www.maxim-ic.com

FEATURES

- 10 years minimum data retention in the absence of external power
- Data is automatically protected during power loss
- Unlimited write cycles
- Low-power CMOS operation
- Read and write access times of 100ns
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- Optional industrial (IND) temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- JEDEC standard 32-pin DIP package

PIN ASSIGNMENT

NC	1	32	V_{cc}
A16	2	31	A15
A14	- 3	30	A17
A12	- 4	29	WE
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	OE
A2	10	23	A10
A1	11	22	CE
A0	12	21	DQ7
DQ0	-13	20	DQ6
DQ1	- 14	19	DQ5
DQ2	15	18	DQ4
GND	16	17	DQ3

32-Pin Encapsulated Package 740mil Extended

PIN DESCRIPTION

A0-A17
DQ0-DQ7
$\overline{\mathrm{CE}}$
$\overline{\mathrm{OE}}$
$V_{C C}$
GND
NC

- Address Inputs
- Data In/Data Out
- Chip Enable
- Write Enable
- Output Enable
- Power (+3.3V)
- Ground
- No Connect

DESCRIPTION

The DS1249W 2048kb nonvolatile (NV) SRAMs are 2,097,152-bit, fully static, NV SRAMs organized as 262,144 words by 8 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry that constantly monitors V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. There is no limit on the number of write cycles that can be executed, and no additional support circuitry is required for microprocessor interfacing.

READ MODE

The DS1249 devices execute a read cycle whenever $\overline{\mathrm{WE}}$ (Write Enable) is inactive (high) and $\overline{\mathrm{CE}}$ (Chip Enable) and $\overline{\mathrm{OE}}$ (Output Enable) are active (low). The unique address specified by the 18 address inputs ($A_{0}-A_{17}$) defines which of the 262,144 bytes of data is accessed. Valid data will be available to the eight data output drivers within $\mathrm{t}_{\mathrm{ACC}}$ (Access Time) after the last address input signal is stable, providing that $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ access times are also satisfied. If $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ access times are not satisfied, then data access must be measured from the later-occurring signal ($\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$) and the limiting parameter is either t_{CO} for $\overline{\mathrm{CE}}$ or t_{OE} for $\overline{\mathrm{OE}}$ rather than $\mathrm{t}_{\mathrm{ACC}}$.

WRITE MODE

The DS1249 executes a write cycle whenever the $\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}$ signals are active (low) after address inputs are stable. The later-occurring falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will determine the start of the write cycle. The write cycle is terminated by the earlier rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$. All address inputs must be kept valid throughout the write cycle. $\overline{\mathrm{WE}}$ must return to the high state for a minimum recovery time (t_{WR}) before another cycle can be initiated. The $\overline{\mathrm{OE}}$ control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output drivers are enabled ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active), then $\overline{\mathrm{WE}}$ will disable the outputs in todw from its falling edge.

DATA-RETENTION MODE

The DS1249W provides full functional capability for V_{CC} greater than 3.0 volts and write protects by 2.8 V . Data is maintained in the absence of V_{CC} without any additional support circuitry. The nonvolatile static RAMs constantly monitor V_{Cc}. Should the supply voltage decay, the NV SRAMs automatically write protects themselves, all inputs become "don't care," and all outputs become high impedance. As V_{CC} falls below approximately 2.5 V , a power-switching circuit connects the lithium energy source to RAM to retain data. During power-up, when V_{CC} rises above approximately 2.5 V , the power-switching circuit connects external V_{CC} to the RAM and disconnects the lithium energy source. Normal RAM operation can resume after V_{CC} exceeds 3.0 V .

FRESHNESS SEAL

Each DS1249 device is shipped from Maxim with its lithium energy source disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{TP}, the lithium energy source is enabled for battery backup operation.

