

1 Revision History

Revision	Description	Author
1.2	Added OLED Support	Divino
1.1	Correction to the GPO Header pin layout	Divino
1.0	Initial Release	Clark

2 Contents
1 Revision History 2
2 Contents 3
3 Introduction 5
4 Quick Connect Guide 6
4.1 Standard Module 6
Recommended Parts 6
4.2 Serial Connections 7
$4.3 I^{2} \mathrm{C}$ Module 8
Recommended Parts 8
$I^{2} \mathrm{C}$ Connections 9
4.4 USB Module 10
Recommended Parts 10
USB Connections 11
5 Software 12
5.1 Hyperterminal 12
5.2 uProject 13
5.3 Application Notes 13
6 Hardware 14
6.1 Standard Model 14
Communication/Power Header 14
Protocol Select Jumpers 14
$6.21^{2} \mathrm{C}$ Model 15
Communication/Power Header 15
6.3 USB Model 16
Mini USB Connector 16
Alternate Power Connector 16
6.4 Common Features 17
General Purpose Outputs 17
7 Troubleshooting 18
7.1 Power 18
7.2 Display 18
7.3 OLED Burn-In 18
7.4 Communication 19
7.5 Manual Override 19
8 Commands 20
Communications 20
Text 20
Special Characters 23
General Purpose Output 26
Display Functions 27
Data Security 29
Miscellaneous 30
9 Appendix 31
9.1 Environmental 31
9.2 Electrical 31
9.3 Serial Interface 31
$9.41^{2} \mathrm{C}$ Interface 31
9.5 Dimensional Drawings 32
10 Ordering 33
10.1 Part Numbering Scheme 33
10.2 Options. 33
10.3 Accessories 34
11 Definitions 36
12 Contact 36

3 Introduction

The Matrix Orbital Economy Series offers a wide variety of intelligent alphanumeric liquid crystal and vacuum florescent displays designed to decrease development time by providing an instant solution to any project. At the heart of this line is the elegantly adequate X-Board.

Three different versions of the X-Board are available to allow communication to a wide variety of host controllers. The MOI model offers communication speeds up to 100 kbps over a simple two wire, $\mathrm{I}^{2} \mathrm{C}$ interface. The serial MOS version offers 9.6 kbps or 19.2 kpbs and standard RS232 or TTL logic levels through simple hardware jumpers. Lastly, the MOU model offers a quick and easy USB connection.

The simple command structure permits easy software control of many settings including backlight brightness, and screen contrast. On board memory provides up to 40 custom characters which can be saved within the unit and recalled for customized start screens, bar graphs, or larger numbers. Finally, three general purpose outputs provide simple switchable five volt sources.

The versatile X-Board, with all the features mentioned above, is available with a wide colour variety of parallel screen ranging from 8 to 80 characters in size to suit almost any application.

4 Quick Connect Guide

4.1 Standard Module

Table 1: Standard Headers

\#	Header	Mate
1	Communication/Power	SCCPC5V/BBC
2	Protocol Jumper	JMPR
3	Baud Jumper	JMPR
4	GPO	None Offered
5	Manual Override	JMPR

Figure 3: Standard Connections

The serial series X-Board allows for user configuration of two common serial protocol logic levels. Either RS232 or TTL levels can be selected using the onboard jumper and accessed through the four pin Communication/Power Header as outlined in the Serial Connections section.

Recommended Parts

Figure 4: Communication/Power
Cable (SCCPC5V)

For a more flexible interface to the X-Board, a Breadboard Cable may be used. This provides a simple four wire connection that is popular among developers for its ease of use in a breadboard environment.

4.2 Serial Connections

Serial protocol provides a classic connection to the X-Board. The Communication/Power Cable is most commonly used for this set up as it provides connections for DB9 serial and floppy power cables. To place your board in Serial mode, adhere to the steps laid out below.

1. Set the Protocol Select jumper.

- RS232: Connect the leftmost, outside RS232 pin to the inside pin of the protocol block.
- TTL: Connect the rightmost, outside TTL pin to the centre protocol pin.

2. Set the Baud Rate jumper.

- 9600 bps : Connect the outside pin on the left, labelled 9.6 K to the centre post of the baud block.
- 19200bps: Connect the 19.2 k pin on the outside right to the inside baud pin.

3. Make the connections.
a. Connect the four pin female header of the Communication/Power Cable to the Communication/Power Header of your X-Board.
b. Insert the male end of your serial cable to the corresponding DB9 header of the Communication/Power Cable and the mate the female connector with the desired communication port of your computer.
c. Select an unmodified floppy cable from a PC power supply and connect it to the power header of the Communication/Power Cable.
4. Create.

- uProject or hyperterminal will serve to get you started, then move on with your own development. Instructions for the former can be found below and a variety of application notes are available for the latter at www.matrixorbital.ca/appnotes.

