

Technical Manual

Revision1.1

PCB Revision: 1.0 or greater
Firmware Revision: 1.0 or greater

Revision History

Revision	Description	Author
1.0	Initial Release	Clark
1.1	Added VFD Option	Clark

Table of Contents

Introduction 2
Quick Start 3
Parts Included 3
Basic Connections 4
USB5
Serial.6
I2C. 7
Software 8
Numeric Conversion 8
Hyperterminal 8
uProject. 9
Code (C\#) 9
Hardware 10
Advanced Connections10
Screen.11
Serial DB9 Connector 11
USB Connectors 12
Power/Communication Header 12
AC Power Input. 13
Protocol Select. 13
Keypad. 14
General Purpose Output 14
Dallas One-Wire 15
Manual Override 15
Troubleshooting 16
Power. 16
Display. 16
Communication 16
Manual Override 16
Commands 17
Appendix. 34
Character Set 34
Environmental 35
Electrical. 35
Optical. 35
Dimensional Drawing 36
Ordering 37
Options. 37
Accessories 38
Production Products. 41
Display Options. 41
Definitions 43
Contact Info 44

MATRIX ORBITAL "DévDevill'

Introduction

The Matrix Orbital DevDevil is a product development board which provides all of the functionality of an alphanumeric display in a project development friendly package. A variety of color options are offered for both the 2 row by 20 column and 4 row by 20 column screen models.

All DevDevil products contain the same 6 general purpose outputs and 5×5 keypad input found on their production counterparts. In addition to the regular 5V, 20 mA outputs, indicator LEDs can be enabled beside each GPO to provide status indication. Alternate keys are also added in a tactile style layout, sharing the same pins as the regular keypad. The keypad header also has the same power and ground pins to provide optional grounding or backlight support.

The DevDevil also offers RS232, USB, TTL, and I2C protocols through a dynamic switch block, rather than the more rigid solder jumpers found on the production model. Maximum communication speeds, however, remain the same for these protocols; 153800bps for Serial protocols and 100,00Kbps for I2C. Standard headers for all protocols are offered on the board, as well as a variety of input power options.

Powering up the DevDevil can be as easy as connecting to the mini-USB connector on board. Alternate power options include an AC adapter, power through the DB9 header, and 4 pin data/power input. The basic USB connection can be used to easily interface to the development board while the additional options are useful for more advanced project requirements.

The following pages will outline these features in greater detail and provide instruction for connecting and communicating to the Matrix Orbital DevDevil. Using just the information provided and a little imagination, the DevDevil can open the door to a world of exciting display possibilities!

Quick Start

Parts Included

Illustration 1: Included* and Optional Parts

$1 \times$	DevDevil Development Board
$1 \times$	3ft mini-B USB Cable
$1 \times$	Breadboard Development Cable**
$1 \times$	AC Power Adapter**
$1 \times$	Aft Serial Cable**

Table 1: Included* and Recommend Parts List

[^0]
Basic Connections

Illustration 2: DevDevil Basic Connections

Table 2: DevDevil Basic Connections

Cables Required EXTMUSB3FT

Table 3: USB Protocol Select

Illustration 3: USB Connection

The USB connection is the quickest, easiest solution for PC development. After driver installation, the DevDevil will be accessible through a virtual serial port, providing the same result as a serial setup without the cable hassle. To connect to your DevDevil using USB protocol, please follow the steps below.

1. Prepare the onboard jumpers.
i. Ensure that Input Select jumper is set to USB, see highlight 6 in Illustration 2: DevDevil Basic Connections..
ii. Disconnect the Voltage Select jumper, see highlight 7 in Illustration 2: DevDevil Basic Connections..
2. Set the Protocol Select switches.
i. Place the unit into USB protocol by moving switches 4,5 , and 6 up into the on position, while ensuring the remainder are down in the off position, see highlight 5 in Illustration 2: DevDevil Basic Connections..
3. Make the connections.
i. Plug the mini-B header of your external mini USB cable into the DevDevil and the regular USB header into your computer USB jack, see highlight 1 in Illustration 2: DevDevil Basic Connections..
4. Install the drivers.
i. Download the latest drivers at www.matrixorbital.ca/drivers, and save them to a known location.
ii. When prompted, install the USB bus controller driver automatically.
iii. If asked, continue anyway, even though the driver is not signed.
iv. When the driver install is complete, your display will turn on, but communication will not yet be possible.
v. At the second driver prompt, install the serial port driver automatically.
vi. Again, if asked, continue anyway.
5. Create.
i. Use uProject or hyperterminal to get started, then move on with your own development. Instructions for the former and a simple C\# example is available for the latter can be located in the Software section.

Serial

Cables Required ACPC, CSS4FT

\section*{| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 10 | | | | | | |}

$\mathrm{x} \times \mathrm{x}$
x x X x x x x
Table 4: RS232 Protocol Select

Illustration 4: RS232 Connection

Serial protocol provides a classic alternative the the USB method listed above. Two additional cables are required for this connection; the 4 ft serial cable and AC power adapter. These must be purchased in addition to the DevDevil kit. This set up will provide constant regulated power to your development board and provide a familiar communication scheme. To place your board in Serial mode, just adhere to the steps laid out below.

1. Prepare the onboard jumpers.
i. Select Input Power on the Input Select jumper, see highlight 6 in Illustration 2: DevDevil Basic Connections..
ii. Remove the Voltage Select jumper, see highlight 7 in Illustration 2: DevDevil Basic Connections.
2. Set the Protocol Select switches.
i. Place the unit into Serial protocol by moving switches 1,2 , and 3 up into the on position, while ensuring the remainder are down in the off position, see highlight 5 in Illustration 2: DevDevil Basic Connections..
3. Make the connections.
i. Insert the male end of your serial cable into the corresponding header on the unit and mate the female connector with the desired communication port of your computer, see highlight 3 in Illustration 2: DevDevil Basic Connections..
ii. Place the output power plug of your AC power adapter into the onboard barrel jack and connect the business end of the device into an available wall socket, see highlight 4 in Illustration 2: DevDevil Basic Connections..
4. Create.
i. Again, uProject or hyperterminal will get started, then move on with your own development. Instructions for the former and a simple C\# example is available for the latter can be located in the Software section.

