

General Description

The DG202/DG212 are normally open, quad singlepole single-throw (SPST) analog switches. These CMOS switches can be continuously operated with power supplies ranging from ±4.5V to ±18V. Maxim guarantees that these switches will not latch up if the power supplies are disconnected with input signals still connected.

The DG202/DG212 are similar to the DG201/DG211 except for inverted control inputs. All devices have guaranteed break-before-make switching, as well as essentially constant on-resistance over the analog signal range. All switches conduct current in either direction and add no offset to the output signal.

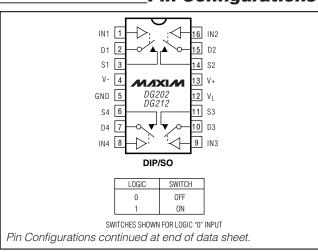
Compared to the original manufacturer's products, Maxim's DG202/DG212 consume very little power, making them better suited for portable applications. Maxim has also eliminated the need for the third logic power supply (VL) that is required for the operation of the original manufacturer's DG212 without sacrificing compatibility.

Applications

Analog Multiplexers Programmable Gain Amplifiers Communications Systems Sample/Holds Automatic Test Equipment PBX, PABX

Features

- ♦ Guaranteed ±4.5V to ±18V Operation
- ♦ No V_L Supply Required
- ♦ Nonlatching with Supplies Turned Off and Input Signals Present
- ♦ CMOS and TTL Logic Compatible
- ♦ Monolithic, Low-Power CMOS Design


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG202CUE	0°C to +70°C	16 TSSOP
DG202CSE	0°C to +70°C	16 SO
DG202CJ	0°C to +70°C	16 Plastic DIP
DG202C/D	0°C to +70°C	Dice
DG202AEGE	-40°C to +85°C	16 QFN (5mm x 5mm)
DG202AEUE	-40°C to +85°C	16 TSSOP
DG202ADY	-40°C to +85°C	16 SO
DG202ADJ	-40°C to +85°C	16 Plastic DIP
DG202AK	-55°C to +125°C	16 CERDIP
DG212CUE	0°C to +70°C	16 TSSOP
DG212CSE	0°C to +70°C	16 SO
DG212CJ	0°C to +70°C	16 Plastic DIP
DG212C/D	0°C to +70°C	Dice
DG212EGE	-40°C to +85°C	16 QFN (5mm x 5mm)
DG212EUE	-40°C to +85°C	16 TSSOP
DG212DY	-40°C to +85°C	16 SO
DG212DJ	-40°C to +85°C	16 Plastic DIP
DG212ETE	-40°C to +85°C	16 Thin QFN

Typical Operating Circuit

5kΩ 40kΩ V_{IN} x 10V **∩**- \sim MAXIM DG202 DG212 13 -15V 4 12 10kΩ 20kΩ PROGRAMMABLE GAIN AMPLIFIER NOTE: *PINS 1, 8, 9, AND 16 ARE LOGIC CONTROL INPUTS

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS (DG212)

V+ to V	44V
V _{IN} to Ground	
V _L to Ground	0.3V, 25V
Vs or VD to V+	0, -40V
V _S or V _D to V	0, 40V
V+ to Ground	25V
V- to Ground	25V
Current, Any Terminal Except S or D	30mA
Continuous Current, S or D	20mA
Peak Current, S or D	
(pulsed at 1ms 10% duty cycle max)	70mA
Storage Temperature Range65°C	to +125°C

Operating Temperature Range
DG212C0°C to +70°C
DG212D/E40°C to +85°C
Power Dissipation ($T_A = +70^{\circ}C$) (Note 1)
16-Pin Plastic Dip (derate 10.5mW/°C above +70°C)842mW
16-Pin Narrow SO (derate 8.7mW/°C above+70°C)696mW
16-Pin TSSOP (derate 9.4mW/°C above +70°C)755mW
16-Pin QFN (5mm x 5mm)
(derate 19.2mW/°C above +70°C)1538mW
16-Pin Thin QFN
(derate 14.7mW/°C above +70°C)1177mW

Note 1: Device mounted with all leads soldered to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (DG212)

