{\circ} \mathrm{C}
$$

4．$\quad \Delta \boldsymbol{K}=\frac{K\left(B_{1}\right)-K\left(B_{2}\right)}{\frac{K\left(B_{1}\right)+K\left(B_{2}\right)}{2}} \times 100 \quad \boldsymbol{K}=\frac{V_{\mathrm{H}}}{I_{c} \times \boldsymbol{B}}$

Matrix Opto Co．，Ltd

－特征曲线图 Characteristic Curves

Figure 1．Input resistance $\boldsymbol{R}_{\text {in }}$ as a function of ambient temperature $\boldsymbol{T}_{\mathrm{a}}$

Figure 2. Hall voltage $\boldsymbol{V}_{\mathbf{H}}$ as a function of magnetic flux density \boldsymbol{B}.

Figure 3. Hall voltage $\boldsymbol{V}_{\mathrm{H}}$ as a function of ambient temperature $\boldsymbol{T}_{\mathrm{a}}$.

Figure 4. Hall voltage $\boldsymbol{V}_{\mathrm{H}}$ as a function of electrical stimuli $\boldsymbol{I}_{\mathrm{c}} / \boldsymbol{V}_{\mathrm{c}}$.

－ESD 预防措施

本产品是对ESD（静电放电）敏感的设备。在以下环境中处理带有ESD警告标记的霍尔元件 ：

- 不太可能出现静电荷的环境（例如：相对湿度超过 $40 \% R H$ ）。
- 处理器件时佩戴防静电服和腕带
- 对于直接接触器件的容器建议实施ESD防护措施。
- 存储注意事项
- 在开封MBB后，产品应在适当的温度和湿度（ 5 至 $35^{\circ} \mathrm{C}, ~ 40$ 至 $60 \% R H$ ）下储存。 强烈建议使用自密封袋，使产品远离氯气和腐蚀性气体。

－长期储存

产品用MBB密封
－对于超过2年的储存，建议在MBB密封的氮气氛中储存。大气中的水氧会导致器件引脚氧化，从而导致引脚焊接能力变差。

－安全注意事项

- 不要通过燃烧，粉碎或化学处理等方式将本产品变成气体，粉末或液体。
- 丟弃本产品时，请遵守法律和公司规定。

- Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise. (Ex; Relative Humidity; over 40\%RH).
- Wearing the antistatic suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

- Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5 to $35^{\circ} \mathrm{C}, 40$ to $60 \% \mathrm{RH}$) after the unsealing of MBB. Keeping products away from chlorine and corrosive gas.
- Long-term storage

Products are sealed in MBB.

- For storage longer than 2 years, it is recommended to store in nitrogen atmosphere with MBB sealed.

Oxygen and $\mathrm{H}_{2} \mathrm{O}$ of atmosphere oxidizes leads of products and lead solder ability get worse.

- Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Matrix Opto manufacturer:
Other Similar products are found below :
HGPRDT005A AH277AZ4-AG1 AV-10448 SS41C AH1894-Z-7 TLE4917 TLE4946-1L 50017859-003 TY-13101 TLE4976L
A1308KUA-1-T SS85CA BU52002GUL-E2 BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH3382-P-B AH3377-P-B
AH211Z4-AG1 AH3360-FT4-7 TLE4941-1 SS460S-100SAMPLE AH374-P-A TLE49595UFXHALA1 SS460P-T2 AH1913-W-7 AH3373-P-B TLE9852QXXUMA1 MA732GQ-Z MA330GQ-Z TLE49421CHAMA2 AH1903-FA-EVM AH8502-FDC-EVM TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E1210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1 MA710GQ-P S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U $\underline{\text { S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U }}$