$I^{2} C$

Cables Required BBC

$x \quad x \quad x \quad x \quad x \quad x \quad x$
Table 5: ${ }^{2}$ C Protocol Select

Illustration 5: I^{2} C Connection

The most advanced connection to the DevDevil is provided by the $I^{2} C$ protocol setting. This mode is usually used when connecting to a controller and serial TTL capability is not available. It requires a connection directly to your project, best accomplished using a breadboard and the included cable of the same name. Power is usually applied from the breadboard, but can also be supplied directly to the DevDevil using the optional AC power adapter. To dive right into your application and use the DeveDevil in $I^{2} \mathrm{C}$ mode, get started with the guidelines below.

1. Prepare the onboard jumpers.
i. Connect the Input Power side of the Input Select jumper, see highlight 6 in Illustration 2: DevDevil Basic Connections..
ii. Select the appropriate Voltage Select jumper placement according to input voltage supplied, see highlight 7 in Illustration 2: DevDevil Basic Connections..
2. Set the Protocol Select switches.
i. Place the unit into $I^{2} C$ protocol by moving switches 9 and 10 up into the on position, while ensuring the remainder are down in the off position, see highlight 5 in Illustration 2: DevDevil Basic Connections..
3. Make the connections.
i. Connect the breadboard cable header to the power/communication header on your DevDevil and plug the four leads into your breadboard. The red lead will require power, while the black should be connected to ground. The green and yellow should be connected to your controller clock and data lines respectively, see highlight 2 in Illustration 2: DevDevil Basic Connections..
ii. If required, power can be drawn from a wall source by removing the Voltage Select jumper. Place the output power plug of your AC power adapter into the onboard barrel jack and connect the business end of the device into an available wall socket, see highlight 4 in Illustration 2: DevDevil Basic Connections..
4. Create.
i. This time you're on your own. While there are many examples within the Matrix Orbital AppNote section, www.matrixorbital.ca/appnotes, too many controllers and languages exist to cover them all. If you get stuck in development, it's a breeze to switch over to another protocol, and fellow developers are always on our forums, http://www.Icdforums.com/forums, for additional support.

Software

Numeric Conversion

All command values listed in the document are shown in decimal notation for continuity and simplicity, however, different applications my require different numeric systems. The most basic computing numeric system is binary notation. Each digit is a placeholder for a value equaling 2 to the power of it's position. Decimal notation can be converted using the table below by placing a one in the largest placeholder value, subtracting that placeholder number from the decimal number, then using the remaining number to repeat the process. The decimal number 88 is written as follows.

Table 6: Binary Conversion

Table 7: Hexadecimal Conversion

From binary, numbers can be easily converted to hexadecimal for quick interpretation and manipulation. Four bits are converted to a single character from 0 to F, meaning a byte can be written with just two characters. These can then be used in a look up table to locate corresponding ASCII characters, which represent bytes with a single digit. The website www.ascii-table.com is a good reference for numeric conversions, including all of those mentioned above.

Hyperterminal

Installed on most Windows computers, hyperterminal can be run by selecting run and typing 'hypertrm' in the command line. This basic program will allow communication between a PC and your display.

When starting up a name must be given to your connection and an icon may be chosen, neither is consequential. Next, select the appropriate communication port that your display is connected to. Finally, the port settings below must be entered to complete the port setup.

BPS	Data Bits	Parity	Stop Bits	Flow Control
19200	8	None	1	None

Table 8: Hyperterminal Settings
Once a port is successfully set up, data can be sent to an attached display by typing on the keyboard. At this point, it may be helpful to echo keys to the monitor. Select properties from the file menu and open the ASCII settings from settings tab.

Commands can be sent to an attached display by issuing decimal commands using the number pad. While the ALT key is held down, four digit decimal values can be sent as a single ASCII character. For example, to clear the screen try the following sequence.
ALT +0254 ALT +0088

Table 9: Hyperterminal Command Format
Any commands or text desired can be sent to the communication port using this method to provide total control of any Matrix Orbital display.

uProject

The Matrix Orbital alphanumeric display tuner, or uProject, is offered as a free download from the www.matrixorbital.ca support site. It allows the basic functionality of any display* to be tested using a simple graphical user interface system.

While basic functionality can be tested using the GUI portion of the program, more advanced users will enjoy the scripting capability found in the uploader tab. Here commands can be stacked, run, and saved for later use. Although many commands are available to be dragged into the script dialog, perhaps the most powerful is the raw data command found in the other branch.

This command allows raw bytes to be sent to the display, permitting many different formats for entry and displaying in decimal notation. Any command from this manual may be entered in decimal notation separated by slashes.

$$
\text { / } 254 \text { // } 88 \text { / }
$$

Table 10: uProject Raw Data Format

Again, the clear screen command is sent to a connected display, this time using uProject raw data command style. Scripts can be run as a whole using the execute command from the script menu, or as single commands by selecting execute once. Before issuing commands, it is a good idea to ensure communication with a display is successful using some of the more basic GUI functions in the main window.

This program provides scratch pad upon which a tome of display projects and ideas can be assembled.
*Note: The uProject AutoDetect function will not preform correctly when a USB display is connected. Please manually configure any USB display.

Code (C\#)

Full demonstration programs and code are available for the DevDevil in the C\# language from Simple C\# AppNote Pack in the Matrix Orbital Application Note section at www.matrixorbital.ca/appnotes. Difficulty increases from beginner, with the Hello World program, to advanced with the Dallas One-Wire temperature reading application.

These programs are meant to showcase the capability of the DevDevil and are not intended to be integrated into a final design. For additional information regarding code, please read the On Code document also found on the support site.

Hardware

Advanced Connections

Illustration 6: DevDevil Advanced Connections

8	Screen*	15	Keypad Buttons
9	Power Indicator	16	GPO Header
10	Optional Power Through DB9 Jumper**	17	GPO Indicators
11	Serial Communication Indicators	18	GPO Indicator Enable
12	Optional Alternate USB Header**	19	Dallas One-Wire Connector
13	USB Communication Indicators	20	Manual Override
14	Keypad Header		

Table 11: DevDevil Advanced Connections

[^1]
Screen

Illustration 7: Screen Location and Power Indicator

The DevDevil provides a twenty character column alphanumeric display that is either two or four rows high. Both of these popular screens are available in an array of colours on a variety of Production modules listed in the appendix below. The initial power up message, contrast, and brightness settings are customizable.

Serial DB9 Connector

Mating Cables CSS1FT, CSS4FT

Illustration 8: Serial DB9 Connector, Power Option, and Indicators

The serial protocol is most easily accessed using DB9 serial header onboard. This connection provides receive, transmit, and ground pins with an option to supply power to the entire board as well. Using a custom cable with power supplied to pin 9 , either 5 V or $9-15 \mathrm{~V}$ can be supplied to the board once the ' D ' jump is soldered. It is also important to set the appropriate pins on the Voltage Select jumper and ensure the Power Select jumper is set to input.