 $(V+ = +15V, V- = -15V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (For more information on TYP values see Note 2.)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
SWITCH	•						•
Analog Signal Range	Vanalog			-15		+15	V
Drain-Source ON-Resistance	RDS (ON)	$V_D = \pm 10V$	V _{IN} = 2.4V, I _S = 1mA		115	175	Ω
Caura OFF Laskage Current	la	\/ 0.0\/	V _S = 14V, V _D = -14V		0.01	5.0	
Source OFF-Leakage Current	Is (OFF)	VIN = 0.8V	$V_S = 14V, V_D = -14V$ $V_S = -14V, V_D = 14V$	-5.0	-0.02		
Drain OFF Lookaga Current	le (oss)	\/ 0 0\/	$V_S = 14V, V_D = -14V$ $V_S = -14V, V_D = 14V$		0.01	5.0]
Drain OFF-Leakage Current	I _D (OFF)	V IN = 0.6V	V _S = -14V, V _D = 14V	-5.0	-0.02		nA
Drain ON-Leakage Current	ln (01)	$V_S = V_D = \frac{1}{2}$	14V, V _{IN} = 2.4V		0.1	5.0	
(Note 3)	ID (ON)	$V_S = V_D = -$	$-14V$, $V_{IN} = 2.4V$	-5.0	-0.15		
INPUT							
Input Current with Input Voltage	liani	$V_{IN} = 2.4V$	V _{IN} = 2.4V		-0.0004		
High	INH	$V_{IN} = 15V$			0.003	1.0	
Input Current with Input Voltage Low	I _{INL}	V _{IN} = 0		-1.0	-0.0004		μA
DYNAMIC	U						
Turn-ON Time	ton	0 0 1: 1	0		460	1000	
Turn-OFF Time	tOFF1		ing Time Test Circuit = 1kΩ, C _I = 35pF		360	500	ns
Turn-OFF time	tOFF2	VS - ZV, IIL	_ = 1K 22 , OL = 33PI		450		
Source OFF-Capacitance	Cs (OFF)	$V_S = 0$, V_{IN}	= 0, f = 1MHz		5		
Drain OFF-Capacitance	C _D (OFF)	$V_D = 0$, V_{IN}	$V_D = 0$, $V_{IN} = 0$, $f = 1MHz$		5		рF
Channel ON-Capacitance	C _D + S (ON)	$V_D = V_S = 0$	$V_D = V_S = 0$, $V_{IN} = 5V$, $f = 1MHz$		16		
OFF-Isolation (Note 4)	OIRR				70		
Crosstalk (Channel to Channel)	CCRR	,	= $1k\Omega$, $C_L = 15pF$, S, $f = 100kHz$		90		dB

ELECTRICAL CHARACTERISTICS (DG212) (continued)

 $(V+ = +15V, V- = -15V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (For more information on TYP values see Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY						
Positive Supply Current	l+			0.02	0.4	
Negative Supply Current	l-	V _{IN} = 0 and 2.4V (all)		0.01	0.4	mA
Logic Supply Current	ΙL			0	0	
Power-Supply Range for Continous Operation	VOP		±4.5		±18.0	V

Note 2: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Note 3: I_{D(ON)} is leakage from driver into "ON" switch.

Note 4: OFF-Isolation = 20 log V_S/V_D , V_S = input to OFF switch, V_D = output.

ABSOLUTE MAXIMUM RATINGS (DG202)

Voltages Reference to V-	Operating Temperature Range
V+44V	DG202C0°C to +70°C
GND25V	DG202D/E40°C to +85°C
Digital Inputs (Note 1), V _S , V _D 2V to (V+ + 2V)	DG202A55°C to +125°C
or 20mA, whichever occurs first	Storage Temperature Range65°C to +150°C
Current, Any Terminal Except S or D30mA	Power Dissipation (Note 2)
Continuous Current, S or D20mA	16-Pin Plastic Dip (derate 10.5mW/°C above +70°C)842mW
Peak Current, S or D	16-Pin SO (derate 8.7mW/°C above +70°C)696mW
(pulsed at 1ms 10% duty cycle max)70mA	16-Pin TSSOP (derate 9.4mW/°C above +70°C)755mW
	16-Pin QFN (5 × 5)
	(derate 19.2mW/°C above +70°C)1538mW
	16-Pin CERDIP (derate 10.0mW/°C above +70°C)800mW

Note 1: Signals on S_, D_, or IN_ exceeding V+ or V- on Maxim's DG202 will be clamped by internal diodes, and are also internally current limited to 25mA.

Note 2: Device mounted with all leads soldered to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (DG202)

 $(V+ = +15V, V- = -15V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (For more information on TYP values see Note 3.)

DADAMETED	CVMDOL		ONDITIONS	ı	DG202A	١	DG	202C, D	, E	LIMITO
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SWITCH										
Analog Signal Range	Vanalog			-15		15	-15		15	V
Drain-Source ON Resistance	R _{DS} (ON)	$V_D = \pm 10V$,	$V_{IN} = 2.4V, I_S = 1mA$		115	175		115	200	Ω
Source OFF-Leakage Current	lo (oss)	\/ O 0\/	V _S = 14V, V _D = -14V		0.01	1.0		0.01	5.0	
Source OFF-Leakage Current	IS (OFF)	$V_{IN} = 0.8V$	V _S = -14V, V _D = 14V	-1.0	-0.02		-1.0	-0.02		
Drain OFF Lookage Current	l	V 0.0V	V _S = 14V, V _D = -14V		0.01	1.0		0.01	5.0	nA
Drain OFF-Leakage Current	ID (OFF)	$V_{IN} = 0.8V$	V _S = -14V, V _D = 14V	-1.0	-0.02		-1.0	-0.02		ΠA
Drain ON-Leakage Current	1	V 0.4V	V _S = -14V		0.1	1.0		0.1	1.0	
(Note 4)	ID (ON)	$V_{IN} = 2.4V$	V _S = 14V	-1.0			-5.0			

ELECTRICAL CHARACTERISTICS (DG202) (continued)

 $(V+ = +15V, V- = -15V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (For more information on TYP values see Note 3.)

