Spread-Spectrum Crystal Multiplier

Abstract

General Description The DS1080L is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs from 16 MHz to 134 MHz . The device is pin-programmable to select the clock multiplier rate as well as the dither magnitude. The DS1080L has a spread-spectrum disable mode and a power-down mode to conserve power.

Applications

Automotive
Cable Modems
Cell Phones
Computer Peripherals
Copiers
Infotainment
PCs
Printers
Pin Configuration

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS1080LU +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$
DS1080LU $/ \mathrm{V}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$
DS $1080 \mathrm{LU} / \mathrm{N}+\mathrm{T}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$
DS1080LU +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{SOP}$

+Denotes a lead(Pb)-free/RoHS-compliant package.
/ denotes an automotive qualified part.
T = Tape and reel.

DS1080L

Spread-Spectrum Crystal Multiplier

ABSOLUTE MAXIMUM RATINGS

Voltage on VCC Relative to GND \qquad Voltage on Any Lead Relative
to GND-0.3V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$), not to exceed +4.3 V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
$\mu \mathrm{SOP}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..
. 362 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

($T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Supply Voltage	VCC	(Note 1)	3.0	3.6	V
Input Logic 1	V_{IH}		$\begin{aligned} & 0.8 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
Input Logic 0	VIL		$\begin{gathered} \mathrm{V}_{\mathrm{GND}}- \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.2 x \\ & V_{C C} \end{aligned}$	V
Input Logic Open	IIF	$\mathrm{OV}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$ (Note 2)		± 1	$\mu \mathrm{A}$
Input Leakage	IIL	OV < VIN < VCC (Note 3)		± 80	$\mu \mathrm{A}$
SSO Load	Csso	fSSO < 67MHz		15	pF
		$67 \mathrm{MHz} \leq$ fSSO $<101 \mathrm{MHz}$		10	
		$101 \mathrm{MHz} \leq$ fSSO $<134 \mathrm{MHz}$		7	
Crystal or Clock Input Frequency	fin		16.0	33.4	MHz
Crystal ESR	XESR			90	Ω
Clock Input Duty Cycle	FINDC		40	60	\%
Crystal Parallel Load Capacitance	CL	(Note 4)		18	pF

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
Supply Current	ICC 1	$\mathrm{CSSO}=15 \mathrm{pF}, \mathrm{SSO}=16 \mathrm{MHz}$	15	mA	
Power-Down Current	ICCQ	$\overline{\mathrm{PDN}}=\mathrm{GND}, \mathrm{all}$ input pins open	200	$\mu \mathrm{~A}$	
Output Leakage (SSO)	IOZ	$\overline{\mathrm{PDN}=\mathrm{GND}}$	+1	$\mu \mathrm{~A}$	
Low-Level Output Voltage (SSO)	VOL	$\mathrm{IOL}=4 \mathrm{~mA}$	-1	0.4	V
High-Level Output Voltage (SSO)	VOH	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	V	
Input Capacitance (X1/X2)	CIN	(Note 5)	$\mathrm{5F}$		

Spread-Spectrum Crystal Multiplier

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.0$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SSO Duty Cycle	SSODC	Measured at $\mathrm{V}_{\mathrm{CC}} / 2$, CMSEL $=0$ or open		40		60	\%
		Measured at $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{CMSEL}=1$		30		70	
Rise Time	tR	(Note 6)		1.6			ns
Fall Time	tF	(Note 6)		1.6			ns
Peak Cycle-to-Cycle Jitter	t」	$\begin{aligned} & \text { fSSO }=16 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ & 10,000 \text { cycles (Note } 5 \text {) } \end{aligned}$		75			ps
Power-Up Time	tPOR	$\overline{\text { PDN }}$ pin (Note 7)	16 MHz			20	ms
			33.4 MHz			11	
Power-Down Time	tPDN	$\overline{\text { PDN }}$ pin (Notes 8 and 9)				100	ns
Dither Rate	fDIther	(Note 9)		fin/992			

Note 1: All voltages referenced to ground.
Note 2: Maximum source/sink current applied to input to be considered an open. Typical voltage range between $0.4 \times \mathrm{V}_{\mathrm{CC}}$ and 0.55 $\times V_{C C}$.
Note 3: Applicable to pins CMSEL, SMSEL, and $\overline{\mathrm{PDN}}$.
Note 4: See information about $C_{L 1}$ and $C_{L 2}$ in the Applications Information section at the end of the data sheet.
Note 5: Not production tested.
Note 6: For 7pF load.
Note 7: Time between $\overline{\text { PDN }}$ deasserted to output active.
Note 8: Time between $\overline{\text { PDN }}$ asserted to output high impedance.
Note 9: Guaranteed by design.

DS1080L

Spread-Spectrum Crystal Multiplier

Typical Operating Characteristics

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

DUTY CYCLE vs. SUPPLY VOLTAGE

DS1080L

Spread-Spectrum Crystal Multiplier

Pin Description

PIN	NAME	FUNCTION
1	X1	Crystal Drive/Clock Input. A crystal with the proper loading capacitors is connected across X1 and X2. Instead of a crystal, a clock can be applied at the X1 input.
2	GND	Signal Ground
3	CMSEL	Clock Multiplier Select. Tri-level digital input. $\begin{aligned} & 0=1 x \\ & \text { Open }=2 x \\ & 1=4 x \end{aligned}$
4	SMSEL	Spread-Spectrum Magnitude Select. Tri-level digital input. $0= \pm 0.5 \%$ Open $= \pm 1.0 \%$ $1= \pm 1.5 \%$
5	$\overline{\text { PDN }}$	Power-Down/Spread-Spectrum Disable. Tri-level digital input. 0 = Power-Down/SSO Three-Stated Open = Power-Up/Spread Spectrum Disabled 1 = Power-Up/Spread Spectrum Enabled
6	SSO	Spread-Spectrum Clock Multiplier Output. Outputs a 1 x , 2 x , or 4 x spread-spectrum version of the crystal or clock applied at the X1/X2 pins.
7	V CC	Supply Voltage
8	X2	Crystal Drive Output. A crystal with the proper loading capacitors is connected across X1 and X2. If a clock is connected to X 1 , then X 2 should be left open circuit.