USB Connectors

Mating Cables EXTMUSB3FT, INTMUSB3FT

Illustration 9: Mini and Alternate USB Connections with Indicators

The mini USB configuration is supplied for communication and power input. To order the DevDevil with the alternate USB header populated for more advanced applications, contact a Matrix Orbital sales representative. In order to power the DevDevil using USB, ensure that the Voltage Select jumper is removed and the Power Select jumper is set to USB. Please see the USB quick start guide for additional information.

Power/Communication Header

Illustration 10: Power/Communication Header and Voltage Select

The Power and Communication Header is the most versatile connector on the DevDevil. As mentioned in the quick start guide, It can provide a serial or $I^{2} \mathrm{C}$ communication connection and offers power and ground inputs for power. Input power to this connector can be either 5 V or $9-15 \mathrm{~V}$, however, it is important that the Voltage Select jumper is set to match. The Power Select jumper should also be set to input. Please see the serial quick start guide for more information.

AC Power Input

Illustration 11: AC Power Jack and Input Select

In addition to the methods mentioned above, the DevDevil can be powered with an AC to DC adapter. The output voltage of any device must be between 9 and 15 volts DC and the barrel used must be center positive. For this configuration, the Voltage Select jumper must be placed on the $9-15 \mathrm{~V}$ Input side and the Power Select jumper set to input. This input can be useful when communicating to the device via a computer serial port.

Protocol Select

Illustration 12: Protocol Select Switches

To change the communication protocol used on the DevDevil, easy to use switches are provided. Three switches are required for both RS232 and USB protocols, while only two are needed for TTL or I2C communication. To make a selection, push all the switches in the desired block up, toward the centre of the board while pulling all others down.

Keypad

```
Mating Cables KPP4X4
```


Illustration 13: Keypad Header and Buttons

Facilitating user input, the keypad interface header allows a Matrix Orbital or any other passive matrix style input device to be attached to the DevDevil in a 5×5 row, column format. A customizable value is returned to the host each time one of the five row pins is connected to a column pin. Two additional pins are offered on either side of these inputs to provide a single ground and a selectable ground or power pin to provide grounding or backlight capabilities to an external input device. Alternatively, some of the row and column inputs are doubled on the keypad layout onboard for quick testing as per the legend provided on the module.

General Purpose Output

Illustration 14: General Purpose Outputs, Indicators, and Indicator Enable

A total of six devices can be driven using the general purpose outputs available on the DevDevil. Each output 5V, 20mA output can be software toggled. Indicator LEDs can be activated by jumping LED Enable. These outputs are most commonly drive transistor circuitry to provide switching capability.

Dallas One-Wire

Mating Cables Temperature Probe

Illustration 15: Dallas One-Wire Connector

The Dallas One-Wire header affords the ability to add a variety of devices to the DevDevil for purposes ranging from temperature sensing to external memory. Multiple devices can be connected to this bus and accessed using the DevDevil. Only non-parasitic devices, those drawing power from the dedicated pin rather than the data line, have been tested, however, the data line has been pulled high through the nearby resistor to facilitate parasitic operation. A simple temperature monitoring application has been provided using the Matrix Orbital probe.

Manual Override

Illustration 16: Manual Override

A Manual Override feature is available on the DevDevil to override all settings to their factory defaults. This override can be extremely useful if the device becomes unresponsive or behaves in an undesirable fashion. To override the unit to the values below, see the Manual Override entry in the Troubleshooting section below. Please note that the settings will be temporary and will revert when power is cycled once more, so it is recommended that desired settings are saved.

Baud Rate	19200
$I^{2} \mathrm{C}$ Address	0×50
Backlight	255
Contrast	128

Table 12: Manual Override Settings

Troubleshooting

Power

In order for the DevDevil to function correctly, it must be supplied with the appropriate power. If the D10 power LED near the AC power adapter input is not illuminated, power is not applied correctly. Try following the tips below.

- When using the mini USB header for power, ensure that no jumper is present on the J 6 Input Voltage selection.
- The $A C$ power adapter input also requires no jumper on the Input Voltage Select jumper.
- If power is applied through the DB9 connector, ensure 'D' is connected and the appropriate 5 V or $9-15 \mathrm{~V}$ Input Voltage Selection is jumped at J6.
- Power applied through the 4 pin power/communication header must also be specified using the appropriate 5 V or 9-15V Voltage selection.
- Ensure all the appropriate protocol select switches are pressed up into the on position and all unused protocol switches are down.
- Select the appropriate power source by selecting USB power at J14 for a USB connection or Input power for all other sources.

Display

If the DevDevil is powered successfully, the Matrix Orbital logo, or user created screen should display on start up. If this is not the case, check out these tips.

- Ensure the contrast is not too high or too low. This can result in a darkened or blank screen respectively. See manual override below.
- Make sure that the start screen is not blank. It is possible to overwrite the Matrix Orbital logo start screen, if this happens the screen may be blank. Try writing to the display to ensure it is functional, after checking the contrast above.

Communication

When communication of either text or commands is interrupted, try the steps below.

- Ensure the baud rate of the DevDevil and host match.
- Unlock the display. See the Set and Save Data Lock command for more info.
- Match Rx from the DevDevil to the transmitting pin from your host and the Tx pin to the receiving pin.

Manual Override

Should the settings of the DevDevil become altered in a way that dramatically impacts usability, the defaults can be temporarily restored. To override the display, please follow the steps below.

1. Disconnect power from your DevDevil.
2. Place a jumper on the middle two pins of the keypad header, R5 and C1.
3. Reconnect power to your unit, and wait for the start screen before removing the override jumper.
4. Settings will be temporarily overridden to the defaults listed in Table 12: Manual Override Settings. At this point any important settings, such as contrast, backlight, or baud rate, should not only be set but saved so they remain when the override is removed.

Commands

1. Communications

1.1. Changing the I2C
Dec
25451 Address
Slave Address
Hex FE 33 Address ASCII - 3 Address

Immediately changes the $I^{2} \mathrm{C}$ write address.
Address 1 byte, even value

1.2. Changing the	Dec Baud Rate	25457 Hex
	FE 39 Speed	
ASCII	$\square 9$ Speed	

Immediately changes the baud rate. Can be temporarily forced to 19200 with manual override.
Speed 1 byte, valid settings shown below

Rate	1200	2400	4800	9600	19200	28800	38400	57600
Speed	83	41	207	103	51	34	25	16

1.3.Setting a Non- Dec 254164 Speed
 Standard Baud Rate Hex FE A4 Speed

Immediately changes the baud rate to a non-standard value. Range is 977 to 153800 . Speed must be a whole number. Due to rounding, error increases with baud rate, actual baud must be within 3% of desired baud to ensure accurate communication. Baud rate can be temporarily forced to 19200 by a manual override.