DADAMETED	CVMDOL	001	NDITIONS		DG202A	١	DG202C, D, E			UNITS
PARAMETER	SYMBOL	Col	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
INPUT										•
Input Current with Input	lu u u	$V_{IN} = 2.4V$		-1.0	-0.0004	ļ	-1.0	-0.000	4	
Voltage High	INH	V _{IN} = 15V			0.003	1.0		0.003	1.0	μΑ
Input Current with Input Voltage Low	I _{INL}	V _{IN} = 0		-1.0	-0.0004	ļ	-1.0	-0.000	4	μΑ
DYNAMIC										
Turn-ON Time	ton	See Figure 1 S	Switching Time		480	600		480	600	ns
Turn-OFF Time	tOFF1	Test Circuit			370	450		370	450	115
Charge Injection	Q	C _L = 1000pF, R _{GEN} = 0	C _L = 1000pF, V _{GEN} = 0, R _{GEN} = 0					20		рС
Source OFF-Capacitance	Cs (OFF)	V _S = 0,			5			5		
Drain OFF-Capacitance	C _D (OFF)	$V_{IN} = 0$	f 4401-11-		5			5		
Channel ON-Capacitance	C _D (ON) + C _S (ON)	$V_D = V_S = 0,$ $V_{IN} = 5V$	f = 140kHz		16			16		pF
OFF-Isolation		$V_{IN}=0,Z_{L}=7$	75Ω		70		70			
Crosstalk (Channel to Channel)		V _S = 2.0V, f =	100kHz		90			90		dB
SUPPLY	•	•		'						
Positive Supply Current	l+	All channels C	N or OFF		0.02	0.1		0.02	0.1	mA
Negative Supply Current	I-	All channels C	N or OFF	-0.1	-0.01		-0.1	-0.01		IIIA
Power-Supply Range for Continuous Operation	VOP			±4.5		±18	±4.5		±18.0	V

Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Note 4: $I_{D(ON)}$ is leakage from driver into "ON" switch.

ELECTRICAL CHARACTERISTICS (DG202)

 $(V+ = +15V, V- = -15V, GND = 0, T_A = full opearting temperature range, unless otherwise noted.)$ (For more information on TYP values see Note 3.)

DADAMETED	CVMDOL		CONDITIONS)G202 <i>F</i>	١	DG2	202C, D	, E	што
PARAMETER	SYMBOL	C			TYP	MAX	MIN	TYP	MAX	UNITS
SWITCH										
Analog Signal Range	Vanalog			-15		+15	-15		+15	V
Drain-Source ON Resistance (Note 5)	R _{DS} (ON)	$V_D = \pm 10V$,	V _D = ±10V, V _{IN} = 2.4V, I _S = 1mA			250			250	Ω
Course OFF Lookers Current	1	V 0.0V	V _S = 14V, V _D = -14V			100			100	
Source OFF-Leakage Current	Is (OFF)	$V_{IN} = 0.8V$	$V_S = -14V, V_D = 14V$	-100			-100			
Drain OFF-Leakage Current	I _D (OFF)	V _{IN} = 0.8V	V _S = 14V, V _D = -14V			100			100	nA
Diaiii OFF-Leakage Cuiteiii			$V_S = -14V, V_D = 14V$	-100			-100			
Drain ON-Leakage Current	In (ON)	V _{IN} = 2.4V	Vs = -14V			200			200	
(Note 6)	ID (ON)	VIN = 2.4V	V _D = 14V	-200			-200			
INPUT										
Input Current with Input	lisu	$V_{IN} = 2.4V$		-1.0			-1.0			
Voltage High	linh	$V_{IN} = 15V$	·			1.0			1.0	
Input Current with Input Voltage Low	I _{INL}	$V_{IN} = 0$		-1.0			-1.0			μА

 $\textbf{Note 5:} \ \textbf{Electrical characteristics, such as On-Resistance, will change when power supplies other than $\pm 15V$, are used.}$

Note 6: ID (ON) is leakage from driver into "ON" switch.

Pin Description

PI	PIN		FUNCTION			
DIP/SO/TSSOP	QFN/TQFN	NAME	FUNCTION			
1, 16, 9, 8	15, 14, 7, 6	IN1-IN4	Input			
2, 15, 10, 7	16, 13, 8, 5	D1-D4	Analog Switch Drain Terminal			
3, 14, 11, 6	1, 12, 9, 4	S1–S4	Analog Switch Source Terminal			
4	2	V-	Negative-Supply Voltage Input			
5	3	GND	Ground			
12	10	N.C.	No Connection			
13	11	V+	Positive-Supply Voltage Input—Connected to Substrate			
_	EP	EP	Exposed Pad. Connect exposed pad to V+ or leave EP unconnected.			