Block Diagram

note: See information about Cl1 and clz in the applications information section at the end of the data sheet.

DS1080L

Spread-Spectrum Crystal Multiplier

Detailed Description

The DS1080L is a crystal multiplier with center spreadspectrum capability. A 16 MHz to 33.4 MHz crystal is connected to the X1 and X2 pins. Alternately, a 16 MHz to 33.4 MHz clock can be applied to X 1 in place of the crystal. In such applications, X2 would be left open circuit. Using the CMSEL input, the user selects whether the attached crystal or input clock is multiplied by 1, 2, or 4. The DS1080L is capable of generating spreadspectrum clocks from 16 MHz to 134 MHz .
The PLL can dither the output clock about its center frequency at a user-selectable magnitude. Using the SMSEL input, the user selects the dither magnitude. The PDN input can be used to place the device into a low-power standby mode where the SSO output is tristated. If the $\overline{\mathrm{PDN}}$ pin is open, the SSO output is active but the spread-spectrum dithering is disabled. The spread-spectrum dither rate is fixed at f_{IN} / 992 to keep the dither rate above the audio frequency range. On power-up, the output clock (SSO) remains three-stated until the PLL reaches a stable frequency (fSSO) and dither (fDITHER).

Applications Information

Crystal Selection

The DS1080L requires a parallel resonating crystal operating in the fundamental mode, with an ESR of less than 90Ω. The crystal should be placed very close to the device to minimize excessive loading due to parasitic capacitances.

Oscillator Input
When driving the DS1080L using an external oscillator clock, consider the input (X1) to be high impedance.

Crystal Capacitor Selection The load capacitors CL1 and CL2 are selected based on the crystal specifications (from the data sheet of the crystal used). The crystal parallel load capacitance is calculated as follows:

$$
C_{L}=\frac{C_{L 1} \times C_{L 2}}{C_{L 1}+C_{L 2}}+C_{I N}
$$

Equation 1

For the DS1080L use CL1 = CL2 = CLX. In this case, the equation then reduces to:

$$
C_{L}=\frac{C_{L X}}{2}+C_{I N}
$$

Equation 2
where CL1 $=$ CL2 $=$ CLX .
Equation 2 is used to calculate the values of CL_{L} and $\mathrm{C}_{\mathrm{L} 2}$ based on values on CL_{L} and $\mathrm{CIN}_{\mathrm{I}}$ noted in the data sheet electrical specifications.

Power-Supply Decoupling
To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are $0.001 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. Use a high-quality, ceramic, sur-face-mount capacitor, and mount it as close as possible to the $V_{C C}$ and GND pins of the IC to minimize lead inductance.

Figure 1. Spread-Spectrum Frequency Modulation

DS1080L

Spread-Spectrum Crystal Multiplier

Typical Operating Circuit

NOTE: IN THE ABOVE CONFIGURATION WITH PDN CONNECTED TO V ${ }_{C C}$, SMSEL CONNECTED TO GND
AND CMSEL OPEN, THE DEVICE IS IN NORMAL OPERATION WITH $2 x$ CLOCK MULTIPLICATION, AND SPREAD-SPECTRUM MAGNITUDE OF $\pm 0.5 \%$.

Layout Considerations

As noted earlier, the crystal should be placed very close to the device to minimize excessive loading due to parasitic capacitances. Care should also be taken to minimize loading on pins that could be open as a programming option (SMSEL and CMSEL). Coupling on inputs due to clocks should be minimized.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
$8 \mu \mathrm{SOP}$	$\mathrm{U} 8+1$	$\underline{\underline{21-0036}}$	$\underline{\underline{90-0092}}$

Spread-Spectrum Crystal Multiplier

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/05	Initial release	-
1	3/06	Changed $\mathrm{V}_{\text {IHMIN }}$ from $0.7 \mathrm{~V} \times \mathrm{V}_{\mathrm{CC}}$ to $0.08 \mathrm{~V} \times \mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {ILMAX }}$ from $0.3 \times \mathrm{V}_{\mathrm{CC}}$ to $0.2 \mathrm{~V} \times \mathrm{V}_{\text {CC }}$ in the Recommended Operating Conditions table	2
2	10/09	Changed the part number in the Ordering Information table	1
3	10/11	Updated the Ordering Information table and Absolute Maximum Ratings section; added the land pattern no. to the Package Information table	1, 2, 7
4	5/12	Clarified SSODC conditions and split limits based upon CMSEL input state	3
5	3/13	Updated the voltage ranges in the Absolute Maximum Ratings; changed the supply current parameter from 13 mA (max) to 15 mA (max) in the DC Electrical Characteristics table; changed the dither rate parameter from $\mathrm{fiN}_{\mathrm{I}} / 1024$ to $\mathrm{fIN}_{\mathrm{I}} / 992$ in the AC Electrical Characteristics table; updated all graphs in the Typical Operating Characteristics section	2, 3, 4

maxim integrated ${ }_{\text {w }}$

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
CV183-2TPAG 82P33814ANLG/W 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 PL602-21TC-R $\underline{\text { ZL30105QDG1 ZL30100QDG1 ZL30250LDG1 DSC557-0334FI1 DSC557-0343FI1 AB-557-03-HCHC-F-L-C-T }}$

[^0]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