Speed 2 byte, calculations shown below

$$
\begin{gathered}
\text { Speed }=\frac{\text { CrystalSpeed }}{(8 \times \text { DesiredBaud })}-1 \quad \text { ActualBaud }=\frac{\text { CrystalSpeed }}{(8 \times(\text { Speed }+1))} \\
\frac{\mid \text { DesiredBaud }- \text { ActualBaud } \mid}{\text { DesiredBaud }}<0.03
\end{gathered}
$$

```
1.4.Transmission Dec 254160 Protocol
    Protocol Select Hex FE AO Protocol
```

Selects the protocol used for data transmission to the host. Data transmission from the host is not affected. Must be set to the protocol in use to receive data correctly.

Protocol 1 byte, 1 for Serial (RS232/TTL/USB) or 0 for $I^{2} C$

2. Text

2.1.Control Characters*

8 (08Hex) Backspace 10 (0AHex) Line feed/New line 12 (0 CHex) Clear screen/New page 13 (0DHex) Carriage return
*Note: Regular text can be sent using regular alphanumeric strings or individual character values, starting at 65.

```
2.2.Auto Scroll Dec }2548
    On Hex FE 51
ASCII ■ Q
```

Entire contents of screen are shifted up one line when the end of the screen is reached. Display default is auto scroll on.

2.3.Auto Scroll	Dec	25482
Off	Hex	FE 52
	ASCII	$\square R$

New text is written over the top line when the end of the screen is reached. Display default is auto scroll on.

2.4. Clear Screen	Dec	25488
Hex	FE 58	
ASCII	$■ X$	

Clears the contents of the screen.

2.5.Changing the	Dec	25464	Characters
Startup Screen	Hex	FE 40	Characters
	ASCII	@ Characters	

Changes the message displayed on startup. Custom characters can be included by adding their decimal value (0-7). Characters will automatically wrap on the display.

Characters 40 bytes for 20×2 screen, 80 bytes for 20×4

```
2.6.Set Auto Line Dec }2546
    Wrap On
Dec rr 25467
```

Text will wrap to the next consecutive line once a row becomes full. Display default is auto line wrap on.

```
2.7.Set Auto Line
    Wrap Off
\begin{tabular}{lr} 
Dec & 25468 \\
Hex & FE 44 \\
ASCII & \(\square\)
\end{tabular}
```

Text will skip one line when wrapping once a row becomes full. $20 X 4$ screens will write to rows $1,3,2$, then 4 while 20×2 screens will write to rows 1 then 2 but hide one row of characters after each line. Display default is auto line wrap on.

```
2.8.Set Cursor Dec 25471 Column Row
    Position Hex FE 47 Column Row
ASCII ■G Column Row
```

Sets the cursor to a specific position where the next transmitted character is printed.
Column 1 byte, value between 1 and 20
Row 1 byte, value between 1 and 2 for 20×2 screen or 1 and 4 for 20×4 screen

```
2.9.Go Home Dec 25472
Hex FE 48
ASCII - H
```

Returns the cursor to the top left of the screen.

| 2.10. Move | Dec | 25476 |
| ---: | :--- | ---: | ---: |
| Cursor Back | | |
| | Hex | FE 4C |
| | ASCII | ■ |

Moves cursor one position to the left. Cursor will obey wrap settings.

\subsection*{2.11.Move Cursor Forward
 | Dec | 25477 |
| :--- | ---: |
| Hex | FE 4D |
| ASCII | $■$ M |}

Moves cursor one position to the right. Cursor will obey wrap settings.

```
2.12.Underline Dec }2547
    Cursor On Hex FE 4A
ASCII ■ J
```

Displays a line under the current cursor position. Can be used with block cursor.

```
2.13.Underline Dec 25475
    Cursor Off
Hex FE 4B
ASCII ■ K
```

Removes line under current cursor position.

```
2.14.Blinking Block Dec 25483
    Cursor On Hex FE 53
    ASCII - S
```

Displays a blinking block over the current cursor position. Can be used with underline.

```
2.15.Blinking Block Dec 25484
    Cursor Off Hex FE 54
ASCII ■T
```

Removes blinking block over current cursor position.

3. Special Characters

```
3.1.Create a Custom Dec 25478 ID Data
    Character Hex FE 4E ID Data
```

Creates a custom character. Each character is divided into 8 rows of 5 pixels, each data byte represents one row. Each byte is padded by three zero bits followed by five bits representing each pixel state. A one represents an on condition while a zero is off. Characters are lost when a new memory bank is loaded, unless they are saved.

ID 1 byte, character ID 0-7
Data 8 bytes, character pixel data as shown below

Data1	000	p1	p2	p3	p4	p5	00001000	8
Data2	000	p1	p2	p3	p4	p5	00010100	20
Data3	000	p1	p2	p3	p4	p5	00001000	8
Data4	000	p1	p2	p3	p4	p5	00000011	3
Data5	000	p1	p2	p3	p4	p5	00000100	4
Data6	000	p1	p2	p3	p4	p5	00000100	4
Data7	000	p1	p2	p3	p4	p5	00000011	3
Data8	000	p1	p2	p3	p4	p5	00000000	0

3.2.Save Custom Dec 254193 Bank ID Data Characters Hex FEC1 BankID Data

Provides access to all memory banks to create and save custom characters, graph bars, and large digits. Any new characters saved will overwrite the old, so care should be taken when writing to any bar or digit memory bank. Bank structure is shown below.

Bank 1 byte, memory bank ID (0-4)
ID 1 byte, character ID (0-7)
Data 8 bytes, character pixel data

0 Start-up Characters 1 Horizontal Bars 2 Vertical Bars 3 Medium Digits 4 Large Digits

```
3.3.Load Custom Dec 254192 Bank
    Characters Hex FE CO Bank
```

Loads a bank of custom characters into memory for use. Must be issued before using a bank of characters. Alternatively, an appropriate initialize command can be used.
Bank 1 byte, memory bank ID (0-4)

3.4.Save Startup Screen Dec 254194 ID Data
 Custom Characters Hex FE C2 ID Data

Saves a custom character to memory for the start up screen or repeated use. Start up characters are displayed by sending their ID to the screen.