4.3 $I^{2} \mathrm{C}$ Module

Table 2: 1^{2} C Headers

\#	Header	Mate
1	Communication/Power	SCCPC5V/BBC
2	GPO	None Offered
3	Manual Override	JMPR

Figure 6: Standard Connections

The $I^{2} C$ version of the X-Board offers a simple application of the two wire $I^{2} C$ interface. This allows the unit to become one of many slave devices driven by an $I^{2} \mathrm{C}$ master device. This protocol can also be accessed through the four pin Communication/Power Header as outlined in the $I^{2} C$ Connections section.

Recommended Parts

Figure 7: Breadboard Cable (BBC)
For a more flexible interface to the X-Board, a Breadboard Cable may be used. This provides a simple four wire connection that is popular among developers for its ease of use in a breadboard environment.

$I^{2} \mathrm{C}$ Connections

A more advanced connection to the X-Board is provided by the $I^{2} C$ protocol setting. It requires a connection directly to your project, best accomplished using a breadboard and the included cable of the same name. Power must be supplied from your breadboard or another external source. To dive right into your application with the $I^{2} C$ model X-Board, get started with the guidelines below.

1. Set the Protocol.

- $\quad I^{2} C$: The default write address of the X-Board is 80 , hex 50 , while read is one higher at 81 . Please ensure the host device uses this address when initially communicating to the board.

2. Make the connections.
a. Connect the Breadboard Cable to the Communication/Power Header on your X-Board and plug the four leads into your breadboard. The red lead will require power, while the black should be connected to ground, and the green and yellow should be connected to your controller clock and data lines respectively.
b. Pull up the clock and data lines to five volts using a resistance between one and ten kilohms on your breadboard.
3. Create.

- This time you're on your own. While there are many examples within the Matrix Orbital AppNote section, www.matrixorbital.ca/appnotes, too many controllers and languages exist to cover them all. If you get stuck in development, it is possible to switch over to another protocol on the standard board, and fellow developers are always on our forums for additional support.

4.4 USB Module

Table 3: USB Headers

$\#$	Header	Mate
1	USB Connector	EXTMUSB3FT
2	Alternate Power Header	PCS
3	GPO	None Offered
3	Manual Override	JMPR

Figure 8: USB Connections

The USB version of the X-Board offers a single USB protocol for easy connection to a host computer. The simple and widely available protocol can be accessed using the on board mini B style USB connector as outlined in the USB Connections section.

The External Mini USB Cable is recommended for the USB model of the X Board. It will connect to the miniB style header on the unit and provide a connection to a regular A style USB connector, commonly found on a PC.

USB Connections

The USB connection is the quickest, easiest solution for PC development. After driver installation, the X Board will be accessible through a virtual serial port, providing the same result as a serial setup without the cable hassle. To connect to your USB series X-Board, please follow the steps below.

1. Set the Protocol.

- USB: The USB version of the X-Board offers USB protocol only, no changes are required.

2. Make the connections.

- Plug the mini-B header of your external mini USB cable into your X-Board and the regular USB header into your computer USB jack.

3. Install the drivers.
a. Download the latest drivers at www.matrixorbital.ca/drivers, and save them to a known location.
b. When prompted, install the USB bus controller driver automatically
c. If asked, continue anyway, even though the driver is not signed
d. When the driver install is complete, your display will turn on, but communication will not yet be possible.
e. At the second driver prompt, install the serial port driver automatically
f. Again, if asked, continue anyway
4. Create.

- Use uProject or hyperterminal to get started, and then move on with your own development. Instructions for the former can be found below and a number of application notes are available for the latter at www.matrixorbital.ca/appnotes.

5 Software

The multiple communication protocols available and simple command structure of the X-Board means that a variety of applications can be used to communicate with the display. Text is sent to the display as a character string, for example, sending the decimal value 41 will result in an 'A' appearing on the screen. A number of control characters are also activated. Commands are merely values prefixed with a special command byte, 254 in decimal. While many software programs are available to communicate with the X-Board, a number of more common samples are detailed in depth below.

Table 4: Reserved Control Characters

Control Characters									
8	Backspace	10	Line feed / New line	12	Clear screen / New page	13			

5.1 Hyperterminal

Installed on most Windows computers, hyperterminal can be run by selecting run and typing 'hypertrm' in the command line. This basic program will allow communication between a PC and your display.

When starting up, a name must be given to your connection, and an icon may be chosen, neither is consequential. Next, it's important to select the appropriate communication port to which your display is connected. Finally, the settings below must be entered to complete the port setup.

Table 5: Hyperterminal Settings

BPS	Data Bits	Parity	Stop Bits	Flow Control
19200*	8	None	1	None

*Note: 9600bps Baud may also be selected on the standard X-Board model.

Once a port is successfully set up, data can be sent to an attached display by typing on the keyboard. At this point, it may be helpful to echo keys to the monitor by selecting properties from the file menu and opening the ASCII settings from settings tab.

