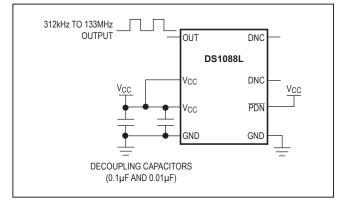
Fixed-Frequency EconOscillator™

General Description

The DS1088L is a low-cost clock generator that produces a square-wave output without external timing components. The fixed-frequency oscillator is available in factory-calibrated frequencies from 312kHz to 133MHz. The device has a power-down pin for power-sensitive applications.

Applications


- Printers
- Copiers
- Computer Peripherals
- POS Terminals
- Cable Modems

Ordering Information appears at end of data sheet.

Features

- Factory-Programmed Square-Wave Generator from 321kHz to 133MHz
- Single Output
- No External Timing Components Required
- 2.7V to 3.6V Supply
- Power-Down Mode
- 1% Frequency Tolerance Over Temperature and Voltage
- Wide Temperature Range (-20°C to +85°C)

Typical Operating Circuit

EconOscillator is a trademark of Maxim Integrated Products, Inc.

For related parts and recommended products to use with this part, refer to <u>www.maximintegrated.com/DS1088L.related</u>.

Fixed-Frequency EconOscillator™

Absolute Maximum Ratings

(Voltages relative to ground.)	Storage Temperature Range55°C to +125°C
Voltage Range on V _{CC} 0.5V to +6.0V	Lead Temperature (soldering, 10s)+300°C
Voltage Range on PDN0.5V to (V _{CC} + 0.5V)*	Soldering Temperature (reflow)+260°C
Operating Temperature Range20°C to +85°C	

*Not to exceed +6.0V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

($T_A = -20^{\circ}C$ to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Supply Voltage	V _{CC}	(Note 1)	2.7	3.6	V
High-Level Input Voltage (PDN)	VIH		0.7 x V _{CC}	V _{CC} + 0.3	V
Low-Level Input Voltage (PDN)	V _{IL}		-0.3	0.3 x V _{CC}	V

DC Electrical Characteristics

(V_{CC} = 2.7V to 3.6V, T_A = -20°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
High-Level Output Voltage (OUT)	V _{OH}	I_{OH} = -4mA, V_{CC} = MIN	V _{CC} - 0.4			V
Low-Level Output Voltage (OUT)	V _{OL}	I _{OL} = 4mA			0.4	V
High-Level Input Current (PDN)	I _{IH}	V _{CC} = 3.6V			1	μA
Low-Level Input Current (PDN)	١ _{١L}	V _{IL} = 0V	-1			μA
Supply Current (Active)	ICC	V _{CC} = 3.6V, C _L = 15pF, f _O = 133MHz		15	24	mA
Standby Current (Power-Down)	I _{CCQ}	Power-down mode			10	μA

Fixed-Frequency EconOscillator™

Oscillator Characteristics

(V_{CC} = 2.7V to 3.6V, T_A = -20°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Output Frequency Range Available	f _O			0.3124		133.3	MHz
Output Frequency Tolerance	$\frac{\Delta f_O}{f_O}$	V _{CC} = 3.3V, T _A = +25°C (Note 2)		-0.3		+0.3	%
Voltage Frequency Variation	$\frac{\Delta f_V}{f_O}$	Over voltage range, T _A = +25°C (Note 3)		-0.35		+0.35	%
	Δf_T	Over temperature	-20°C to +25°C	-0.7		+0.7	%
Temperature Frequency Variation	$\frac{\Delta f_T}{f_O}$	range, V _{CC} = 3.3V (Notes 4, 5)	+25°C to +85°C	-0.5		+0.5	%
Frequency Variation Over Voltage and Temperature	$\frac{\Delta f_{V,T}}{f_O}$	Over voltage and temperature range		-1.0		+1.0	%

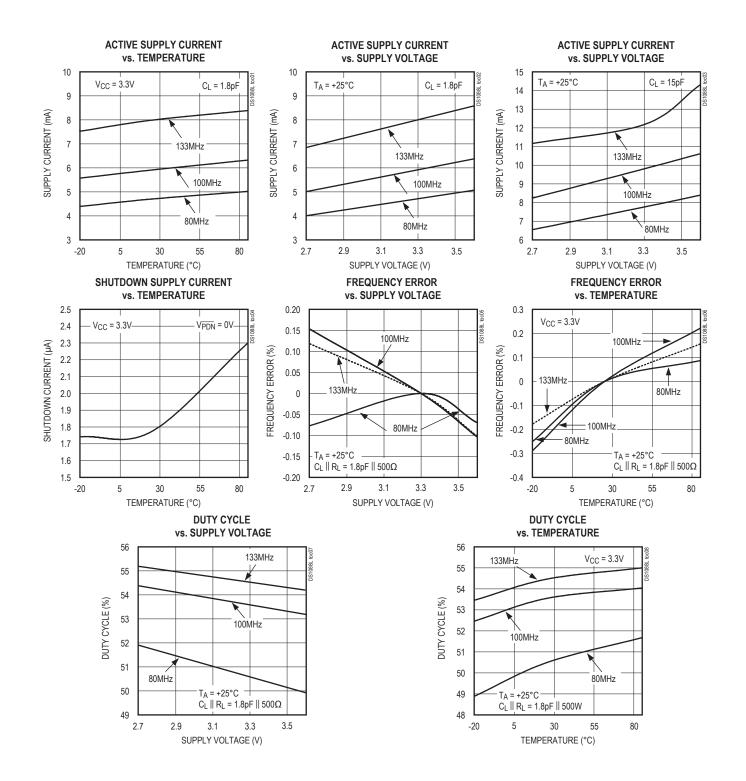
AC Electrical Characteristics

(V_{CC} = 2.7V to 3.6V, T_A = -20°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Up Time	t _{POR} + t _{STAB}	(Note 6)			100	μs
OUT Disabled After Entering Power-Down Mode	t _{PDN}	(Note 7)			7	μs
Load Capacitance	CL	(Note 8)		15	50	pF
		$f_O < 80MHz, f_O \ge 80MHz$	40		60	%
Output Duty Cycle (OUT)		f _O < 80MHz		50		