ID 1 byte, character ID (0-7)
Data 8 bytes, character pixel data, see custom character example

```
3.5.Initialize Medium Dec 254109
    Numbers
Hex FE 6D
ASCII ■ m
```

Loads the medium number custom character bank into memory. Medium numbers must be initialized before use.

```
3.6.Place Medium Dec 254 111 Row Column Digit
    Numbers Hex FE 6F Row Column Digit
    ASCII ■o Row Column Digit
```

Places a single medium decimal digit of 2 row height and 1 column width on the display at the position specified. Medium numbers must be initialized before being placed.

Row 1 byte, value between 1 and 20
Column 1 byte, value between 1 and 2 for 20×2 screen or 1 and 4 for 20×4 screen
Digit 1 byte, single decimal digit to display

```
3.7.Initialize Large
Dec 254110
    Numbers*
    Hex FE 6E
ASCII ■ n
```

Loads the large number custom character bank into memory. Large numbers must be initialized before use.

```
3.8.Place Large Dec 254 35 Column Digit
    Number*
Hex FE 23 Column Digit
ASCII ■ # Column Digit
```

Places a single large decimal digit of 4 row height and 3 column width on the display at the position specified. Medium numbers must be initialized before being placed.
Column 1 byte, value between 1 and 4
Digit $\quad 1$ byte, single decimal digit to display

3.9. Initialize	Dec	254104
Horizontal Bar	Hex	FE 68
	ASCII	$■$ h

Loads the horizontal bar graph custom character bank into memory. Horizontal bar characters must be initialized before a graph is displayed.

3.10. Place Horizontal Dec 254124 Column Row Direction Length Bar Graph Hex FE 7C Column Row Direction Length

Places a horizontal bar graph on the screen beginning at the column and row specified. The bar extends either right or left to the length indicated. New bars will overwrite old.

Column 1 byte, value between 1 and 2 for 20×2 screen or 1 and 4 for 20×4 screen
Row 1 byte, value between 1 and 20
Direction 1 byte, 0 for right and 1 for left
Length 1 byte, length in pixels of the graph (0-100)
*Note: This command is available for 20×4 screens only

```
3.11.Initialize Dec 254118
    Vertical Bar Hex FE 76
ASCII ■ v
```

Loads the horizontal bar graph custom character bank into memory. Horizontal bar characters must be initialized before a graph is displayed.

```
3.12.Place Dec 25461 Column Length
    Vertical Bar Hex FE 3D Column Length
    ASCII ■ = Column Length
```

Places a vertical bar graph on the screen beginning at the column and row specified. The bar extends upwards to the length indicated. A new bar will over write the old.

Column 1 byte, value between 1 and 2 for 20×2 screen or 1 and 4 for 20×4 screen
Length 1 byte, length in pixels of the graph (0-16 for 20×2 and $0-32$ for 20×4)

4. General Purpose Output

| 4.1.General Purpose | Dec | 25486 | Number |
| :---: | :--- | :--- | ---: | :--- |
| Output Off | Hex | FE 56 Number | |
| | ASCII | \boxed{V} Number | |

Turns the specified GPO off. Will only affect onboard LEDs if LED enable is jumped.
Number 1 byte, GPO (1-6) to be turned off

```
4.2.General Purpose Dec 25487 Number
    Output On
Hex FE 57 Number
ASCII ■ W Number
```

Turns the specified GPO on. Will only affect onboard LEDs if LED enable is jumped.
Number 1 byte, GPO (1-6) to be turned off

4.3.Set Startup Dec 254195 Number State
 GPO State Hex FE C3 Number State

Sets the start up state of the specified GPO. Changes will only be seen on start up.
Number 1 byte, GPO (1-6) to be turned off
State 1 byte, 1 for ON or 0 for OFF

5. Dallas 1-Wire

$$
\begin{array}{rlr}
\text { 5.1. Search for a } & \text { Dec } & 2542002 \\
\text { 1-Wire Device } & \text { Hex } & \text { FE C8 } 02
\end{array}
$$

Sends a search query to all of the up to 32 devices on the one wire bus. Any connected device will respond with a identification packet.

Response 14 bytes, identification packet as shown below

Offset	Length	Value	Description
0	2	9002	Preamble
2	1	138	Another device packet will follow OR
		10	Last device packet
3	1	49	Packet Type
4	1	0	Error Code (0 indicates success)
5	8		Device Address
13	1	0	CRC8 address check (0 indicates validity)

```
5.2.Dallas 1-Wire Dec 254 200 1 Flags Send Bits Receive Bits Data
    Transaction Hex FE C8 01 Flags Send Bits Receive Bits Data
```

Preforms a single Dallas 1-Wire transaction. Consult your device documentation for information regarding device specific protocols. If an error is encountered, a corresponding value will be returned by the device.

Flags $\quad 1$ byte, flags for transaction, see below
Send Bits 1 byte, number of bytes to be sent to the device
Receive Bits 1 byte, number of bytes expected to be received from the device
Data Variable, data to be transmitted LSB to MSB

Bit	Flag Description	Code	Error Description
7		0	Success
6	Unused	1	Unknown Command
5		2	No Devices Found
4	0 (Future Compatibility)	3	Fatal Search Error
3	Add CRC8 to transaction		
2	0 (Future Compatibility)		
1	Read CRC8 from transaction		
0	Reset Bus prior to transaction		

6. Keypad

```
6.1.Auto Transmit Dec 25465
    Key Presses On Hex FE 41
ASCII ■ A
```

Key presses are automatically sent to the host when received by the display. Default is auto transmit on.

```
6.2.Auto Transmit Dec 25479
    Key Presses Off
Hex FE 4F
ASCII - O
```

Key presses are held in the 10 key buffer to be polled by the host. Use this mode for $\mathrm{I}^{2} \mathrm{C}$ transactions. Default is on.

6.3.Poll Key	Dec	25438
Press	Hex	FE 26
	ASClI	

Reads the last unread key press from the 10 key display buffer. If another key is stored in the buffer the MSB will be 1, the MSB will be 0 when the last key press is read. If there are no stored key presses a value of 0 will be returned. Auto transmit key presses must be turned off for this command to be successful.

Response 1 byte, value of key pressed (MSB determines additional keys to be read)

6.4.Clear Key	Dec	25469
Buffer	Hex	FE 45
	ASCII	\square

Clears all key presses from the display buffer.