Switching Time Test Circuit

Switch output waveform shown for V_S = constant with logic input waveform as shown. Note that V_S may be +ve or -ve as per switching times test circuit. V_O is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Protecting Against Fault Conditions

Fault conditions occur when power supplies are turned off when input signals are still present, or when overvoltages occur at the inputs during normal operation. In either case, source-to-body diodes can be forward biased and conduct current from the signal source. If

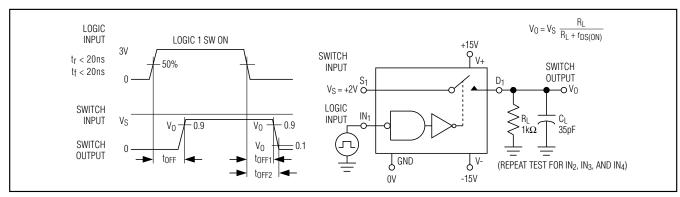
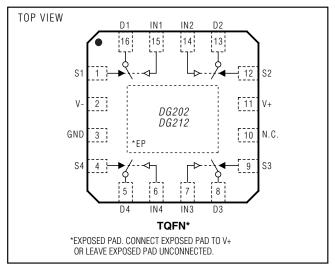


Figure 1. Switching Time


Typical RDS(ON) vs. Power Supplies for Maxim's DG202, and DG212

POWER SUPPLIES		R _{DS(ON)} AT ANALOG SIGNAL LEVEL										
POWER SUPPLIES	-5V	+5V	-10V	+10V	-15V	+15V						
±5V	350Ω	380Ω	_	_		_						
±10V	_	_	165Ω	250Ω	_	_						
±15V	_	_	125Ω	160Ω	135Ω	155Ω						

this current is required to be kept to low (μA) levels then the addition of external protection diodes is recommended.

To provide protection for overvoltages up to 20V above the supplies, a 1N4001 or 1N914 type diode should be placed in series with the positive and negative supplies as shown in Figure 2. The addition of these diodes will reduce the analog signal range to 1V below the positive supply and 1V above the negative supply.

Pin Configurations (continued)

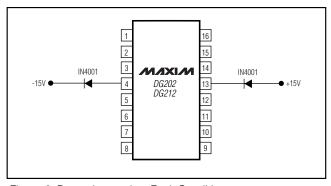
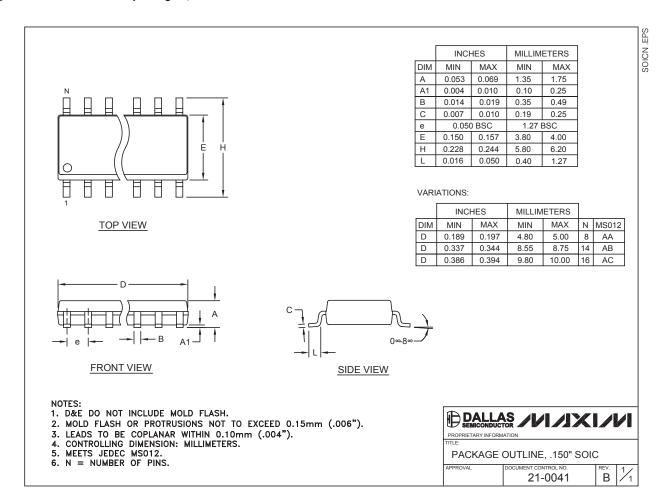
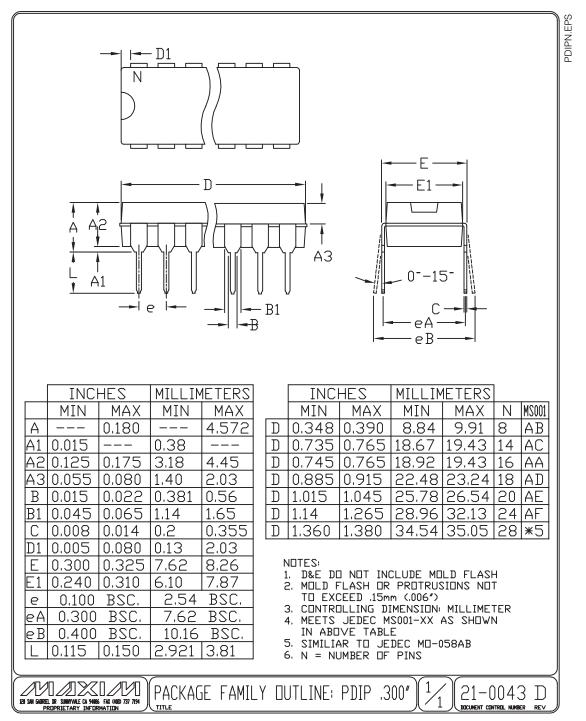
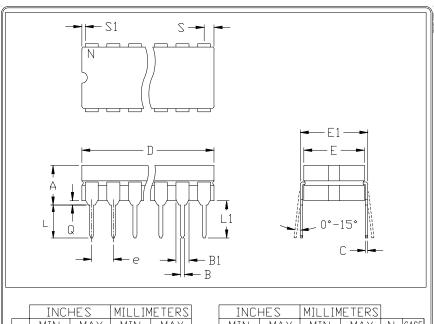



