Low-Frequency, Spread-Spectrum EconOscillator


General Description

The DS1090 is a low-cost, dithered oscillator intended to be used as an external clock for switched-mode power supplies and other low-frequency applications. The dithering or sweeping function reduces peak-radiated emissions from the power supply at its fundamental frequency, as well as harmonic frequencies. The device consists of a resistor-programmed master oscillator, factory-programmed clock prescaler, and a pin-programmed dither circuit. These features allow the DS1090 to be used in applications where a spread-spectrum clock is desired to reduce radiated emissions. A combination of factory-set prescalers and external resistor allows for output frequencies ranging from 125kHz to 8MHz. Both dither frequency and dither percentage are set using control pins.

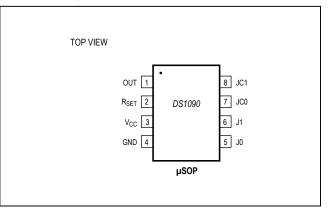
Applications

- Switched-Mode Power Supplies
- Servers
- Printers
- Embedded Microcontrollers
- Industrial Controls

Typical Operating Circuit

EconOscillator is a trademark of Maxim Integrated Products, Inc.

Features


- Low-Cost, Spread-Spectrum EconOscillator™
- Simple User Programming
- Output Frequency Programmable from 125kHz to 8MHz
- Dither Percentage Programmable from 0% to 8%
- Dither Rate Programmable (f_{MOSC}/512, 1024, 2048, or 4096)
- 3.0V to 5.5V Single-Supply Operation
- CMOS/TTL-Compatible Output
- Operating Temperature Range: -40°C to +85°C

Ordering Information

PART	OUTPUT FREQUENCY RANGE	PRESCALER	PIN- PACKAGE
DS1090U-1+	4MHz to 8MHz	1	8 µSOP
DS1090U-2+	2MHz to 4MHz	2	8 µSOP
DS1090U-4+	1MHz to 2MHz	4	8 µSOP
DS1090U-8+	500kHz to 1MHz	8	8 µSOP
DS1090U-16+	250kHz to 500kHz	16	8 µSOP
DS1090U-32+	125kHz to 250kHz	32	8 µSOP

Add "T" for Tape & Reel orders.

Pin Configuration

Low-Frequency, Spread-Spectrum EconOscillator

Absolute Maximum Ratings

Voltage Range on V_{CC} Relative to Ground-0.5V to +6.0V Voltage Range on Input Pins

Relative to Ground......-0.5V to (V_{CC} + 0.5V), not to exceed 6.0V

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Soldering Temperature	See IPC/JEDEC
-	J-STD-020A Specification

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Supply Voltage	V _{CC}	(Note 1)	3.0	5.5	V
Input Logic 1 (J0, J1, JC0, JC1)	V _{IH}		0.7 x V _{CC}	V _{CC} + 0.3	V
Input Logic 0 (J0, J1, JC0, JC1)	V _{IL}		-0.3	+0.3 x V _{CC}	V

DC Electrical Characteristics

(V_{CC} = +3.0V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current		C_{L} = 15pF, V_{CC} = 3.3V, R_{SET} = 40k Ω		1.4		mA
Supply Current	Icc	C_L = 15pF, V_{CC} = 5.5V, R_{SET} = 40k Ω		1.7	3	
High Lovel Output Veltage (OLT)	Maria	I _{OH} = -4mA	2.4			V
High-Level Output Voltage (OUT)	V _{OH}	V _{CC} = min	2.4			
Low-Level Output Voltage (OUT)	VOL	I _{OL} = 4mA			0.4	V
High-Level Input Current (J0, J1, JC0, JC1)	IIH	V _{IH} = V _{CC}			+1.0	μA
Low-Level Input Current (J0, J1, JC0, JC1)	IIL	V _{IL} = 0V	-1.0			μA
Resistor Current	I _{RES}	V _{CC} = max			150	μA