6.5.Set	Dec	25485 Time
Debounce	Hex	FE 55 Time
Time	ASCII	U Time

Sets the time between a key press and a key read by the display. Most switches will bounce when pressed, the debounce time allows the switch to settle for an accurate read. Default is 8 representing a debounce time of approximately 52 ms .
Time 1 byte, debounce increment (debounce time = time * 6.554ms)

```
6.6.Set Auto Dec 254 126 Mode
    Repeat Mode

Sets key press repeat mode to typematic or hold. In typematic mode if a key press is held, the key value is transmitted immediately, then 5 times a second after a 1 second delay. In hold mode, the key down value is transmitted once when pressed, then the key up value is sent when the key is released. Default is typematic.

Mode 1 byte, 1 for hold mode or 0 for typematic
```

6.7.Auto Repeat Dec 25496
Mode Off Hex FE }6

```

Turns auto repeat mode off. Default is on (typematic).
```

6.8.Assign Dec 254213 Key Down Key Up
Keypad Codes Hex FE D5 Key Down Key Up

```

Assigns the key down and key up values sent to the host when a key press is detected. Defaults are shown below and can be reset by setting all values to 255 .
Key Down 25 bytes, key down values
Key Up 25 bytes, key up values
\begin{tabular}{ccccc}
\multicolumn{5}{c}{ KeyDown } \\
\hline\(A(65)\) & \(B(66)\) & \(C(67)\) & \(D(68)\) & \(E(69)\) \\
\(F(70)\) & \(G(71)\) & \(H(72)\) & \(I(73)\) & \(J(74)\) \\
\(K(75)\) & \(L(76)\) & \(M(77)\) & \(N(78)\) & \(O(79)\) \\
\(P(80)\) & \(Q(81)\) & \(R(82)\) & \(S(83)\) & \(T(84)\) \\
\(U(85)\) & \(V(86)\) & \(W(87)\) & \(X(88)\) & \(Y(89)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ KeyUp } \\
\hline\(a(97)\) & \(b(98)\) & \(c(99)\) & \(d(100)\) \\
\(e(101)\) \\
\hline\(f(102)\) & \(g(103)\) & \(h(104)\) & \(i(105)\) \\
\hline\(k(106)\) \\
\hline\(k(107)\) & \(l(108)\) & \(m(109)\) & \(n(110)\) \\
\hline\(p(112)\) & \(q(113)\) & \(r(114)\) & \(s(115)\) \\
\hline\(t(116)\) \\
\hline\(u(117)\) & \(v(118)\) & \(w(119)\) & \(x(120)\) \\
\hline & \(y(121)\) \\
\hline
\end{tabular}

\section*{7. Display Functions}
\[
\begin{array}{llrl}
\text { 7.1.Display On } & \text { Dec } & 25466 & \text { Minutes } \\
& \text { Hex } & \text { FE } 42 & \text { Minutes } \\
& \text { ASCII } & \square \text { B } & \text { Minutes }
\end{array}
\]

Turns the display backlight on for a specified length of time. If an inverse display color is used this command will essentially turn on the text.

Minutes 1 byte, number of minutes to leave backlight on (0 for infinite)
```

7.2.Display Off Dec 25470
Hex FE 46
ASCII ■ F

```

Turns the display backlight off indefinitely. If an inverse display colour is used this command will turn off the text.
\begin{tabular}{rlrl} 
7.3.Set VFD & Dec & 25489 & Brightness \\
Brightness* & Hex & FE 59 & Brightness \\
& ASCII & \(■\) Y & Brightness
\end{tabular}

Immediately sets the VFD text brightness. Default is 0 .
Brightness 1 byte, brightness level from 3(Dim)-0(Bright)
```

7.4.Set and Save Dec 254145 Brightness
VFD Brightness* Hex FE }91\mathrm{ Brightness

```

Immediately sets and saves the VFD text brightness. Although brightness can be changed using the set command, it is reset to saved value on start up. Default is 255.

Brightness 1 byte, brightness level from 3(Dim)-0(Bright)
*Note: VFD model only command
```

7.5.Set Dec 254153 Brightness
Brightness* Hex FE 99 Brightness

```

Immediately sets the backlight brightness. If an inverse display color is used this represents the text brightness instead. Default is 255 .

Brightness 1 byte, brightness level from 0(Dim)-255(Bright)

\subsection*{7.6.Set and Save Dec 254152 Brightness Brightness* Hex FE 98 Brightness}

Immediately sets and saves the backlight brightness. If an inverse display colour is used this represents the text instead. Although brightness can be changed using the set command, it is reset to saved value on start up. Default is 255 .

Brightness 1 byte, brightness level from 0(Dim)-255(Bright)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 7.7.Set } \\
& \text { Contrast* }
\end{aligned}
\]} & Dec & 25480 Contrast \\
\hline & Hex & FE 50 Contrast \\
\hline & ASCII & - P Contrast \\
\hline
\end{tabular}

Immediately sets the contrast between background and text. If an inverse display color is used this also represents the text brightness. Default is 128.

Contrast 1 byte, contrast level from 0(Light)-255(Dark)
```

7.8.Set and Save
Contrast*
Dec
254145 Contrast
Hex FE }91\mathrm{ Contrast

```

Immediately sets and saves the contrast between background and text. If an inverse display color is used this also represents the text brightness. Although contrast can be changed using the set command, it is reset to saved value on start up. Default is 128 .

Contrast 1 byte, contrast level from 0(Light)-255(Dark)

\footnotetext{
*Note: LCD model only command
}

\section*{8. Data Security}
```

8.1.Set Dec 254147 Switch
Remember Hex FE 93 Switch

```

Allows changes to specific settings to be saved to the display memory. Writing to memory can be slow and each change consumes 1 write of approximately 100,000 available. Set and save functions are always remembered. Off is default.

Switch 1 byte, 1 for on or 0 for off
```

8.2.Data Lock Dec 254 202 }245160\mathrm{ Level
Hex FE CA F5 AO Level

```

Temporarily locks certain aspects of the display to ensure no inadvertent changes are made. A new level overrides the old, and levels can be combined. Default is 0 .

Level 1 byte, each bit representing a level, see table below
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Unlock & Reserved & Reserved & Reserved & Setting & Reserved & Command & Display \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Unlock & Unlocks all setting locks \\
\hline Reserved & Place holders only, should be 0 \\
\hline Setting & Locks settings such as backlight and contrast \\
\hline Command & Locks all commands \\
\hline Display & Locks entire display, no new information can be displayed \\
\hline
\end{tabular}

\subsection*{8.3.Set and Save Data Lock \\ Dec 254203245160 Level \\ Hex FE CB F5 AO Level}

Permanently locks certain aspects of the display to ensure no inadvertent changes are made. A new level overrides the old, and levels can be combined. Default is 0 .

Level 1 byte, see data lock table

\section*{9. Miscellaneous}
9.1.Read Version Dec 25454 Number Hex FE 36 ASCII ■ 6

Causes display to respond with it's firmware version number.
Response 1 byte, convert to hexadecimal to view major and minor revision numbers
```