Figure 2. Protection against Fault Conditions


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)


Package Information (continued)

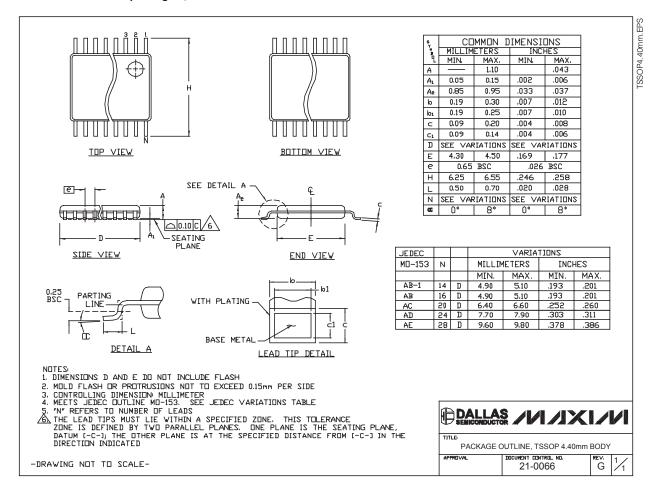
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

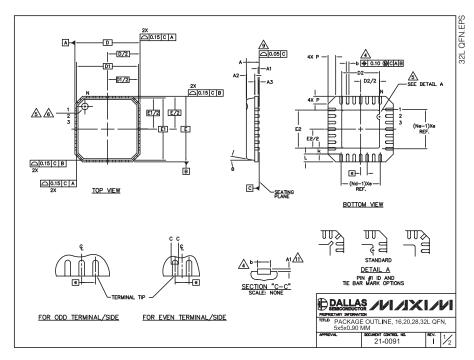
	INC	HES	MILLIM	1ETERS	
	MIN	MAX	MIN	MAX	
Α		0.200		5.08	
В	0.014	0.023	0.36	0.58	
В1	0.038	0.065	0.97	1.65	
С	0.008	0.015	0.20	0.38	
Ε	0.220	0.310	5. 5.	7.87	
Ε1	0.290	0.320	7.37	8.13	
е	0.1	00	2.54		
L	0.125	0.200	3.18	5.08	
L1	0.150		0.00		
Q	0.015	0.070	0.38	1.78	
S		0.098		2.49	
S1	0.005		0.13		

	INC	HES	MILLIM	1ETERS		
	MIN	MAX	MIN	MAX	Ν	CASE
D		0.405		10.29	∞	P:D4
D		0.785		19.94	14	C:D1
D		0.840		21.34	16	E:D2
D		0.960		24.38	18	V:D6
D		1.060		26.92	20	R:D8
D		1.280		32.51	24	L:D9


- NUTES:
 1. CONTROLLING DIMENSION: INCH
 2. MEETS 1835 CASE OUTLINE CONFIGURATION #1
 AS SHOWN IN ABOVE TABLE
 3. N = NUMBER OF PINS

PACKAGE FAMILY DUTLINE: CDIP ,300"

21-0045 A


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

					COMM	ON DIME	NSIONS					
PKG		16L 5x5			20L 5x5			28L 5x5			32L 5x5	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX
Α	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00
A3		0.20 REF	-		0.20 REF			0.20 REF			0.20 REF	
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.3
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.1
D1		4.75 BS	Ċ		4.75 BS0	,		4.75 BS			4.75 BSC	,
E	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.1
E1		4.75 BS	С		4.75 BS0	;		4.75 BS			4.75 BSC	;
е		0.80 BS	С		0.65 BSC	;		0.50 BS	О		0.50 BSC	;
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
٦	0.35	0.55	0.75	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.5
N		16			20			28			32	
ND		4			5			7			8	
NE		4			5			7			8	
Р	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.6
9	0.		12*	0,		12°	0.		12°	0,		12

EXP0:	SED	PAD	VAF	ITAIS	2ND:	
PKG.		D2			ES	
CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
G1655-3	2.95	3.10	3.25	2.95	3.10	3.25
G2055-1	2.55	2.70	2.85	2.55	2.70	2.85
G2055-2	2.95	3.10	3.25	2.95	3.10	3.25
G2855-1	2.55	2.70	2.85	2.55	2.70	2.85
G2855-2	2.95	3.10	3.25	2.95	3.10	3.25
G3255-1	2.95	3.10	3.25	2.95	3.10	3.25

NOTES:

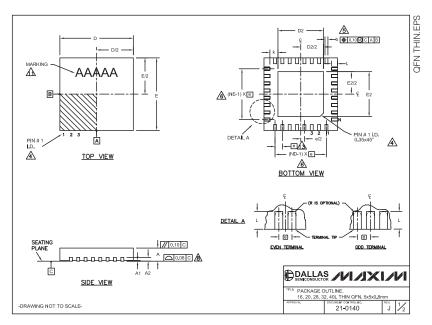
- OTES:

 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM)

 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.

