AUMXIM
 8-Channel Latchable Multiplexers

Abstract

General Description Maxim's DG528/DG529 are monolithic, 8-channel, CMOS multiplexers with on-board address and control latches that simplify design and reduce board space in microprocessor-based applications. The DG528 is a single-ended, 1 -of-8 multiplexer, while the DG529 is a differential, 2-of-8 multiplexer. These devices can operate as multiplexers or demultiplexers. The DG528/DG529 have break-before-make switching to prevent momentary shorting of the input signals. Each device operates with dual supplies ($\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) or a single supply (+5 V to +30 V). All logic inputs are TTL and CMOS compatible. The Maxim DG528/DG529 are pin and electrically compatible with the industry-standard DG528/DG529.

Data-Acquisition Systems
Automatic Test Equipment
Avionics and Military Systems
Communication Systems
Microprocessor-Controlled Systems
Audio-Signal Multiplexing

Applications
Data-Acquisition Systems
Automatic Test Equipment
Avionics and Military Systems
Communication Systems
Microprocessor-Controlled Systems
Audio-Signal Multiplexing

Features

- Low-Power, Monolithic CMOS Design
- On-Board Address Latches
- Break-Before-Make Input Switches
- TTL and CMOS Logic Compatible
- Microprocessor-Bus Compatible
- $\mathrm{rDS}(\mathrm{ON})<400 \Omega$
- Pin and Electrically Compatible with the IndustryStandard DG528/DG529 and ADG528/ADG529

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
DG528CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
DG528CWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Wide SO
DG528CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 CERDIP
DG528C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\star}$
DG528DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP
DG528DN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 PLCC
DG528EWN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Wide SO
DG528DK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 CERDIP
DG528AZ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 LCC ${ }^{* *}$
DG528AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 CERDIP**

Ordering Information continued at end of data sheet.

* Contact factory for dice specifications.
** Contact factory for availability and processing to MIL-STD-883.
Pin Configurations

TOP VIEW

Pin Configurations continued at end of data sheet.

8-Channel Latchable Multiplexers

O) ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V -

GND
Digital Inputs $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ \qquad V- -2 V to $\mathrm{V}++2 \mathrm{~V}$ or 20 mA , whichever occurs first.
Current (any terminal, except S or D) \qquad 30 mA
Continuous Current, S or D
Peak Current, S or D \qquad
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max) 50 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) (Note 1)
18-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 889 mW
Note 1: All leads are soldered or welded to PC board.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \overline{\mathrm{WR}}=0 \mathrm{~V}, \overline{\mathrm{RS}}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS			DG52_A			DG52_C/D/E			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
SWITCH											
Analog-Signal Range	VANALOG	(Note 2)			-15		15	-15		15	V
Drain-Source On-Resistance	rDS(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{IS}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{AH}}=2.4 \\ & \text { (Note 3) } \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{MIN}} \end{aligned}$		270	400		270	450	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$			500			500	
Greatest Change in DrainSource On-Resistance Between Channels	$\Delta \mathrm{PDS}(\mathrm{ON})$	$-10 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<10 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6			6			\%
Source-Off Leakage Current	Is(OFF)	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	-0.005	1	-5	-0.005	5	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	-50	-0.005	50	-50	-0.005	50	
Drain-Off Leakage Current	ID(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{S}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \end{aligned}$	DG528	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-10	-0.015	10	-20	-0.015	20	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$	-200	-0.015	200	-200	-0.015	200	
			DG529	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-10	-0.008	10	-20	-0.008	20	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$	-100	-0.008	100	-100	-0.008	100	
Drain-On Leakage Current (Notes 3, 4)	$\mathrm{I}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V} \end{aligned}$	DG528	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-10	-0.03	10	-20	-0.03	20	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$	-200	-0.03	200	-200	-0.03	200	
			DG529	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-10	-0.015	10	-20	-0.015	20	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$	-100	-0.015	100	-100	-0.015	100	
INPUT											
Address Input Current, Input Voltage High	I_{AH}	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	-0.002	1	-1	-0.002	1	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$	-30			-30			
		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	-0.006	1	-1	-0.006	1	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$			30			30	
Address Input Current, Input Voltage Low	$\mathrm{I}_{\text {AL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=\overline{\mathrm{RS}}=\overline{\mathrm{WR}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \text { or } 2.4 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	-0.002	1	-1	-0.002	1	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$	-30	-0.01		-30	-0.01		