Commands can be sent to an attached display by issuing decimal commands using the number pad. While the ALT key is held down, four digit decimal values can be sent as a single ASCII character. For example, to clear the screen, try the following sequence.

$$
\begin{aligned}
& \text { ALT +0254 ALT +0088 } \\
& \text { Figure 10: Hyperterminal Command }
\end{aligned}
$$

Any commands or text desired can be sent to the communication port using this method to provide total control of any Matrix Orbital display.

5.2 uProject

The Matrix Orbital alphanumeric display tuner, or uProject, is offered as a free download from the www.matrixorbital.ca support site. It allows the basic functionality of any display* to be tested using a simple graphical user interface system.

While basic functionality can be tested using the GUI portion of the program, more advanced users will enjoy the scripting capability found in the uploader tab. Here commands can be stacked, run, and saved for later use. Although many commands are available to be dragged into the script dialog, perhaps the most powerful is the raw data command found in the other branch.

This command allows raw bytes to be sent to the display, permitting many different formats for entry and displaying in decimal notation. Any command from this manual may be entered in decimal notation separated by slashes.

/254/ /88/
 Figure 11: uProject Command

Again, the clear screen command is sent to a connected display, this time using uProject raw data command style. Scripts can be run as a whole using the execute command from the script menu, or as single commands by selecting execute once. Before issuing commands, it is a good idea to ensure communication with a display is successful using some of the basic GUI functions in the main window.

This program provides scratch pad upon which a tome of display projects and ideas can be assembled.

[^0]
5.3 Application Notes

Full demonstration programs and code are available for Matrix Orbital displays in the C\# language from Simple C\# AppNote Pack in the Matrix Orbital Application Note section at www.matrixorbital.ca/appnotes. Difficulty increases from beginner, with the Hello World program, to advanced with the Dallas One-Wire temperature reading application.

Many additional applications are available in a number of different programming languages. These programs are meant to showcase the capability of the display and are not intended to be integrated into a final design. For additional information regarding code, please read the On Code document also found on the support site.

6 Hardware

6.1 Standard Model

Communication/Power Header

Figure 12: Communication/Power Header

Table 6: Communication/Power Pinout

Pin	Function
1	Vcc
2	Rx
3	Tx
4	Gnd

The Communication/Power Header provides a standard connector for interfacing to the serial series X-Board. Voltage is applied through pins one and four of the four pin Power/Data connector. Please ensure the correct voltage input for your display by referencing the electrical specifications in Table 20 before connecting power. Pins two and three are reserved for serial transmission, using either RS- 232 or TTL logic levels, depending on what has been selected by the Protocol Select Jumpers. The versatile Tyco 640456-4-LF style header employed here can be mated to a wide array of female connectors, a Molex 22-01-3047 for example, for a perfect fit in any project.

Protocol Select Jumpers

The Protocol Select Jumpers, provide the means necessary to toggle the serial X-Board model between RS-232 and TTL logic levels as well as the two baud rate speeds offered. As a default, the jumpers are left unset. In order to place the display module in RS232 mode, connect the two leftmost pins with the jumper provided, for TTL use the rightmost. Similarly, in order to set the display speed, connect the rightmost pins for 19200 bps or the leftmost for a more leisurely 9600 bps . Jumper tables are shown below with " X " indicating a connection for quick reference.

Table 7: Protocol Settings

Table 8: Baud Rate Settings

\[

\]

$6.2 I^{2} \mathrm{C}$ Model

Communication/Power Header

Table 9: Communication/Power Pinout

Pin	Function
1	Vcc
2	SCL
3	SDA
4	Gnd

The now familiar Communication/Power Header also provides a standard connector for interfacing to the X-Board $I^{2} C$ model. Again, voltage is applied through pins one and four of the four pin connector. Please ensure the correct voltage input for your display by referencing the electrical specifications in Table 20 before connecting power. Pins two and three are reserved here for $I^{2} C$ communication on addresses 80 and 81 . Proving its versatility, the Tyco 640456-4-LF style header employed again for this connection can be mated to a wide array of female connectors for a perfect fit in any project.

6.3 USB Model

Mini USB Connector

Figure 14: Mini USB Connector

Table 10: Mini USB Pinout

Pin	Function
1	Vcc
2	D-
3	D+
5	Gnd

The X-Board USB model comes with a familiar Mini USB Connector to fulfill both communication and power needs. The standard MiniB style header can be connected to any other USB style using the appropriate cable. Most commonly used with a PC, this connection creates a virtual com port that offers a simple power solution with a familiar communication scheme.

Alternate Power Connector

Figure 15: Alternate Power Connector

Table 11: Alternate Power Pinout

Pin	Function
1	NC
2	Gnd
3	Gnd
4	Vcc

The Alternate Power Connector provides the ability to power the X-Board using a *second cable. The Tyco 171825-4 style header is particularly useful for connecting to an unmodified floppy power cable, a 171822-4 for example, from a PC power supply for a simple bench power solution.