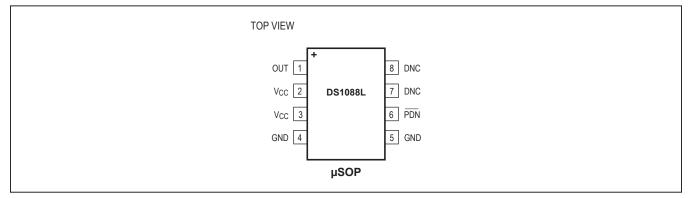
Note 1: All voltages are referenced to ground.

- **Note 2:** Typical frequency shift due to aging is within ±0.2%. Aging stressing includes level 1 moisture reflow preconditioning (24hr +125°C bake, 168hr +85°C/85%RH moisture soak, and three solder reflow passes +240°C +0°C/-5°C peak) followed by1000hr (max) V_{CC} biased +125°C OP/L, 1000hr unbiased +150°C bake, 1000 temperature cycles at -55°C to +125°C, and 168hr +121°C/2 ATM steam/unbiased autoclave.
- **Note 3:** This is the change in output frequency due to changes in voltage at $T_A = +25^{\circ}C$.


Note 4: Guaranteed by design.

- Note 5: This is the change in output frequency due to changes in temperature from the +25°C frequency at V_{CC} = 3.3V.
- **Note 6:** This indicates the time elapsed between power-up and the output becoming active. An on-chip delay is intentionally introduced to allow the oscillator to stabilize. t_{STAB} is equivalent to approximately 512 clock cycles and will depend on the programmed oscillator frequency.
- Note 7: Output disabled in two cycles or less of the output frequency.
- Note 8: Output voltage swings may be impaired at high frequencies combined with high-output loading.

Fixed-Frequency EconOscillator™


Typical Operating Characteristics

(V_{CC} = 3.3V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

Fixed-Frequency EconOscillator™

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	OUT	Oscillator Output
2, 3	V _{CC}	Power Supply
4, 5	GND	Ground
6	PDN	Active-Low Power-Down. When the pin is high, the oscillator is enabled. When the pin is low, the oscillator is disabled (power-down mode).
7	DNC	Do Not Connect. The DNC pins are internally connected to ground.
8	DNC	Do Not Connect

Detailed Description

The DS1088L is a low-cost clock generator that produces a square-wave output without external timing components. The fixed-frequency oscillator is available in factory-calibrated frequencies from 312kHz to 133MHz. The device has a power-down pin for power-sensitive applications. A block diagram is shown in <u>Figure 1</u>.

Output Frequency

The internal oscillator frequency is divided by the factoryprogrammed prescaler to produce an output frequency of 312kHz to 133MHz. Contact the factory for custom frequencies.

Power-Down Mode

The $\overline{\text{PDN}}$ pin disables the internal oscillator and the oscillator output for power-sensitive applications. The powerdown pin must remain low for at least two output frequency cycles plus 10µs for deglitching purposes. On power-up, the output is disabled until power is stable and the voltagecontrolled oscillator has generated 512 clock cycles.

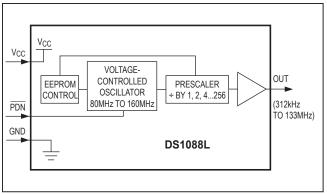


Figure 1. Block Diagram

Applications Information

Power-Supply Decoupling

To achieve the best results when using the DS1088L, the power supply must be decoupled with 0.01μ F and 0.1μ F high-quality, ceramic, surface-mount capacitors. Surface-mount components minimize lead inductance, which improves performance, and tend to have adequate high-frequency response for decoupling applications. These capacitors should be placed as close as possible to the V_{CC} and GND pins.

Chip Information

SUBSTRATE CONNECTED TO GROUND

Fixed-Frequency EconOscillator™

Ordering Information

PART	FREQUENCY (MHz)	TEMP RANGE	PIN-PACKAGE	
DS1088LU-02+	2.048	-20°C to +85°C	8 µSOP	
DS1088LU-10+	10.0	-20°C to +85°C	8 µSOP	
DS1088LU-16+	16.6	-20°C to +85°C	8 µSOP	
DS1088LU-66+	66.6	-20°C to +85°C	8 µSOP	
DS1088LU-100+	100.0	-20°C to +85°C	8 µSOP	
DS1088LU-yyy+	(see note)	-20°C to +85°C	8 µSOP	

Note: For more information about custom frequencies, email Custom_EconOscillators_Info@maximintegrated.com.

+Denotes a lead(Pb)-free/RoHS-compliant package.

yyy = *frequency*

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 µSOP	U8+1	<u>21-0036</u>	<u>90-0092</u>

Fixed-Frequency EconOscillator™

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	10/04	Initial release	—
1	5/05	Updated the Oscillator Characteristics table and added Note 8	3
2	1/12	Added lead(Pb)-free ordering option to the <i>Ordering Information</i> table; added the lead and soldering temperature information to the <i>Absolute Maximum Ratings</i> section	1, 2
3	4/15	Removed automotive reference from data sheet	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

CV183-2TPAG 82P33814ANLG/W 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30250LDG1 DSC557-0334FI1 DSC557-0343FI1 AB-557-03-HCHC-F-L-C-T