\qquad

8-Channel Latchable Multiplexers

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \overline{\mathrm{WR}}=0 \mathrm{~V}, \overline{\mathrm{RS}}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			DG52_A			DG52_C/D/E			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
DYNAMIC											
Switching Time of Multiplexer	ttrans	Figure 1		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	1			1.5	$\mu \mathrm{s}$
Break-Before-Make Interval	topen	Figure 2		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2			0.2		$\mu \mathrm{s}$
Enable, Write Turn-On Time	ton(EN, $\overline{\mathrm{WR}})$	Figures 3, 4		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.0	1.5			1.5	$\mu \mathrm{s}$
Enable, Reset Turn-Off Time	toff(EN, $\overline{\mathrm{RS}})$	Figures 3, 5		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	1			1.5	$\mu \mathrm{s}$
Charge Injection	Q	Figure 6		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4			4			pC
Off Isolation	OIRR	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=7 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=500 \mathrm{kHz} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	68			68			dB
Logic-Input Capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.5			2.5			pF
Source-Off Capacitance	$\mathrm{Cs}_{(}(\mathrm{OFF})$	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, \mathrm{f}=140 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5			5		pF
Drain-Off Capacitance	$\mathrm{C}_{\text {(}(\mathrm{OFF})}$	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, \\ & f=140 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$	DG528	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	25			25			pF
			DG529	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	12			12			
SUPPLY											
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{AH}}=0 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.003	2.5		0.003	2.5	mA
Negative Supply Current	I-	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{AH}}=0 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.5	0.01		-1.5	0.01		mA
MINIMUM INPUT TIMING											
$\overline{\text { WR Pulse Width }}$	tww	Figure 7			300	150		300	15		ns
AX, EN Data Valid to WR	tDw	(Stabilization Time) Figure 7			180	120		180	12		ns
AX, EN Data Valid after WR	twD	(Hold Time) Figure 7			30	10		30	10		ns
$\overline{\mathrm{RS}}$ Pulse Width	t $\overline{\mathrm{RS}}$	Figure 7; $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ (Note 5)			500	150		500	150		ns

Note 2: Guaranteed by design.
Note 3: Sequence each switch on
Note 4: $I_{D(O N)}$ is leakage from driver into on switch.
Note 5: Reset pulse period must be at least 50μ s during or after power-on.

8-Channel Latchable Multiplexers

Figure 1. Transition-Time Test Circuits

Figure 2. Open-Time (B.B.M.) Interval Test Circuit
\qquad

8-Channel Latchable Multiplexers

6ZSDG/8ZSDG

Figure 3. Enable ton/toff Time Test Circuit

Figure 4. Write Turn-On Time ton(WR) Test Circuit

8-Channel Latchable Multiplexers

Figure 5. Reset Turn-Off Time toff($\overline{R S})$ Test Circuit

Figure 6. Charge-Injection Test Circuit

Figure 7. Typical Timing Diagrams for DG528/DG529

8-Channel Latchable Multiplexers

Table 1. DG528 Logic States

A2	A1	A0	EN	$\overline{W R}$	$\overline{\mathrm{RS}}$	ON SWITCH
Latching						
X	X	X	X	$\stackrel{5}{ }$	1	Maintains previous switch condition
Reset						
X	X	X	X	X	0	None (latches cleared)
Transparent Operation						
X	X	X	0	0	1	None
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

Detailed Description

The internal structures of the DG528/DG529 include translators for the A2/A1/A0/EN/WR/RS digital inputs, latches, and a decode section for channel selection (Truth Tables). The gate structures consist of parallel combinations of N and P MOSFETs.
$\overline{\text { WRITE }}(\overline{\mathrm{WR}})$ and $\overline{\mathrm{RESET}}(\overline{\mathrm{RS}})$ strobes are provided for interfacing with $\mu \mathrm{P}$-bus lines (Figure 9), alleviating the need for the $\mu \mathrm{P}$ to provide constant address inputs to the mux to hold a particular channel.
When the $\overline{\mathrm{WR}}$ strobe is in the low state (less than 0.8 V) and the $\overline{R S}$ strobe is in the high state (greater than 2.4 V), the muxes are in the transparent mode-they act similarly to nonlatching devices, such as the DG508A/ DG509A or the HI508/HI509.
When the $\overline{W R}$ goes high, the previous BCD address input is latched and held in that state indefinitely. To pull the mux out of this state, either WR must be taken