9.2.Read Module Dec 25455
Type Hex FE 37
ASCII ■7

```

Causes display to respond with it's module number.
Response 1 byte, module number, see partial list below

23 DD-DB1-AL202 24 DD-DB1-AV202 25 DD-DB1-AL204 26 DD-DB1-AV204

\section*{Appendix}

\section*{Character Sets}


Illustration 17: DevDevil LCD Series Character Table


Illustration 18: DevDevil VFD Series Character Table

\section*{Environmental}
\begin{tabular}{|r|c|c|}
\hline & Standard & VFD Standard \\
\hline Operating Temperature & \(0^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-10^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\) & \(-40^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\) \\
\hline Operating Relative Humidity & Maximum \(90 \%\) non-condensing & Maximum \(80 \%\) non-condensing \\
\hline
\end{tabular}

Table 13: DevDevil Environmental Specifications

\section*{Electrical}

\section*{Current Consumption}
\(\frac{\text { Board }}{50 \mathrm{~mA}}+\frac{\text { Backlight }}{20-115 \mathrm{~mA}}+\frac{\text { Indicator GPOs }}{1.25 \mathrm{~mA} \text { each }}+\)\begin{tabular}{c} 
Header GPOs \\
20 mA each maximum
\end{tabular}

Table 14: DevDevil Current Consumption

\section*{Backlight Consumption}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & YG & GW & WB & IV & IR & FW & FB & VFD* \\
\hline \(20 \times 2\) & 105 mA & 40 mA & 45 mA & N/A & 115 mA & 30 mA & 30 mA & 100 mA \\
\hline \(20 \times 4\) & 70 mA & 20 mA & 20 mA & 70 mA & N/A & N/A & N/A & 100 mA \\
\hline
\end{tabular}

Table 15: Backlight Current Consumption by Model

\section*{Optical}
\begin{tabular}{|r|c|c|c|c|c|}
\hline & \(20 \times 2\) & \(20 \times 4\) & \(20 \times 2\) VFD & \(20 \times 4\) VFD & units \\
\hline Screen Size & \(116.0 \times 37.0\) & \(98.0 \times 60.0\) & \(116.0 \times 37.0\) & \(98.0 \times 60.0\) & mm \\
\hline Viewing Area & \(83.0 \times 18.6\) & \(76.0 \times 25.2\) & \(\mathrm{~N} / \mathrm{A}\) & mm \\
\hline Active Area & \(73.5 \times 11.5\) & \(70.4 \times 20.8\) & \(70.8 \times 11.5\) & \(70.8 \times 20.9\) & mm \\
\hline Character Size & \(3.20 \times 5.55\) & \(2.95 \times 4.75\) & \(2.50 \times 4.70\) & \(2.40 \times 4.70\) & mm \\
\hline Character Pitch & \(3.70 \times 5.95\) & \(3.55 \times 5.35\) & \(3.60 \times 6.10\) & \(3.60 \times 5.40\) & mm \\
\hline Pixel Size & \(0.60 \times 0.65\) & \(0.55 \times 0.55\) & \(0.40 \times 0.50\) & \(0.40 \times 0.50\) & mm \\
\hline Pixel Pitch & \(0.65 \times 0.70\) & \(0.60 \times 0.60\) & \(0.50 \times 0.70\) & \(0.50 \times 0.70\) & mm \\
\hline Viewing Angle & \(-30 \mathrm{to}+30\) & \(\mathrm{~N} / \mathrm{A}\) & o \\
\hline Luminance & \(\mathrm{N} / \mathrm{A}\) & 350 & \(\mathrm{~cd} / \mathrm{m}^{2}\) \\
\hline Backlight Half-Life & 50,000 & \(\mathrm{~N} / \mathrm{A}\) & Hours \\
\hline
\end{tabular}

Table 16: DevDevil Optical Characteristics

\footnotetext{
*Note: A VFD style display will draw up to twice the normal operating current at start up inrush.
}

\section*{Dimensional Drawing}


Illustration 19: DevDevil Dimensional Drawing

\section*{Ordering}

\section*{Options}
\begin{tabular}{c|c|c|c|c|c|}
\hline DD & -DB1 & -AL & 202 & C & -GW \\
\hline 1 & 2 & 3 & 4 & 5 & 6
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \# & Designator & Options \\
\hline 1 & Product Line & DevDevil \\
\hline 2 & Product Type & Development Board, Revision 1.0 \\
\hline 3 & Display Type & -AL: Alphanumeric Liquid Crystal Display -AV: Alphanumeric Vacuum Florescent Display \\
\hline 4 & Display Size & 202: 20 rows by 2 columns 204: 20 rows by 4 columns \\
\hline 5 & Screen Size & \begin{tabular}{l}
A: \(98.0 \mathrm{~mm} \times 60.0 \mathrm{~mm}\) (204 only) \\
C: \(116.0 \mathrm{~mm} \times 37.0 \mathrm{~mm}\) (202 only)
\end{tabular} \\
\hline 6 & Color & \begin{tabular}{l}
NP: Standard Yellow-green background with grey text \\
-GW: White background with grey text \\
-WB: Blue background with white text (inverse display) \\
-IY**: Yellow-green background with black text (inverse display) \\
\(-I R^{*}\) : Red background with black text (inverse display) \\
-FW*: Black background with white text (inverse FFSTN display) \\
-FB*: Black background with blue text (inverse FFSTN display)
\end{tabular} \\
\hline
\end{tabular}
*Note: Available on 20x2 display models only
**Note: Available on \(20 \times 4\) display models only

\section*{Accessories}


Table 17: DevDevil Power Accessories

\footnotetext{
*Note: Recommended Optional Accessory
}


Table 18: DevDevil Communication Accessories

\footnotetext{
*Note: Included Accessory
**Note: Recommended Optional Accessory
}

Peripherals


Table 19: DevDevil Peripheral Accessories

\section*{Production Products}

\section*{Display Options}
```