 3. N IS THE NUMBER OF TERMINALS.

 Nd IS THE NUMBER OF TERMINALS. IN X—DIRECTION & No IS THE NUMBER OF TERMINALS IN Y—DIRECTION.


 A DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.
- THE PIN \$1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/LASER MARKED.

 DETAILS OF PIN \$1 IDENTIFIER IS OPTIONAL, BUT MUST BE LOCATED WITHIN ZONE INDICATED.
- 6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- PACKAGE WARPAGE MAX 0.05mm.
- 9) APPLIED FOR EXPOSED PAD AND TERMINALS.
 EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.
- MEETS JEDEC MO220: EXCEPT DIMENSION "b"
- APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
- 12. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES).

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

			C	OMMO	ON D	MEN:	SIONS	3									E>	(POS	ED F	PAD	VAR	4OITA	NS.		
PKG.		6L 5x			0L 5			8L 5x			32L 5			OL 5:		PKG.		D	2	Т		E2		1	
SYMBOL	_	_	MAX.	$\overline{}$			=	_	-			_	-	_		CODES	MIN	. NO	M. N	IAX.	MIN.	NOM	. MAX	ਰ	
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T1655-2	3.00	3.	0 3	20	3.00	3.10	3.20	5	
A1		0.02			0.02			0.02				0.05		0.02		T1655-3	3.00	3.	0 3	.20	3.00	3.10	3.20	5	
A2		20 RE			20 RE			20 RE			20 R			20 RE		T1655N	1 3.00	3.	0 3	.20	3.00	3.10	3.20)	
b			0.35													T2055-3	3.00	3.	0 3	.20	3.00	3.10	3.20	5	
D			5.10													T2055-4	3.00	3.	0 3	.20	3.00	3,10	3.20)	
Е			5.10													T2055-5	3.15	-			3.15	3.25	3.35	_	
		.80 B			.65 B			50 BS	SC.	_	.50 B			.40 B	SC.	T2855-3	3.15				3.15	3.25			
k L	0.25		0.50	0.25	-		0.25			0.25			0.25		0.50	T2855-4	2.60	-	_	\rightarrow	2 60	2.70	_	_	
N N	0.30	16	0.50	0.45	20	0.65	0.45	28	0.65	0.30	32	10.50	0.30	40	0.50	T2855-5	2.60				2.60	2.70			
ND.	\vdash	4	-	-	5			7	-		8		\vdash	10	\dashv	T2855-6	3.15	-		\rightarrow	3.15	3.25			
NE	-	4	-		5			7	-		8		-	10	-	T2855-7	2.60	2.	0 2	.80	2.60	2.70	2.80	5	
JEDEC	_	WHH	3	١	WHH		ν	VHHD	1-1	V	VHHC)-2				T2855-8	3.15	3.	5 3	.35	3.15	3.25	3.35	=	
																T2855N	1 3.15				3.15	3.25			
																T3255-3	3.00	3.			3.00	3.10	3.20	5	
IOTES:																T3255-4	3.00	3.	0 3	.20	3.00	3.10	3.20	5	
1. DIM	ENSI	ONING	8 TO	LERA	NCIN	G CO	NFOR	м то	ASME	Y14	.5M-1	994.				T3255-5	3.00	3.	0 3	.20	3.00	3.10	3.20	7	
2. ALL	DIME	Neio																							
			NS AF	REINI	MILLI	мете	RS. A	NGLE	SARE	IN D	EGRI	EES.				T3255N	1 3.00			.20	3.00	3.10	3.20	<u> </u>	
3 N IS	THE							NGLE	S ARE	IN D	EGRI	EES.				T4055-1	3.40	3.	50 3	.20 .60	3.00 3.40	3.10 3.50	3.20	0	
3. N IS		TOTA	L NUN	/BER	OF T	ERMI	NALS.						TION	SHAI			3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50 3.50	3.20 3.60 3.60	0	
A THE	TERI NFOR	TOTA MINAL M TO L, BU	L NUN	MBER ENTIF 95-1 S ST BE	OF T FIER : SPP-0 LOC/	ERMIN AND T 112. D	ERMI ETAIL	NAL N S OF	NUMB TERN E ZON	ERIN IINAL IE INI	G CO . #1 II	NVEN	FIER.	٩RE		T4055-1	3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50	3.20 3.60 3.60	0	