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin Relative to Ground -0.3 V to +4.6 V
Operating Temperature Range
Commercial:
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial:
Storage Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10s) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note: EDIP is wave or hand soldered only.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
(T_{A} : See Note 10)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power-Supply Voltage	V_{CC}	3.0	3.3	3.6	V	
Logic 1	$\mathrm{~V}_{\mathrm{IH}}$	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
Logic 0	$\mathrm{~V}_{\mathrm{IL}}$	0.0		+0.4	V	

DC ELECTRICAL CHARACTERISTICS (T_{A} : See Note $10 ; \mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	I_{LL}	-2.0		+2.0	$\mu \mathrm{~A}$	
I / O Leakage Current $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\mathrm{CC}}$	I_{IO}	-2.0		+2.0	$\mu \mathrm{~A}$	
Output Current at 2.2 V	I_{OH}	-1.0			mA	
Output Current at 0.4 V	I_{OL}	2.0			mA	
Standby Current $\overline{\mathrm{CE}}=2.2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CCS} 1}$		150	250	$\mu \mathrm{~A}$	
Standby Current $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CCS} 2}$		100	150	$\mu \mathrm{~A}$	
Operating Current	$\mathrm{I}_{\mathrm{CCO}}$			50	mA	
Write Protection Voltage	V_{TP}	2.8	2.9	3.0	V	

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}		10	20	pF	
Input/Output Capacitance	C_{IJ}		10	20	pF	

AC ELECTRICAL CHARACTERISTICS (T_{A} : See Note 10; $\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$)

PARAMETER	SYMBOL	DS1249W-100			UNITS
Read Cycle Time	t_{RC}	$\mathbf{M I N}$	MAX		
Access Time	$\mathrm{t}_{\mathrm{ACC}}$			ns	
$\overline{\mathrm{OE}}$ to Output Valid	t_{OE}		50	ns	
$\overline{\mathrm{CE}}$ to Output Valid	t_{CO}		100	ns	
$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ to Output Active	$\mathrm{t}_{\mathrm{COE}}$	5		ns	5
Output High-Z from Deselection	t_{OD}		35	ns	5
Output Hold from Address Change	t_{OH}	5		ns	
Write Cycle Time	t_{WC}	100		ns	
Write Pulse Width	t_{WP}	75		ns	3
Address Setup Time	t_{AW}	0		ns	
Write Recovery Time	$\mathrm{t}_{\mathrm{WR} 1}$	5		ns	12
Output High-Z from $\overline{\mathrm{WE}}$	$\mathrm{t}_{\mathrm{WR} 2}$	20		ns	13
Output Active from $\overline{\mathrm{WE}}$	$\mathrm{t}_{\mathrm{ODW}}$		35	ns	5
Data Setup Time	$\mathrm{t}_{\mathrm{OEW}}$	5		ns	5
Data Hold Time	t_{DS}	40		ns	4

READ CYCLE

WRITE CYCLE 1

SEE NOTES $2,3,4,6,7,8$, and 12

WRITE CYCLE 2

SEE NOTE 11

POWER-DOWN/POWER-UP TIMING
(T_{A} : See Note 10)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
V_{CC} Fail Detect to $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ Inactive	t_{PD}			1.5	$\mu \mathrm{~s}$	11
$\mathrm{~V}_{\mathrm{CC}}$ Slew from V_{TP} to 0V	t_{F}	150			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{CC}}$ Slew from 0V to V_{TP}	t_{R}	150			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{CC}}$ Valid to $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ Inactive	t_{PU}			2	ms	
$\mathrm{~V}_{\mathrm{CC}}$ Valid to End of Write Protection	$\mathrm{t}_{\mathrm{REC}}$			125	ms	

$\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Expected Data-Retention Time	t_{DR}	10			years	9

WARNING:

Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

NOTES:

1. $\overline{\mathrm{WE}}$ is high for a read cycle.
2. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}. If $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ during write cycle, the output buffers remain in a high impedance state.
3. t_{WP} is specified as the logical AND of $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}} . \mathrm{t}_{\mathrm{WP}}$ is measured from the latter of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ going low to the earlier of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ going high.
4. t_{DS} is measured from the earlier of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ going high.
5. These parameters are sampled with a 5 pF load and are not 100% tested.
6. If the $\overline{\mathrm{CE}}$ low transition occurs simultaneously with or latter than the $\overline{\mathrm{WE}}$ low transition in Write Cycle 1, the output buffers remain in a high-impedance state during this period.
7. If the $\overline{\mathrm{CE}}$ high transition occurs prior to, or simultaneously with, the $\overline{\mathrm{WE}}$ high transition, the output buffers remain in a high-impedance state during this period.
8. If $\overline{\mathrm{WE}}$ is low or the $\overline{\mathrm{WE}}$ low transition occurs prior to, or simultaneously with, the $\overline{\mathrm{CE}}$ low transition, the output buffers remain in a high-impedance state during this period.
9. Each DS1249W has a built-in switch that disconnects the lithium source until V_{CC} is first applied by the user. The expected $t_{D R}$ is defined as accumulative time in the absence of $V_{C C}$ starting from the time power is first applied by the user.
10. All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. For industrial products (IND), this range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
11. In a power-down condition, the voltage on any pin may not exceed the voltage on V_{CC}.
12. $\mathrm{t}_{\mathrm{WR} 1}$ and $\mathrm{t}_{\mathrm{DH} 1}$ are measured from $\overline{\mathrm{WE}}$ going high.
13. $\mathrm{t}_{\mathrm{WR} 2}$ and $\mathrm{t}_{\mathrm{DH} 2}$ are measured from $\overline{\mathrm{CE}}$ going high.
14. DS1249 modules are recognized by Underwriters Laboratories (UL) under file E99151.

DC TEST CONDITIONS

Outputs open
Cycle = 200ns for operating current
All voltages are referenced to ground

AC TEST CONDITIONS

Output Load: 100pF + 1TTL Gate
Input Pulse Levels: 0 to 2.7 V
Timing Measurement Reference Levels
Input: 1.5 V
Output: 1.5 V
Input Pulse Rise and Fall Times: 5ns

ORDERING INFORMATION

PART	TEMP RANGE	SUPPLY TOLERANCE	PIN-PACKAGE	SPEED GRADE (ns)
DS1249W-100\#	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	32740 EDIP	100
DS1249W-100IND $\#$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	32740 EDIP	100

\#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements.

PACKAGE INFORMATION

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
32 EDIP	MDT32\#7	$\underline{21-0245}$	-

REVISION HISTORY

REVISION DATE	DESCRIPTION	PAGES CHANGED
$11 / 10$	Updated the storage information, soldering temperature, and lead temperature information in the Absolute Maximum Ratings section; removed the -150 MIN/MAX information from the AC Electrical Characteristics table; updated the Ordering Information table (removed - 150 parts and leaded -100 parts); added the Package Information table	$1,3,4,7$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for NVRAM category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
CY14MB064J2A-SXI CY14V101LA-BA45XI CY14B104LA-BA25XI CY14B104NA-BA25XI CY14B104LA-ZS45XI CY14MB064Q2ASXQ 145391G CY14B101PA-SFXIT CY14B116N-BZ25XI CY14V101LA-BA25XI CG7299AT 5962-9232404MYA STK11C68-C35I ANV22A88ABK25 R ANV32A62ASK1 T ANV32A62WSK1 T ANV32AA1ADK66 T ANV32AA1WDK66 T ANV32AA3PBK108R ANV32C91WSK66B T ANV32E61ASK66 T ANV32E61WSK66 T CY14B101LA-SZ25XIT CY14B101KA-SP45XI CY14B101KAZS25XI CY14B101LA-SP25XIT CY14B101LA-SP45XI CY14B101LA-ZS25XI CY14B101Q2A-SXI CY14B104K-ZS25XI CY14B108KZS45XI CY14B256I-SFXI CY14B256KA-SP25XI CY14B256KA-SP45XI CY14B256LA-SP25XI CY14B256LA-ZS25XI CY14B256PASFXI CY14B104NA-BA25I DS1220AD-100+ DS1220AD-120+ DS1225AD-150+ DS1225AD-70IND+ DS1225AD-85+ DS1230W-100+ $\underline{\text { DS } 1230 A B-85+~ D S 1225 A D-200+~ D S 1230 A B-100+~ D S 1230 A B-70+~ D S 1230 W-150+~ D S 1230 Y-100+~}$