[^1]
6.4 Common Features

General Purpose Outputs

Figure 16: GPO Header

Table 12: GPO Pinout

Pin	Function	Pin	Function
1	GPO 1	6	VCC
2	GPO 2	7	VCC
3	GPO 3	8	VCC
4	NC	9	VCC
5	GND	10	VCC

A unique feature of the X-Board is the ability to control relays* and other external devices using one of three General Purpose Outputs. Each can provide up to 20 mA of current at five volts. The two row, ten pin header can be interfaced to a number of female connectors to provide control to any peripheral devices required.
*Note: If connecting a relay, be sure that it is fully clamped using a diode and capacitor in order to absorb any electro-motive force (EMF) which will be generated.

7 Troubleshooting

7.1 Power

In order for your Matrix Orbital display to function correctly, it must be supplied with the appropriate power. If the screen does not illuminate, power may not applied correctly. Try following the tips below.

- First, make sure that you are using the correct power connector. Standard floppy drive power cables from your PC power supply may fit on the Communication/Power Header; however they do not have the correct pin out to provide power. Matrix Orbital supplies power cable adapters for connecting to a PC, which can be found in the accessories section.
- The next step is to check the power cable which you are using for continuity. If you don't have an ohm meter, try using a different power cable, if this does not help try using a different power supply.
- The last step will be to check the interface connector in use on your display. If the power connections have become loose, or you are unable to resolve the issue, please contact Matrix Orbital for more information.

7.2 Display

If your display is powered successfully, the Matrix Orbital logo, or user created screen should display on start up. If this is not the case, check out these tips.

- Ensure the contrast is not too high or too low. This can result in a darkened or blank screen respectively. See the Manual Override section to reset to default.
- Make sure that the start screen is not blank. It is possible to overwrite the Matrix Orbital logo start screen, if this happens the screen may be blank. Try writing to the display to ensure it is functional, after checking the contrast above.

7.3 OLED Burn-In

OLED technology is susceptible to a burn-in effect; whereby the brightness of active pixels may differ from inactive ones over an extended period of activation. To reduce the burn-in effect, please use a dynamic screen saver or simply turn the screen off when not in active use.

7.4 Communication

When communication of either text or commands is interrupted, try the steps below.

- First, check the communication cable for continuity. If you don't have an ohm meter, try using a different communication cable. If you are using a PC try using a different Com Port.
- Next, please ensure that the display module is set to communicate on the protocol that you are using, by checking the Protocol Select Jumpers.
- In serial protocol, ensure that the host system and display module are both communicating on the same baud rate. The display will communicate at either 9600bps or 19200bps only.
- Match Rx from the X-Board to the transmitting pin from your host and the Tx pin to the receiving pin.
- If you are communicating to the display via $\mathrm{I}^{2} \mathrm{C}^{*}$ please ensure that the data is being sent to the correct address. The default slave address for the display module is 80 .
- In $I^{2} C$ mode, connect $R x$ to the data line of your controller and $T x$ to the data output.
- Unlock the display. See the Set and Save Data Lock command for more info.
- Finally, you may reset the display to its default settings using the Manual Override procedure outlined below.
*Note: $I^{2} C$ communication will always require pull up resistors on SCL and SDA of one to ten kilohms.

7.5 Manual Override

Should the settings of your display become altered in a way that dramatically impacts usability, the default settings can be temporarily restored. To override the display, please follow the steps below.

1. Disconnect power from your display.
2. Place a jumper on the override pins.
3. Reconnect power to your unit, and wait for the start screen before removing the override jumper.
4. Settings will be temporarily** overridden to the defaults listed in the Manual Override Settings table. At this point any important settings, such as contrast, backlight, or baud rate, should not only be set but saved so they remain when the override is removed.

Parameter	Value
Backlight	255
Contrast	128
$I^{2} C$ Address	0×50

Table 13: Manual Override Settings

[^2]
8 Commands

Communications

| 1.1. Changing the I2C | Dec | $\mathbf{2 5 4 5 1}$ | Address |
| :---: | :--- | :--- | ---: | :--- |
| Slave Address | Hex | FE 33 | Address |
| | ASCII | $■ 3$ | Address |

Immediately changes the I2C write address. Only even values are permitted as the next odd address will become the read address.
Address 1 byte, even value

Text

1.2. Auto Scroll	Dec	$\mathbf{2 5 4} \mathbf{8 1}$
On	Hex	FE 51
	ASCII	$■ \mathbf{Q}$

The entire contents of screen are shifted up one line when the end of the screen is reached. Display default is auto scroll on.

1.3. Auto Scroll	Dec	$\mathbf{2 5 4} \mathbf{8 2}$
Off	Hex	FE $\mathbf{5 2}$
	ASCII	\mathbf{R}

New text is written over the top line when the end of the screen is reached. Display default is auto scroll on.

1.4. Clear	Dec	$\mathbf{2 5 4} 88$
Screen	Hex	FE 58
	ASCII	$\boxed{\quad X}$
	Clears the contents of the screen.	

| 1.5. Changing the Start | Dec | $\mathbf{2 5 4} \mathbf{6 4}$ | Characters |
| :---: | :--- | :--- | ---: | :--- |
| Up Screen | Hex | FE $\mathbf{4 0}$ | Characters |
| | ASCII | ■ @ | Characters |

Changes the message displayed on start up. Custom characters can be included by adding their decimal value (0-
7). Characters will automatically wrap on the display.