Protocol*

```

LK/VK202-25
\begin{tabular}{|c|c|c|c|c|}
\hline USB & Not Available & Default & Not Available & Default \\
\hline RS232 & Default & Not Available & Default & Not Available \\
\hline TTL & Available & Not Available & Available & Not Available \\
\hline I2C & Available & Not Available & Available & Not Available \\
\hline
\end{tabular}

Table 20: Production Protocol Options

Input Voltage
LK/VK202-25 LK/VK202-25-USB LK/VK204-45 LK/VK204-25-USB
\begin{tabular}{|c|c|c|c|c|}
\hline 5V (Regular) & Default & Default & Default & Default \\
\hline 9-15V (-V) & Available & Not Available & Available & Not Available \\
\hline 9 9-35V (-VPT) & Not Available & Not Available & Available & Not Available \\
\hline
\end{tabular}

Table 21: Production Voltage Options

\section*{Connectors}

LK/VK202-25 LK/VK202-25-USB LK/VK204-45 LK/VK204-25-USB
\begin{tabular}{|c|c|c|c|c|}
\hline DB9 Serial & Default & Not Available & Default & Not Available \\
\hline Mini-USB** & Not Available & Default (Vertical) & Not Available & Default (Vertical) \\
\hline Power/Data & Default & Not Available & Default & Not Available \\
\hline AC Power & Not Available & Not Available & Not Available & Not Available \\
\hline PC Power*** & Not Available & Default & Not Available & Default \\
\hline
\end{tabular}

Table 22: Production Connector Options

\footnotetext{
*Note: Protocol is selected using zero ohm jumper resistors, soldering is required change protocol. Available protocols can be selected at purchase.
**Note: Mini-USB header is orientated vertically rather than horizontally.
***Note: PC or floppy cable power is not available on the DevDevil but offered on the production USB displays.
}

\section*{Peripherals}
\begin{tabular}{|c|c|c|c|c|}
\hline & LK/VK202-25 & LK'VK202-25-USB & LK/VK204-45 & LK/VK204-25-USB \\
\hline Keypad* & \(1 \times 12\) Header \\
\hline GPO** & \(2 \times 7\) Header \\
\hline DOW*** & Available & Default & Available & Default \\
\hline
\end{tabular}

Table 23: Production Peripheral Options
*Note: Only the \(1 \times 12\) keypad header is available on production units, a keypad such as the KPP4X4 unit must be purchased to interface with the display.
**Note: Only the \(2 x 7\) GPO header is available on production units, indicator LEDs are not available. Additional indicators such as Rx, Tx, and power LEDS are also not offered on production models.
***Note: The Dallas One-Wire header is available on production USB units, but must be specially ordered for non-USB models.

\section*{Definitions}

ASCII: American standard code for information interchange used to give standardized numeric codes to alphanumeric characters.

BPS: Bits per second, a measure of transmission speed.
DOW: Dallas One-Wire protocol is similar to \(I^{2} C\) providing reduced data rates at a greater distance. One wire is provided for data, while two others supply power and ground. Matrix Orbital displays are only tested with non-parasitic devices, those that do not draw power from the data line, however, some parasitic devices may work.

FFSTN: Double film super-twisted nematic in reference to an LCD. The addition of two layers of film between the STN display and polarizer improves contrast.

GPO: General purpose output, used to control peripheral devices from a display.

GUI: Graphical user interface.
Hexadecimal: A base 16 number system utilizing the numerals and letters 0 through F to represent the values 0-15.
\(I^{2} \mathbf{C}\) : Inter-integrated circuit protocol employing a clock and data line to communicate a short distance at slow speeds between a master and up to 128 addressable slave devices. A Matrix Orbital display is a slave device.

LCD: Liquid crystal display.
LSB: Least significant bit or byte in a transmission, the rightmost when read.
MSB: Most significant bit or byte in a transmission, the leftmost when read.

RS232: Recommended standard 232, a widely used serial protocol. A low level is -30 V while a high is +30 V .

SDA: Serial data line used to transfer data in \(I^{2} C\) protocol. This open drain line should be pulled high through a resistor. Nominal values are between 2 K and \(10 \mathrm{~K} \Omega\).

SCL: Serial clock line used to designate data bits in \(I^{2} \mathrm{C}\) protocol. This open drain line should be pulled high through a resistor. Nominal values are between 2 K and \(10 \mathrm{~K} \Omega\).

STN: Super-twisted nematic in reference to an LCD. In a relaxed or nematic state, crystals orientate themselves in the same direction and allow light to pass. In an excited state these crystals align to block light. Super-twisted crystals move from 180 to 270 degrees between phases to providing contrast than TN models.

TTL: Transistor-transistor logic applied to a serial protocol. A low level is 0 V while high logic is 5 V .

USB: Universal Serial Bus protocol widely used in PCs.
VFD: Vacuum florescent display.

\section*{Contact Info}

\section*{Sales}

Phone: 403.229.2737
Email: sales@matrixorbital.ca
Support
Phone: 403.204.3750
Email: support@matrixorbital.ca
Online
Purchasing: www.matrixorbital.com
Support: www.matrixorbital.ca

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Cables / IEEE 1394 Cables category:
Click to view products by Matrix Orbital manufacturer:
Other Similar products are found below :
68768-0173 FNY-W6003-01 88764-0800 148700-1 17-200621 17-250051P 17-200261 AC102012-1 AC102012-2 FTP-629Y601 45-1345-
15 45-1358-15 45-1363-15 IP-USB1(C10)S-RW CABLE/RTP/USB/DT 45-1351-15 45-1357-15 45-1433-1 687680278
USBFTVX2SA2N03A USBFTV2SA2N03A USBFTV2SA2N05A MDM9PH004B MDM9PH004P FTP-629Y401 FTP-628Y302 FTP628Y402 CSMNB9MF-5 FNY-W6022 UA-30AMF-SD7B03 UA-30AMFM-SL7B03 USBAPSCC7202A UES-1001A160 UES-1003A160 USBFTVX7SA2N20A USBFTV2PEMSA2N10A FTP-629Y602 USBCAMCM100 USB A/F*2 to \(2.542 * 5 \mathrm{P}-\mathrm{SH}\) L=400mm 68784-0075 MINI-SCREW-USB-DATACABLE USB-29 19800-010500-200-RS 103-1092-BL-F0050 103-1020-BL-00100 103-1092-BL-F0200 103-1092-BL-F0100 105-1092-BL-00300 105-1092-BL-00200 105-1031-BL-00200```


[^0]:    *Note: If any parts are missing from your order, please contact a sales associate as quickly as possible using the Contact Information at the end of this document.
    **Note: Recommended optional equipment available for purchase to use in specific applications, see below

[^1]:    *Note: The $4 \times 20$ LCD screen shown, the DevDevil is also available with a $2 \times 20$ sized display
    **Note: Non-standard headers that can be populated by custom request only