A THE	TERI NFOR FIONA NTIFIE	TOTA MINAL M TO L, BU ER MA	L NUM #1 ID JESD T MUS VY BE	MBER DENTIF 95-1 S ST BE EITHE ES TO	OF T FIER : SPP-0 LOC/ ER A I	ERMIN AND T M12. D ATED MOLD ALLIZ	ERMI ETAIL WITH OR N	NAL N S OF IN THI IARKE	NUMB TERN E ZON ED FE	ERIN IINAL IE INI ATUR	G CO . #1 II DICAT	NVEN DENTI FED. T	FIER. HE TI	ARE ERMIN	IAL #1	T4055-1	3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50 3.50	3.20 3.60 3.60	0	
A THE	TERI NFOR FIONA NTIFIE ENSIGN	TOTA MINAL M TO L, BU ER MA ON b A	L NUM #1 ID JESD T MUS XY BE XPPLII	MBER 95-1 S ST BE EITHE ES TO m FRO	OF T FIER . SPP-0 LOC/ ER A I O MET OM TE	ERMIN AND T 112. D ATED MOLD ALLIZ ERMIN	ERMI ETAII WITH OR N ED TE	NAL N .S OF IN THI IARKE ERMIN P.	NUMB TERN E ZON ED FE	ERINI IINAL IE INI ATUR ID IS	G CO . #1 II DICAT RE. MEA	NVEN DENTI FED. T	FIER : HE TI D BE	ARE ERMIN	NAL#1	T4055-4	3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50 3.50	3.20 3.60 3.60	0	
A THE COLOR IDE	TERI NFOR FIONA NTIFIE ENSI S mm /	TOTA MINAL M TO L, BU ER MA ON b A AND C	L NUM . #1 ID JESD T MUS AY BE APPLII 1.30 mi	MBER 95-1 S ST BE EITHE ES TO m FRO	OF T FIER . SPP-0 LOC/ ER A I O MET OM TE	ERMIN AND T 112. D ATED WOLD ALLIZ ERMIN MBER	ERMI ETAIL WITH OR M ED TE IAL TI	NAL N S OF IN THI IARKE ERMIN P.	NUMB TERN E ZON ED FE IAL AI	ERINAL IINAL IE INI ATUR ID IS	G CO . #1 II DICAT RE. MEA	NVEN DENTI FED. T	FIER : HE TI D BE	ARE ERMIN	NAL#1	T4055-4	3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50 3.50	3.20 3.60 3.60	0	
A THE CO OP IDE A DIM 0.21	TERI NFORI FIONA NTIFIE ENSIGNED MM AND N	TOTA MINAL M TO L, BU ER MA ON 6 A AND C NE RE	L NUM L #1 ID JESD T MUS APPLII L30 mi FER 1	MBER PENTIF 95-1 S ST BE EITHE ES TO m FRO FO TH	OF T SPP-0 LOC/ ER A I OMET OM TE IE NU BLE I	ERMIN AND T V12. D ATED MOLD ALLIZ ERMIN MBER N A S	ERMI ETAIL WITH OR M ED TE IAL TI OF T	NAL N S OF IN THI IARKE ERMIN P. ERMII ERMII	NUMB TERN E ZON ED FE IAL AI NALS AL FA	ERINI IINAL IE INI ATUR ID IS ON E SHIO	G CO _#1 II DICAT RE. MEA MEA	NVEN DENTI FED. T SURE	FIER HE TI D BE	ARE ERMIN TWEE	IAL #1 N ESPECTI	T4055-2	3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50 3.50	3.20 3.60 3.60	0	
A THE COO OP IDE A DIM 0.29 A ND 7. DEI A CO 9. DR.	TERINFORI FIONA NTIFIE S mm / AND N POPUI PLAN/	TOTA MINAL M TO L, BU ER MA ON 6 A AND 0 NE RE LATIO ARITY 3 COM	L NUM H 1 ID JESD T MUS Y BE APPLII J 30 mi FER 1 N IS F	MBER PENTIF 95-1 ST BE EITHE ES TO TH POSSII JES TO MS TO	OF T FIER . SPP-0 LOC/ ER A I O MET OM TE IE NU BLE I	ERMIN AND T 112. D ATED WOLD ALLIZ ERMIN MBER N A S' E EXP	VALS. TERMINETALI WITH OR IN ED TE IAL TI OF T YMME	NAL N S OF IN THI IARKE ERMIN P. ERMII TRIC) HEA	NUMB TERME ZON ED FE IAL AI NALS AL FA T SIN	ERINALIINALIIE INIO ATUR ND IS ON E SHIO	G CO . #1 II DICAT RE. MEA MEA N. JG AS	NVEN DENTI FED. T SURE D ANG	FIER HE TI D BET D E SI	ARE ERMIN TWEE DE RE	IAL #1 N ESPECTI ERMINA	T4055-2	3.40	3.	50 3 50 3	.20 .60	3.00 3.40 3.40	3.10 3.50 3.50	3.20 3.60 3.60	0	