Characters 80 bytes, space characters can be added as needed

1.6. Set Auto Line Wrap On Hec Hex ASCII
$\mathbf{2 5 4} 67$
Text will wrap to the next consecutive line once a row becomes full.

1.7. Set Auto Line	Dec	$\mathbf{2 5 4 6 8}$
Wrap Off	Hex	FE $\mathbf{4 4}$
	ASCII	$■ \mathbf{D}$

Text will skip one line when wrapping once a row becomes full. Writing order will be rows $1,3,2$, and then 4.

1.9. Go Home	Dec	$\mathbf{2 5 4} \mathbf{7 2}$
	Hex	FE 48
	ASCII	$■ \mathbf{H}$

Returns the cursor to the top left of the screen.

1.10. Move Cursor	Dec	$\mathbf{2 5 4} \mathbf{7 6}$
Back	Hex	FE 4C
	ASCII	$■$ L

Moves cursor one position to the left. Cursor will obey wrap settings.

1.11. Move Cursor	Dec	$\mathbf{2 5 4} \mathbf{7 7}$
Forward	Hex	FE 4D
	ASCII	$■ \mathbf{M}$

Moves cursor one position to the right. Cursor will obey wrap settings.

| 1.12. Underline | Dec | $\mathbf{2 5 4 ~ 7 4}$ |
| ---: | :--- | ---: | ---: |
| Cursor On | Hex | FE 4A |
| | ASCII | $■ ~ J$ |

Displays a line under the current cursor position. Can be used with block cursor.

1.13. Underline Cursor Off	Dec	25475
	Hex	FE 4B
	ASCII	■ K

1.14. Blinking Block	Dec	$\mathbf{2 5 4} \mathbf{8 3}$
Cursor On	Hex	FE $\mathbf{5 3}$
	ASCII	$■ \mathbf{S}$

For VFD and LCD modules a blinking block will be displayed over the current cursor position. On OLED modules the last character printed will blink. Can be used with underline.

1.15. Blinking Block	Dec	$\mathbf{2 5 4} 84$
Cursor Off	Hex	FE 54
	ASCII	■ T

Removes blinking block over current cursor position.

Special Characters

| 1.16. Creating a Custom | Dec | $\mathbf{2 5 4} \mathbf{7 8}$ | ID Data |
| :---: | :--- | :--- | ---: | :--- |
| Character | Hex | FE 4E | ID Data |
| | ASCII | $■ \mathbf{N}$ | ID Data |

Creates a custom character. Each character is divided into 8 rows of 5 pixels, each data byte represents one row. Each byte is padded by three zero bits followed by five bits representing each pixel state. A one represents an on condition while a zero is off. Characters are lost when a new memory bank is loaded, unless they are saved.
ID 1 byte, character ID 0-7
Data 8 bytes, character pixel data as shown below

Table 14: Custom Degree Character

Data1 000	p1	p2	p3	p4	p5	00001000	8
Data2	000	p1	p2	p3	p4	p5	00010100
20							
Data3	000	p1	p2	p3	p4	p5	00001000
	8						
Data4	000	p1	p2	p3	p4	p5	00000011
Data5	000	p1	p2	p3	p4	p5	00000100
Data6	000	p1	p2	p3	p4	p5	00000100
Data7	000	p1	p2	p3	p4	p5	00000011
Data8	000	p1	p2	p3	p4	p5	00000000

1.17. Saving \quad Dec 254193 Bank ID Data
 Custom Hex FEC1 Bank ID Data

Characters
Provides access to all memory banks to create and save custom characters, graph bars, and large digits. Any new characters saved will overwrite the old, so care should be taken when writing to any bar or digit memory bank. Bank structure is shown below.
Bank 1 byte, memory bank ID (0-4)
ID $\quad 1$ byte, character ID (0-7)
Data 8 bytes, character pixel data as above

Table 15: Custom Character Banks

| 1.18. Loading Custom | Dec | $\mathbf{2 5 4} 192$ | Bank |
| :---: | :--- | ---: | ---: | ---: |
| Characters | Hex | FE CO | Bank |

Loads a bank of custom characters into memory for use. Must be issued before using a bank of characters. Alternatively, an appropriate initialize command can be used.
Bank 1 byte, memory bank ID (0-4)

1.20. Initialize	Dec	$\mathbf{2 5 4} \mathbf{1 0 9}$
Medium	Hex	FE 6D
Number*	ASCII	$■ ~ m$

Loads the medium number custom character bank into memory. Medium numbers must be initialized before they are used.

1.22. Initialize	Dec	$\mathbf{2 5 4} \mathbf{1 1 0}$
Large	Hex	FE 6E
Numbers**	ASCII	$■ \mathbf{n}$

Loads the large number custom character bank into memory. Large numbers must be initialized before they are used.