Table 2. DG529 Logic States

A1	A0	EN	$\overline{W R}$	$\overline{\mathrm{RS}}$	ON SWITCH
Latching					
X	X	X	\uparrow	1	Maintains previous switch condition
Reset					
X	X	X	X	0	None (latches cleared)
Transparent Operation					
X	X	0	0	1	None
0	0	1	0	1	1
0	1	1	0	1	2
1	0	1	0	1	3
1	1	1	0	1	4

Note: Logic "1": $\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$, Logic "0": $\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$.
low to the transition state, or $\overline{\mathrm{RS}}$ must be taken low to turn off all channels.
$\overline{\mathrm{RS}}$ turns off all channels when it is low, which resets channel selection to the channel 1 mode.
The DG528/DG529 work with both single and dual supplies and function over the +5 V to +30 V single-supply range. For example, with a single +15 V power supply, analog signals in the 0 V to +15 V range can be switched normally. If negative signals around OV are expected, a negative supply is needed. However, only -5 V is needed to normally switch signals in the -5 V to +15 V range (-5 V , +15 V supplies). No current is drawn from the negative supply, so Maxim's MAX635 DC-DC converter is an ideal choice.
The EN latch allows all switches to be turned off under program control. This is useful when two or more DG528s are cascaded to build 16 -line and larger ana-log-signal multiplexers.

8-Channel Latchable Multiplexers

Figure 8. Simplified Internal Structure

Applications

Operation with Supply Voltages
Other Than $\pm 15 \mathrm{~V}$
Maxim guarantees the DG528/DG529 for operation from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ supplies. The switching delays increase by about a factor of two at $\pm 5 \mathrm{~V}$, and break-before-make action is preserved.
The DG528/DG529 can operate with a single +5 V to +30 V supply as well as asymmetrical power supplies like +15 V and -5 V . The digital threshold will remain approximately 1.6 V above the GND pin, and the analog characteristics such as $\mathrm{rDS}(\mathrm{ON})$ are determined by the total voltage difference between $\mathrm{V}+$ and V -. Connect V to 0 V when operating with $\mathrm{a}+5 \mathrm{~V}$ to +30 V single supply.

Digital Interface Levels

The typical digital threshold of both the address lines and EN is 1.6 V with a temperature coefficient of approximately $-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, ensuring compatibility with TL logic over the temperature range. The digital threshold is relatively independent of the power-supply voltages, going from a typical 1.6 V when V_{+}is 15 V to 1.5 V typical with $\mathrm{V}_{+}=5 \mathrm{~V}$. Therefore, Maxim's DG528/DG529 operate with standard ΠL logic levels, even with $\pm 5 \mathrm{~V}$ power supplies. In all cases, EN's threshold is the same as the other logic inputs and is referenced to GND.
The digital inputs can also be driven with CMOS logic levels swinging from either V_{+}to V - or from V_{+}to GND. The digital input current is just a few nanoamps of leakage at all input-voltage levels with a guaranteed maximum of $1 \mu \mathrm{~A}$. The digital inputs are protected from ESD by a 30 V zener diode between the input and V_{+}and can be driven $\pm 2 \mathrm{~V}$ beyond the supplies without drawing excessive current.

8-Channel Latchable Multiplexers

0
0
0
N
∞
0
0
0
N
0

Figure 9. Bus Interface

Pin Configurations (continued)

8-Channel Latchable Multiplexers

PART	TEMP. RANGE	PIN-PACKAGE
DG529CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
DG529CWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Wide SO
DG529CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 CERDIP
DG529C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
DG529DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP
DG529DN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 PLCC
DG529EWN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Wide SO
DG529DK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 CERDIP
DG529AZ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 LCC** *
DG529AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 CERDIP**

* Contact factory for dice specifications.
** Contact factory for availability and processing to MIL-STD-883.

Chip Topographies
DG528

TRANSISTOR COUNT: 200 SUBSTRATE CONNECTED TO V+

DG529

TRANSISTOR COUNT: 200
SUBSTRATE CONNECTED TO V+

8-Channel Latchable Multiplexers

8-Channel Latchable Multiplexers

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 \qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW.112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0

