The DG200A is a dual, normally closed, single-pole-single-throw (SPST) analog switch. This CMOS switch can be operated with power supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. The DG200A has guaranteed break-before-make switching. Its maximum turn-off time is 500 ns , and its maximum turn-on time is 100 ns .
Maxim guarantees that the DG200A will not latch-up if the power supplies are turned off with input signals still connected as long as absolute maximum ratings are not violated.
Compared to the original manufacturer's product, Maxim's DG200A consumes significantly lower power, making it better suited for portable applications.

Applications
Winchester Disk Drives
Test Equipment
Communications Systems
PBX, PABX
Guidance and Control Systems
Head up Displays
Military Radios

Typical Operating Circuit

Dual Monolithic SPST CMOS Analog Switch

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V^{-}
V^{+}.
GND
Digital Inputs $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}\left(\right.$ Note 1)-2V to $\left(\mathrm{V}^{+}+2 \mathrm{~V}\right)$
or 20 mA , whichever occurs first.
Current, Any Terminal Except S or D.. 30 mA
Continuous Current, S or D. 20 mA
(Pulsed at $1 \mathrm{msec}, 10 \%$ duty cycle max) 100 mA
Storage Temperature (A \& B Suffix)
-65 to $150^{\circ} \mathrm{C}$
(C Suffix) .. 65 to $125^{\circ} \mathrm{C}$

Operating Temperature (A Suffix)
55 to $125^{\circ} \mathrm{C}$
(B Suffix)
-25 to $85^{\circ} \mathrm{C}$
(C Suffix)-25 to $85^{\circ} \mathrm{C}$
(D Suffix) 40 to $85^{\circ} \mathrm{C}$
Power Dissipation (Package)*
Metal Can**
14 Pin Ceramic DIP*** .. 825 mW
14 Pin Plastic DIP*** . .470 mW

* All leads soldered or welded to PC board.
** Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
*** Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
*** Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting in permanent damage. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise indicated.)

PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS				UNITS
				DG200A		DG200 B/C/D		
				MIN TYP (Note 2) (Note 3)	MAX	MIN TYP (Note 2) (Note 3)	MAX	
SWITCH								
Analog Signal Range (Note 1)	$V_{\text {Analog }}$			-15	15	-15	15	V
Drain-Source ON Resistance	$\mathrm{r}_{\text {DS }}(\mathrm{on})$	$V_{D}= \pm$	$\begin{aligned} & \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$	45	70	45	80	Ω
Source OFF Leakage Current	$\mathrm{IS}_{\text {(off) }}$	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	0.01	2.0	0.01	5.0	nA
			$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-2.0 $\quad-0.02$		$\begin{array}{ll}-5.0 & -0.02\end{array}$		
Drain OFF Leakage Current	$I_{\text {(off) }}$		$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	0.01	2.0	0.01	5.0	
			$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-2.0 $\quad-0.02$		$\begin{array}{ll}-5.0 & -0.02\end{array}$		
Drain ON Leakage Current (Note 4)	$I_{\text {don }}$	$\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}$	$V_{S}=V_{D}=14 \mathrm{~V}$	0.1	2.0	0.1	5.0	
			$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=-14 \mathrm{~V}$	-2.0 $\quad-0.1$		$\begin{array}{ll}-5.0 & -0.1\end{array}$		
INPUT								
Input Current with Input Voltage High	I_{NH}	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V}, \\ & V_{\text {in }}=15 \mathrm{~V} \end{aligned}$		-1.0 0.0009		-1.0 0.0009		$\mu \mathrm{A}$
				0.005	1.0	0.005	1.0	
Input Current with Input Voltage Low	IINL		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	-1.0 -0.0015		-1.0 -0.0015		
DYNAMIC								
Turn-ON Time	$\mathrm{t}_{\text {on }}$	See Switching Time Test Circuit (Figure 1)		440	1000	440	1000	ns
Turn-OFF Time	$\mathrm{t}_{\text {off }}$			70	500	70	500	
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text { (Figure 2) } \end{gathered}$		10		10		pC
Source OFF Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\begin{gathered} f=140 \mathrm{kHz} \\ \mathrm{~V}_{\text {in }}=5 \mathrm{~V} \\ \text { or } \\ \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	9.0		9.0		pF
Drain OFF Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$	9.0		9.0		
Channel ON Capacitance	$\begin{gathered} \mathrm{C}_{\mathrm{D} \text { (on) }}+ \\ \mathrm{C}_{\mathrm{S} \text { (on) }} \end{gathered}$		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	25		25		
OFF Isolation Figure 3 (Note 5)		$\begin{gathered} V_{\text {in }}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=75 \Omega \\ \mathrm{~V}_{S}=2.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{gathered}$		75		75		dB
Crosstalk Figure 4 (Channel to Channel)				90		90		

Dual Monolithic SPST CMOS Analog Switch

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise indicated.)