1.23. Place Large Number**	Dec $\mathbf{2 5 4} \mathbf{3 5}$ Hex FE $\mathbf{2 3}$ ASCII $■$	Column Digit Column Digit Column Digit
Places a single large decimal digit of 4 row height and 3 column width on the display at the position specified Medium numbers must be initialized before being placed.		
Column	1 byte, value bet	een 1 and 4
Digit	1 byte, single dec	mal digit to dis

[^3]| 1.24. Initialize | Dec | $\mathbf{2 5 4} \mathbf{1 0 4}$ |
| :--- | :--- | ---: |
| Horizontal Bar | Hex | FE 68 |
| | ASCII | $■$ h |

Loads the horizontal bar graph custom character bank into memory. Horizontal bar characters must be initialized before a graph is displayed.

1.25. Place Horizontal	Dec	$\mathbf{2 5 4} \mathbf{1 2 4}$	Column Row Direction Length
Bar Graph	Hex	FE 7C	Column Row Direction Length

Places a horizontal bar graph on the screen beginning at the column and row specified. The bar extends either right or left to the length indicated. New bars will overwrite old.

Column	1 byte, value between 1 and 4
Row	1 byte, value between 1 and 20
Direction	1 byte, 0 for right and 1 for left
Length	1 byte, length in pixels of the graph (0-100)

1.26. Initialize Vertical Bar	Dec	254118
	Hex	FE 76
	ASCII	$\square \mathrm{v}$
Loads the horizontal bar graph custom character bank into memory. Horizontal bar characters must be initialized before a graph is displayed.		

1.27. Place Vertical	Dec	$\mathbf{2 5 4 6 1}$	Column Length
Bar	Hex	FE 3D	Column Length
	ASCII	$\mathbf{~}=$	Column Length

Places a vertical bar graph on the screen beginning at the column and row specified. The bar extends upwards to the length indicated. A new bar will over write the old.
Column 1 byte, value between 1 and 4
Length 1 byte, length in pixels of the graph between 0 and 32

General Purpose Output

	1.28. General	Dec	$\mathbf{2 5 4} \mathbf{8 6}$
Number			
Purpose	Hex	FE $\mathbf{5 6}$	Number
Output Off	ASCII	$■ V$	Number

Turns the specified GPO off by supplying a zero volt output.
Number 1 byte, GPO (1-6) to be turned off

1.29. General	Dec	$\mathbf{2 5 4 8 7}$	Number
Purpose	Hex	FE $\mathbf{5 7}$	Number
Output On	ASCII	$■$ W	Number

Turns the specified GPO on by supplying a five volt output.
Number 1 byte, GPO (1-6) to be turned off

1.30. Set Start
Up GPO State
Dec Hex
$\mathbf{2 5 4} \mathbf{1 9 5}$ Sets the
Number start up state of the specified GPO. Changes will only be seen on start up.
Number State
State

Display Functions

| 1.31. Display On | Dec | $\mathbf{2 5 4} 66$ | Minutes |
| :--- | :--- | ---: | ---: | :--- |
| | Hex | FE 42 | Minutes |
| | ASCII | $■$ B | Minutes |

Turns the display backlight on for a specified length of time. If an inverse display color is used this command will essentially turn on the text.
Minutes 1 byte, number of minutes to leave backlight on (0 for infinite)

1.32. Display	Dec	$\mathbf{2 5 4} \mathbf{7 0}$
Off	Hex	FE $\mathbf{4 6}$
	ASCII	$■$ F

Turns the display backlight off. If an inverse display colour is used this command will turn off the text.

	1.33. Set	Dec	$\mathbf{2 5 4 1 5 3}$
Brightness			
Brightness*	Hex	FE 99	Brightness

Immediately sets the backlight brightness. If an inverse display color is used this represents the text colour intensity instead. Default is 255.
Brightness 1 byte, brightness level from 0(Dim)-255(Bright)

| 1.34. Set and Save | Dec | $\mathbf{2 5 4 1 5 2}$ | Brightness |
| :---: | :--- | ---: | ---: | :--- |
| Brightness* | Hex | FE 98 | Brightness |

Immediately sets and saves the backlight brightness. Although brightness can be changed using the set command, it is reset to the saved value on start up. Default is 255.
Brightness 1 byte, brightness level from 0(Dim)-255(Bright)

1.35. Set	Dec	$\mathbf{2 5 4} \mathbf{8 0}$	Contrast
Contrast**	Hex	FE 50	Contrast
	ASCII	$\square \mathbf{P}$	Contrast

Immediately sets the contrast between background and text. If an inverse display color is used this also represents the text brightness. Default is 128.
Contrast 1 byte, contrast level from 0(Light)-255(Dark)

1.36. Set and Save	Dec	254145	Contrast
Contrast**	Hex	FE 91	Contrast

Immediately sets and saves the contrast between background and text. Although contrast can be changed using the set command, it is reset to saved value on start up. Default is 128.
Contrast 1 byte, contrast level from 0(Light)-255(Dark)

