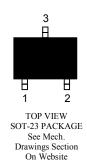

DS1817 Active High 3.3V EconoReset


www.maxim-ic.com

FEATURES

- Automatically restarts a microprocessor after power failure
- Maintains reset for 150 ms after V_{CC} returns to an in-tolerance condition
- Reduces need for discrete components
- Precision temperature-compensated voltage reference and voltage sensor
- Accurate 5%, 10% or 20% power monitoring
- 20% tolerance for use with 3.0-volt systems
- Low-cost TO-92 or space saving surface mount SOT-23 packages available
- Push-pull active high output
- Operating temperature -40°C to +85°C

PIN ASSIGNMENT

BOTTOM VIEW TO-92 PACKAGE See Mech. Drawings Section On Website

PIN DESCRIPTION

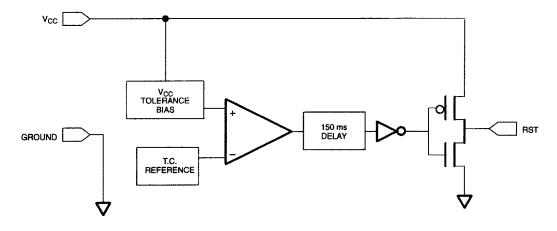
TO-92

1	RST	Active High Reset Output
2	V_{CC}	Power Supply
3	GND	Ground

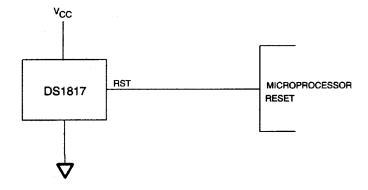
SOT-23

1	RST	Active High Reset Output
2	V_{CC}	Power Supply
3	GND	Ground

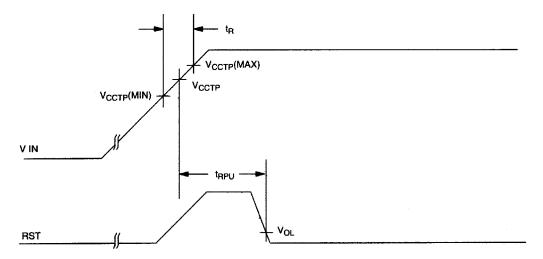
DESCRIPTION

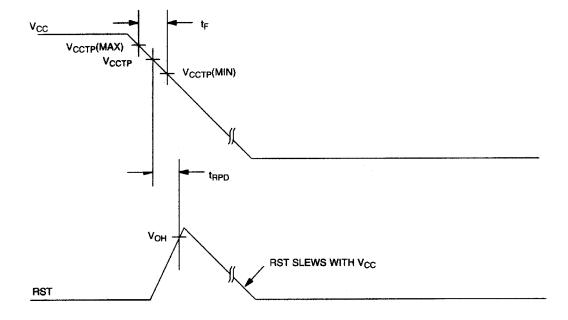

The DS1817 EconoReset uses a precision temperature reference and comparator circuit to monitor the status of the power supply (V_{CC}). When an out-of-tolerance condition is detected, an internal power-fail signal is generated which forces reset to the active state. When V_{CC} returns to an in-tolerance condition, the reset signal is kept in the active state for approximately 150 ms to allow the power supply and processor to stabilize.

1 of 5 041002


OPERATION - POWER MONITOR

The DS1817 provides the function of detecting out-of-tolerance power supply conditions and warning a processor based system of impending power failure. When V_{CC} is detected as out-of-tolerance, the RST signal is asserted. On power-up, RST is kept active for approximately 150 ms after the power supply has reached the selected tolerance. This allows the power supply and microprocessor to stabilize before RST is released.


BLOCK DIAGRAM (CMOS OUTPUT) Figure 1


APPLICATION EXAMPLE Figure 2

TIMING DIAGRAM: POWER-UP Figure 3

TIMING DIAGRAM: POWER-DOWN Figure 4

ABSOLUTE MAXIMUM RATINGS*

Voltage on V_{CC} Pin Relative to Ground -0.5V to +7.0V Voltage on RST Relative to Ground -0.5V to $5V_{CC}$ +0.5V Operating Temperature -40° C to $+85^{\circ}$ C Storage Temperature -55° C to $+125^{\circ}$ C Soldering Temperature -50° C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

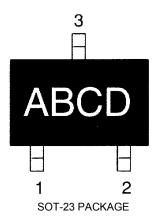
RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	V_{CC}	0.0		5.5	V	1

DC ELECTRICAL CHARACTERISTICS (-40°C to +85°C; V_{CC} =1.2V to 5.5V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Output Voltage @ 0-500 μA	V_{OH}	V_{CC}	V_{CC}		V	1
		-0.5V	-0.1V			
Output Current @ 2.4V	I_{OH}		350		μΑ	2
Output Current @ 0.4V	I_{OL}	+10			mA	2
Operating Current $V_{CC} < 5.5$	I_{CC}		28	35	μΑ	3
V _{CC} Trip Point (DS1817-5)	V_{CCTP}	2.98	3.06	3.15	V	1
V _{CC} Trip Point (DS1817-10)	V_{CCTP}	2.80	2.88	2.97	V	1
V _{CC} Trip Point (DS1817-20)	V_{CCTP}	2.47	2.55	2.64	V	1
Output Capacitance	C_{OUT}			10	pF	


AC ELECTRICAL CHARACTERISTICS (-40°C to +85°C; V_{CC}=1.2V to 5.5V)

				,		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
RESET Active Time	t_{RST}	100	150	250	ms	
V _{CC} Detect to RST	t_{RPD}		2	5	μs	
V _{CC} Slew Rate	t_{F}	300			μs	6
$(V_{CCTP} (MAX) \text{ to } V_{CCTP} (MIN))$						
V _{CC} Slew Rate	t_R	0			ns	
$(V_{CCTP} (MIN) \text{ to } V_{CCTP} (MAX))$						
V _{CC} Detect to RST	$t_{ m RPU}$	100	150	250	ms	4, 5

NOTES:

- 1. All voltages are referenced to ground.
- 2. Measured with $V_{CC} \ge 2.7V$.
- 3. Measured with RST output open.
- 4. Measured with $2.7V \ge V_{CC} \ge 3.3V$.
- 5. $t_R = 5 \mu s$.
- 6. The t_F value is for reference in defining values for T_{RPD} and should not be considered a requirement for proper operation or use of the device.

PART MARKING CODES

"A", "B", &"C" represent the Device Type.

_ ,		
810	-	DS1810
811	-	DS1811
812	-	DS1812
813	-	DS1813
815	-	DS1815
816	-	DS1816
817	-	DS1817
818	-	DS1818

"D" represents the Device Tolerance.

Α	-	5%
В	-	10%
C	-	15%
D	-	20%

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

CAT1161LI-25-G CAT853STBI-T3 CAT1026LI-30-G CAT1320LI-25-G TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MAX8997EWW+ MAX6725AKASYD3-LF-T DS1232L NCV302HSN45T1G PT7M6130NLTA3EX PT7M7811STBEX-2017 S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX AP0809ES3-r HG811RM4/TR MD7030C MD7033C MD7019 MD7020 MD7021 MD7023 MD7024 MD7027 MD7030 MD7033 MD7035 MD7036 MD7039 MD7040 MD7044 MD7050 MD7015 MD7022 MD7028 MD7031 MD7042 MD7043 MD7047 MD7060