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS					UNITS
			DG200A		DG200 B/C/D			
			$\begin{array}{cc}\text { MIN } & \text { TYP } \\ \text { (Note 2) } & \text { (Note 3) }\end{array}$	MAX	$\begin{aligned} & \text { MIN } \\ & \text { (Note 2) } \end{aligned}$	TYP (Note 3)	MAX	
SUPPLY								
Positive Supply Current	I+	Both Channels ON or OFF$\mathrm{V}_{\mathrm{in}}=0 \text { and } 2.4 \mathrm{~V}$	180	300		200	500	
Negative Supply Current	I-		-10 -0.1		-100	-0.1		

ELECTRICAL CHARACTERISTICS (Over Temperature)

$\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\right.$ Over Temperature Range, unless otherwise indicated.)

PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS				UNITS
				DG200A		DG200 B/C		
				$\begin{array}{cc}\text { MIN } & \text { TYP } \\ \text { (Note 2) } & \text { (Note 3) }\end{array}$	MAX	$\begin{array}{cc}\text { MIN TYP } \\ \text { (Note 2) } & \text { (Note 3) }\end{array}$	MAX	
SWITCH								
Analog Signal Range (Note 1)	Vanalog			-15	15	-15	15	V
Drain-Source ON Resistance	ros(on)	$\begin{gathered} V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \\ I_{S}=1 \mathrm{~mA} \end{gathered}$			100		100	Ω
Source OFF Leakage Current	$I_{\text {S(off) }}$	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$		100		100	nA
			$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100		-100		
Drain OFF Leakage Current	$I_{\text {D(off) }}$		$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$		100		100	
			$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-100		-100		
Drain ON Leakage Current (Note 4)	$I_{\text {D(on) }}$	$V_{\text {in }}=0.8 \mathrm{~V}$	$V_{S}=V_{D}=14 \mathrm{~V}$		200		200	
			$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=-14 \mathrm{~V}$	-200		-200		
INPUT								
Input Current/ Voltage High	I_{NH}	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=15 \mathrm{~V}$		-10		-10		$\mu \mathrm{A}$
					10		10	
Input Current/ Voltage Low	IINL		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	-10		-10		

Note 1: \quad Signals on $\mathrm{S}_{\mathrm{x}}, \mathrm{D}_{\mathrm{x}}$, or IN_{x}, exceeding V^{-}or V^{+}will be clamped by internal diodes. LIMIT FORWARD DIODE CURRENT to maximum current ratings.
Note 2: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Note 4: $I_{D(o n)}$ is leakage from driver into "ON" switch.
Note 5: "OFF" isolation $=20 \log V_{S} / V_{D}, V_{S}=$ input to $O F F$ switch, $V_{D}=$ output.

Dual Monolithic SPST CMOS Analog Switch

\qquad

NOTE: Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note that V_{S} may be + or - as per switching time test circuit. V_{o} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Figure 1. Switching Time Test Circuit

Figure 2. Charge Injection Test Circuit

Figure 3. OFF Isolation Test Circuit

Dual Monolithic SPST CMOS Analog Switch

Figure 4. Channel To Channel Crosstalk Test Circuit

10 Lead T0-100 Can (TW)
$\theta_{J A}=150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=45^{\circ} \mathrm{C} / \mathrm{W}$

Dual Monolithic SPST CMOS Analog Switch

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

14 Lead Plastic DIP (PD)

$$
\begin{aligned}
& \theta_{J A}=140^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{J C}=70^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

14 Lead Small Outline (SD)
$\theta_{\mathrm{JA}}=115^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=60^{\circ} \mathrm{C} / \mathrm{W}$

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
M74HCT4066ADTR2G ADG506ATE/883B DG406BDN-T1-E3 JM38510/19004BXA HEF4051BP 5962-8513107XA
NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G JM38510/19002BXA 016400E ADV3014KSTZ PI3V512QE FSA644UCX
MAX7356ETG 7705201EC MAX4634ETBT MAX4578CAP+ PI2SSD3212NCE MAX3997ETM+ NLV14052BDTR2G PI3L100QE
PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+ PI3DBS12212AZBEX PI3DBS16213ZLEX PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G NLVAST4051DTR2G ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ-RL7 ADG5208FBRUZ-RL7 MAX14984ETG+ MAX14984ETG+T HV2818/R4X HV2918/R4X CBTU02044HEJ PS508LEX PS509LEX TC7W53FK,LF 74LVC1G3157GM,132 5962-8513102XA