1.37. Set VFD	Dec	$\mathbf{2 5 4} \mathbf{8 9}$	Brightness
Brightness***	Hex	FE $\mathbf{5 9}$	Brightness
	ASCII	$■$ Y	Brightness

Immediately sets the text brightness. Default is 0 .
Brightness 1 byte, brightness level from 3(Dim)-0(Bright)

1.38. Set and Save VFD	Dec	$\mathbf{2 5 4} \mathbf{1 4 5}$	Brightness
Brightness***	Hex	FE 91	Brightness

Immediately sets and saves the text brightness. Although brightness can be changed using the set command, it is reset to the saved value on start up. Default is 0 .
Brightness 1 byte, brightness level from 3(Dim)-0(Bright)

[^4]
Data Security

1.39. Set	Dec	254147	Switch
Remember	Hex	FE 93	Switch

Allows changes to specific settings to be saved to the display memory. Writing to memory can be slow and each change consumes 1 write of approximately 100,000 available. Set and save functions are always remembered. Remember is off by default.
Switch 1 byte, 1 for on or 0 for off

1.40. Set Data	Dec	$\mathbf{2 5 4} 202 \mathbf{2 4 5} 160$	Level
Lock	Hex	FE CA F5 AO	Level

Temporarily locks certain aspects of the display to ensure no inadvertent changes are made. A new level overrides the old, and levels can be combined. Default is 0 .
Level 1 byte, each bit representing a level, see table below

Table 16: Data Lock Bits								
Unlock	Reserved	Reserved	Reserved	Setting	Reserved	Command	Display	
0	1	2	3	4	5	6	7	

Table 17: Lock Parameters

Unlock
Reserved
Setting
Command
Display

Unlocks all setting locks
Place holders only, should be 0
Locks settings such as backlight and contrast
Locks all commands
Locks entire display, no new information can be displayed

1.41. Set and Save Data Lock	Dec 254203245160	Level
	Hex FECB F5 AO	Level
Permanently locks certain aspects of the display to ensure no inadvertent changes are made. A new level overrides the old, and levels can be combined. Default is 0 .		

Miscellaneous

1.42. Read	Dec	$\mathbf{2 5 4 5 4}$
Version	Hex	FE $\mathbf{3 6}$
Number	ASCII	$■ 6$

Causes display to respond with its firmware version number.
Response 1 byte, convert to hexadecimal to view major and minor revision numbers

Table 18: Sample Module Type Responses
4F MOS Displays 50 MOI Displays 53 MOU Displays

9 Appendix

The versatility of the X-Board allows it to be interfaced to a variety of different displays. As a result, Character Sets, Environmental tolerances, Electrical specifications, and Optical characteristics will be display dependent. Applicable X-Board values are shown below for reference.

9.1 Environmental

Table 19: Environmental Specifications

Operating Temperature	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Relative Humidity	Maximum 90% non-condensing

9.2 Electrical

Table 20: Electrical Specifications

Parameter	Min	Typical	Max	Units
Current Draw (Board Only)	-	25	-	mA
Maximum Single GPO Current	-	-	20	mA
Input Voltage (Vcc)	4.75	5.00	5.25	V

9.3 Serial Interface

Table 21: Serial Tolerances

Parameter	Min	Typ	Max	Unit
Input Low Voltage	-0.5	0	0.2 Vcc	V
Input High Voltage	0.6 Vcc	5	Vcc +0.5	V

Table 22: I^{2} C Tolerances

Parameter	Min	Typ	Max	Unit
Input Low Voltage	-0.5	0	0.3 Vcc	V
Input High Voltage	0.7 Vcc	5	Vcc +0.5	V
Clock Frequency	0	-	400	KHz

9.5 Dimensional Drawings

Please see display datasheets for screen dependent dimensions and drawings.

Figure 17: MOS Model Dimensional Drawing

Figure 18: MOS Model Dimensional Drawing

Figure 19: MOU Model Dimensional Drawing

10 Ordering

10.1 Part Numbering Scheme

Table 23: Part Numbering Scheme

MOS	-AL	$\mathbf{- 1 6 2}$	\mathbf{F}	$\mathbf{- Y X}$
1	2	3	4	5

10.2 Options

Table 24: Display Options

\#	Designator	Options
1	Interface Type	MOI: $1^{2} \mathrm{C}$ protocol only MOS: Serial protocol using RS232 or TTL levels MOU: USB protocol only
2	Display Type	AL: Alphanumeric Liquid Crystal Display AO: Alphanumeric Organic Light Emitting Diode AV: Alphanumeric Vacuum Florescent Display
3	Display Size	162: Sixteen columns by two rows 164: Sixteen columns by four rows 202: Twenty columns by two rows 204: Twenty columns by four rows 242: Twenty-four columns by two rows
4	Display Model	A: Standard Size (162 and 204 Models Only) B: Larger Screen and Text (204 Models Only) C: Standard Size (202 Models Only) F: Smaller Screen and Text (162 Model Only)
5	Colour	YX: Yellow-Green Background with Grey Text BW: Blue (Inverse) Background with White Text WB: White Background with Blue-Grey Text XR: Black (Inverse) Background with Red Text XY: Black (Inverse) Background with Yellow-Green Text FA: Black (FFSTN Inverse) Background with Amber Text FB: Black (FFSTN Inverse) Background with Blue Text FG: Black (FFSTN Inverse) Background with Green Text FW: Black (FFSTN Inverse) Background with White Text OB: OLED Blue on black OG: OLED Green on black OR: OLED Red on black OW: OLED White on black OY: OLED Yellow on black