Low-Frequency, Spread-Spectrum EconOscillator

AC Electrical Characteristics

(V_{CC} = +3.0V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Internal Master Oscillator Frequency	f _{MOSC}		4.0		8.0	MHz	
Output Frequency Tolerance	Δfout	V _{CC} = 3.3V, T _A = +25°C	-3.0		+3.0	%	
Voltage Frequency Variation		T_A = +25°C, R _{SET} = 60kΩ, V _{CC} = 3.0V to 3.6V (Notes 2, 3)	-0.5		+0.5	0/	
Voltage Frequency Variation	∆fout	T_A = +25°C, R _{SET} = 60kΩ, V _{CC} = 4.5V to 5.5V (Notes 2, 3)	-1.25		+1.25	%	
Temperature Frequency Variation	Δf_{OUT}	V _{CC} = 3.3V (Notes 2, 3, 4)	-2.0		+2.0	%	
		J0 = GND, J1 = GND		0			
Peak-to-Peak Dither (3σ)		$J0 = V_{CC}, J1 = GND$		2		%	
(Note 5)		$J0 = GND, J1 = V_{CC}$		4		70	
		$J0 = V_{CC}, J1 = V_{CC}$		8			
Power-Up Time	t _{POR} + t _{STAB}	(Note 6)		0.1	0.5	ms	
Load Capacitance	CL	(Note 7)			30	pF	
		4MHz to 8MHz, T _A = +25°C (Note 3)	45		55	0/	
Output Duty Cycle		<4MHz (Note 4)		50		- %	
Output Rise/Fall Time	t _R , t _F	C _L = 15pF			20	ns	

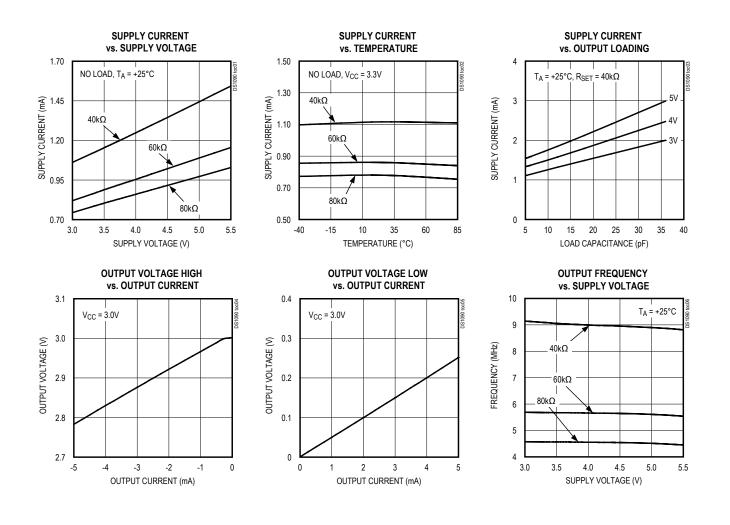
Note 1: All voltages referenced to ground.

Note 2: This is the change observed in output frequency due to changes in temperature or voltage.

Note 3: See the Typical Operating Characteristics section.

Note 4: Parameter is guaranteed by design and is not production tested.

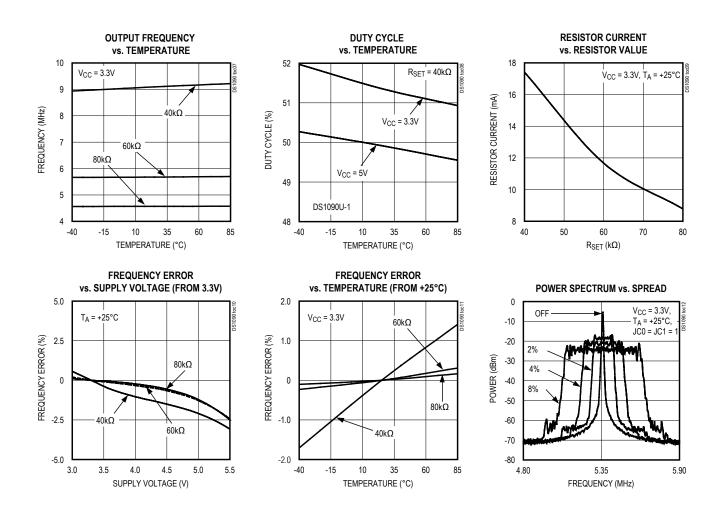
Note 5: This is a percentage of the output period. Parameter is characterized but not production tested. This can be varied from 0% to 8%.