A THE CO OP IDE A DIM 0.29	E TERI NFOR FIONA NTIFIE S mm / AND N POPUI PLAN/ AWING 55-3 /	TOTA MINAL M TO L, BU ER MA AND C NE RE LATIC ARITY AND T	L NUM . #1 IE JESD T MUS XY BE APPLII 1.30 mi FER 1 IN IS F APPL IFORM 2855-4	MBER PENTIF 95-1 S ST BE EITHE ES TO TH POSSII JES TO MS TO S.	OF T FIER . SPP-0 LOC/ ER A I O MET OM TE IE NU BLE I O THI	ERMINAND TO THE PROPERTY OF TH	VALS. TERMITH OR IN ED TE IAL TI OF T YMME OSEE 0220,	NAL N S OF IN THI IARKE ERMIN P. ERMII TRIC) HEA	NUMB TERME ZON ED FE IAL AI NALS AL FA T SIN	ERINALIINALIIE INIO ATUR ND IS ON E SHIO	G CO . #1 II DICAT RE. MEA MEA N. JG AS	NVEN DENTI FED. T SURE D ANG	FIER HE TI D BET D E SI	ARE ERMIN TWEE DE RE	IAL #1 N ESPECTI ERMINA	T4055-2	3.40	3. 3. **SEI	50 3 50 3 COM	.20 .60 .60	3.40 3.40 3.40 DIMEN	3.10 3.50 3.50 sisions	3.20 3.60 3.60 TABLE		
A THE COOL OF IDE A DIM O.2: A ND 7. DEI A CO 9. DR. T28	E TERI NFORI FIONA NTIFIE IENSIG 5 mm / AND 1 POPUI PLAN/ AWING 55-3 / RPAG	TOTA MINAL M TO L, BU ER MA ON 6 AND 0 VE RE LATIO ARITY S CON AND T E SHA	L NUM L #1 ID JESD T MUS APPLII I 30 mi FER 1 IN IS F APPL IFORM 2855-0	MBER DENTIF 95-1 S ST BE EITHE ES TO FO TH POSSII JES TO MS TO S OT EX	OF T FIER . SPP-0 LOC/ ER A I O MET OM TE IE NU BLE I O THI O JEDI	ERMINAND TO THE PROPERTY OF TH	VALS. TERMITETALL WITH OR IN ED TE IAL TI OF T YMME OSEE 0220, mm.	NAL N S OF IN THI IARKE ERMIN P. ERMII TRIC;) HEA EXCE	NUMB TERME ZONED FE IAL AI NALS AL FA T SIN	ERINI IINAL IE INI ATUR ID IS ON E SHIO K SLU (POS	G CO . #1 II DICAT RE. MEA . MEA . ACH N. JG AS ED P.	NVEN DENTI FED. T SURE D ANG	FIER HE TI D BET D E SI	ARE ERMIN TWEE DE RE	IAL #1 N ESPECTI ERMINA	T4055-2	3.40	3. 3. **SEI	50 3 50 3 COM	.20 .60 .60	3.40 3.40 3.40 DIMEN	3.10 3.50 3.50 sisions	3.20 3.60 3.60 TABLE		T.
A THE CO CO OP IDE DIM 0.29 A ND 7. DEI A CO 9. DR T28 WA	ETERINFORI FIONA NTIFIE SIENSIG SIMM / AND N POPUL PLAN/ AWING 55-3 / RPAG RKING	TOTA MINAL M TO L, BU ER MA ON 6 A AND 0 ARITY S COM AND T E SHA G IS FO	L NUM L #1 ID JESD T MUS APPLII J.30 mi FER 1 N IS F APPL IFORM 2855-0 ALL NO	MBER DENTIF 95-1 S ST BE EITHE ES TO TH POSSII IES TO S OT EX CKAG	OF T FIER SPP-0 LOC/ ER A I OM TE IE NU BLE I O THI O THI O JEDI CEEL	ERMINAND TO THE PROPERTY OF TH	VALS. TERMITE OR IN OR IN OR IN OR IN OR IT ON THE OSED DEED DEED DEED DEED DEED DEED DEE	NAL N S OF IN THI IARKE ERMIN P. ERMIN TRIC, O HEA EXCE	NUMB TERN E ZON ED FE IAL AI NALS AL FA T SIN EPT ED	ERINI III INI IE INI ATUR ATUR ON E SHIO C SLU CPOS	G CO #1 II DICAT RE. MEA MEA ACH N. JG AS ED P.	NVEN DENTI FED. T SURE D ANG	FIER HE TI D BET D E SI	ARE ERMIN TWEE DE RE	IAL #1 N ESPECTI ERMINA	T4055-2	3.40	3.3.3.3.3.4.4.SE	DA SEMIC	.60 .60 .60 MON	3.40 3.40 3.40 DIMEN	3.10 3.50 3.50 ssions	3.20 3.60 3.60 TABLE	0	

_Revision History

Pages changed at Rev3: 1-6, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB
NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX
PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G
RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T
MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G
NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G
74HC2G66DC.125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118