Please note that the X-Board can be mated to any parallel Matrix Orbital alphanumeric display. Check the Parallel Display section at www.matrixorbital.com for a complete list of displays.

10.3 Accessories

Power
Table 25: Power Accessories

Communication
Table 26: Communication Accessories

Table 27: Mounting Accessories

Note: No mounting options are available for 16×2 displays.
*Note: Keyed overlays are available in Black Vinyl (-BK) and Beige Vinyl (no part extension). Deep Red (-DR) and Silver (-SK) options are available for 20×2 sized displays only.
${ }^{* *}$ Note: Non-keyed overlays are available in Black Vinyl (-BK), Black Brushed Aluminum (-BL), Silver Brushed Aluminum (-AL), and Beige Vinyl (no part extension).

11 Definitions

ASCII: American standard code for information interchange used to give standardized numeric codes to alphanumeric characters.

BPS: Bits per second, a measure of transmission speed.
FFSTN: Double film super-twisted nematic in reference to an LCD. The addition of two layers of film between the STN display and polarizer improves contrast.

GPO: General purpose output, used to control peripheral devices from a display.
GUI: Graphical user interface.
Hexadecimal: A base 16 number system utilizing the numerals and letters 0 through F to represent the values 0-15.
$I^{2} \mathrm{C}$: Inter-integrated circuit protocol employing a clock and data line to communicate a short distance at slow speeds between a master and up to 128 addressable slave devices. A Matrix Orbital display is a slave device.

LSB: Least significant bit or byte in a transmission, the rightmost when read.
MSB: Most significant bit or byte in a transmission, the leftmost when read.
RS232: Recommended standard 232, a common serial protocol. A low level is -30 V , a high is +30 V .
SDA: Serial data line used to transfer data in $I^{2} C$ protocol. This open drain line should be pulled high through a resistor. Nominal values are between 2 K and $10 \mathrm{~K} \Omega$.

SCL: Serial clock line used to designate data bits in $I^{2} C$ protocol. This open drain line should be pulled high through a resistor. Nominal values are between 2 K and $10 \mathrm{~K} \Omega$.

STN: Super-twisted nematic in reference to an LCD. In a relaxed or nematic state, crystals orientate themselves in the same direction and allow light to pass. In an excited state these crystals align to block light. Super-twisted crystals move from 180 to 270 degrees between phases to providing contrast than TN models.

TTL: Transistor-transistor logic applied to serial protocol. Low level is 0 V while high logic is 5 V .
USB: Universal Serial Bus protocol widely used in PCs.

12 Contact

Sales
Phone: 403.229.2737
Email: sales@matrixorbital.ca

Support
Phone: 403.204.3750
Email: support@matrixorbital.ca

Online
Purchasing: www.matrixorbital.com
Support: www.matrixorbital.ca

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Modules category:
Click to view products by Matrix Orbital manufacturer:
Other Similar products are found below :
8500-003 IFD8520 cPCI-3544 422CON ATX6022/14GP7 ATX6022/8 AX93221-24/48 FC6A-EXM2 OPT8AP-AE 60006-016 96RMKVM-19V1C-A 60016-011 60016-014 60006-008 60016-015 60011-075 HPCI-14S12U cBP-3208 cBP-3062A FAB205-6P5 ATX6022/6 60016-012 96RMKVM-17V1C-A PCE-DP10-00A1E MOS-1120Y-0201E 96RMLCD-17V1-A 96RMKVM-17V8C-A 60004005 60016-017 60006-019 60006-009 60016-035 60016-034 60016-031 60016-030 60016-026 60016-025 60016-024 60016-021 60016018 60016-007 60016-006 60016-005 60016-004 60007-002 60006-018 60006-010 AXX10GBTWLHW3 382-BBEH 555-BDCL

[^0]: *Note: The uProject AutoDetect function will not perform correctly when a USB display is connected. Please manually configure any USB display.

[^1]: *Note: If the X-Board is powered by the Alternate Power Connector, the 0 ohm jumper resistor near the top right labelled ' P ' should be removed to avoid power contention.

[^2]: **Note: The display module will revert back to the old settings once turned off, unless desired settings are saved.

[^3]: *Note: Display must be at least two character rows in height to employ this command
 **Note: Display must be at least four character rows in height to employ this command

[^4]: *Note: OLED and LCD Model only command
 **Note: LCD Model only command
 ***Note: VFD Model only command