Note 6: This indicates the time between power-up and the outputs becoming active. An on-chip delay is intentionally introduced to allow the oscillator to stabilize. t_{STAB} is equivalent to ~500 clock cycles and is dependent upon the programmed output frequency.

Note 7: Output voltage swings can be impaired at high frequencies combined with high output loading.

Low-Frequency, Spread-Spectrum EconOscillator

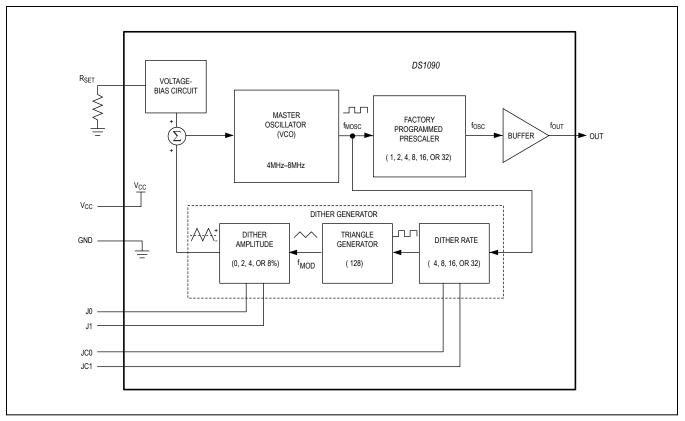
Typical Operating Characteristics


(V_{CC} = +3.3V, T_A = +25°C, unless otherwise noted.)

Low-Frequency, Spread-Spectrum EconOscillator

Typical Operating Characteristics (continued)

(V_{CC} = +3.3V, T_A = +25°C, unless otherwise noted.)



Low-Frequency, Spread-Spectrum EconOscillator

Pin Description

PIN	NAME	FUNCTION		
1	OUT	Oscillator Output		
2	R _{SET}	Frequency Control Resistor Input		
3	V _{CC}	Positive-Supply Terminal		
4	GND	Ground		
5	JO	Dither Amplitude (Percentage) Inputs		
6	J1	(see Table 2)		
7	JC0	Dither Rate Divisor Inputs (see Table 1)		
8	JC1			

Block Diagram

Low-Frequency, Spread-Spectrum EconOscillator

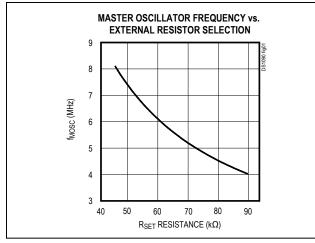


Figure 1. Master Oscillator Frequency

Detailed Description

The DS1090 is a center-dithered, spread-spectrum silicon oscillator for use as an external clock in reduced-EMI applications. With a combination of factory-programmed prescalers and a user-selected external resistor, output frequencies from 125kHz to 8MHz can be achieved. The output center frequency can be dithered by selecting the desired dither rate and amplitude with discrete inputs J0, J1, JC0, and JC1.

The DS1090 contains four basic circuit blocks: master oscillator, factory-programmed prescaler, dither generator, and the voltage-bias circuit that provides the feedback path to the master oscillator for frequency control and dithering functions.

Master Oscillator

The master oscillator is programmable in the application by the use of an external resistor (R_{SET}) tied to ground (GND). Resistor values of $45k\Omega$ to $91k\Omega$ vary the square-wave output frequency of the voltage-controlled master oscillator (f_{MOSC}) from 8MHz down to 4MHz (see Figure 1).

The master oscillator (Hz) frequency can be stated as

$$f_{MOSC} \cong \frac{3.6461E+11}{Resistor}$$

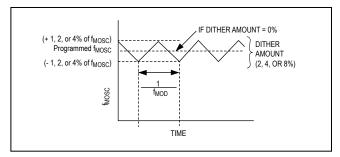


Figure 2. Center Frequency Dither Diagram

Factory-Programmed Prescaler

The prescaler divides the frequency of the master oscillator by 1, 2, 4, 8, 16, or 32 to generate the square-wave output clock (f_{OSC}). This divisor is factory-set and is an ordering option.

Dither Generator

Spread-spectrum functionality is achieved by a userconfigurable divider (determines dither rate), a triangle generator, and a user-configurable dither amplitude circuit (see *Block Diagram*).

The input to the triangle-wave generator is derived from the internal master oscillator and is fed through a user-configurable divider. The settings of control pins JC0 and JC1 determine this dither rate divisor setting (see Table 1), dividing the master clock by 4, 8, 16, or 32. The clock signal is further divided by 128 in the triangle-wave generator, which results in a triangle-wave signal of either 1/512th, 1/1024th, 1/2048th, or 1/4096th of the master oscillator (f_{MOD}), depending upon the user's divisor setting.

The dithering frequency can be also expressed as the result of

$$f_{MOD} = \frac{f_{MOSC}}{Divisor \times 128}$$

where Divisor is 4, 8, 16, or 32.

Table 1. Dither Rate Divisor Settings

JC1	JC0	DITHERING PERCENTAGE (f _{MOSC} /n)	DIVISOR SETTING
0	0	f _{MOSC} /512	4
0	1	f _{MOSC} /1024	8
1	0	f _{MOSC} /2048	16
1	1	f _{MOSC} /4096	32

Low-Frequency, Spread-Spectrum EconOscillator

J1	JO	DITHER PERCENT (%)
0	0	0
0	1	2
1	0	4
1	1	8

Table 2. Dither Percentage Setting

Dither Percentage Settings

Dither amplitude (measured in percent \pm from the master oscillator center frequency) is set using input pins J0 and J1. This circuit uses a sense current from the master oscillator bias circuit to adjust the amplitude of the triangle-wave signal to a voltage level that modulates the master oscillator to a percentage of its resistor-set center frequency. This percentage is set in the end application to be 0%, 2%, 4%, or 8% (see Table 2).

Application Information

Pin Connection

The DS1090 is intended to provide a fixed-frequency, dithered clock to be used as a clock driver for DC-DC converters and other applications requiring a low-frequency EMI-reduced clock oscillator. All control pins must be biased per Tables 1 and 2 for proper operation for the individual application's requirements. R_{SET} must be tied to ground (GND) by a customer-supplied resistor.

RSET Resistor Selection

The value of the resistor used to select the desired frequency is calculated using the formula in the *Master Oscillator* section (see also Figure 1). It is recommended to use, at minimum, a 1%-tolerance, 1/16th-watt component with a temperature coefficient that satisfies the overall stability requirements desired of the end-equipment. Place the external R_{SET} resistor as close as possible to minimize lead inductance.

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are 0.01μ F and 0.1μ F. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the V_{CC} and GND pins of the IC to minimize lead inductance.

Chip Information

SUBSTRATE CONNECTED TO GROUND

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Low-Frequency, Spread-Spectrum EconOscillator

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
1	2/07	-	—
2	2/15	Remove automotive reference from data sheet	1
3	9/16	Corrected typo in Benefits and Features section	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

CV183-2TPAG 82P33814ANLG/W 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30250LDG1 DSC557-0334FI1 DSC557-0343FI1 AB-557-03-HCHC-F-L-C-T