

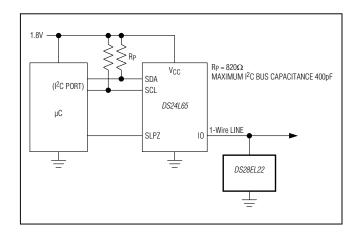
DS28EL22

Features

DeepCover Secure Authenticator with 1-Wire SHA-256 and 2Kb User EEPROM

General Description

DeepCover® embedded security solutions cloak sensitive data under multiple layers of advanced physical security to provide the most secure key storage possible. The DeepCover Secure Authenticator (DS28EL22) combines crypto-strong, bidirectional, secure challenge-and-response authentication functionality with an implementation based on the FIPS 180-3-specified Secure Hash Algorithm (SHA-256). A 2Kb user-programmable EEPROM array provides nonvolatile storage of application data and additional protected memory holds a read-protected secret for SHA-256 operations and settings for user memory control. Each device has its own guaranteed unique 64-bit ROM identification number (ROM ID) that is factory programmed into the chip. This unique ROM ID is used as a fundamental input parameter for cryptographic operations and also serves as an electronic serial number within the application. A bidirectional security model enables two-way authentication between a host system and slave-embedded DS28EL22. Slave-to-host authentication is used by a host system to securely validate that an attached or embedded DS28EL22 is authentic. Host-to-slave authentication is used to protect DS28EL22 user memory from being modified by a nonauthentic host. The SHA-256 message authentication code (MAC), which the DS28EL22 generates, is computed from data in the user memory, an on-chip secret, a host random challenge, and the 64-bit ROM ID. The DS28EL22 communicates over the single-contact 1-Wire® bus at overdrive speed. The communication follows the 1-Wire protocol with the ROM ID acting as node address in the case of a multiple-device 1-Wire network.


maxim integrated...

Applications

- Authentication of Network-Attached Appliances
- Printer Cartridge ID/Authentication
- Reference Design License Management
- System Intellectual Property Protection
- Sensor/Accessory Authentication and Calibration
- Secure Feature Setting for Configurable Systems
- Key Generation and Exchange for Cryptographic Systems
- Ordering Information appears at end of data sheet.

- Symmetric Key-Based Bidirectional Secure Authentication Model Based on SHA-256
- Dedicated Hardware-Accelerated SHA Engine for Generating SHA-256 MACs
- Strong Authentication with a High Bit Count, User-Programmable Secret, and Input Challenge
- 2048 Bits of User EEPROM Partitioned Into 8 Pages of 256 Bits
- User-Programmable and Irreversible EEPROM Protection Modes Including Authentication, Write and Read Protect, and OTP/EPROM Emulation
- Unique, Factory-Programmed 64-Bit Identification
 Number
- Single-Contact 1-Wire Interface Communicates with Host at Up to 76.9kbps
- ◆ Operating Range: 1.8V ±5%, -40°C to +85°C
- ♦ Low-Power 5µA (typ) Standby
- ±8kV Human Body Model ESD Protection (typ)
- + 6-Pin TDFN Package

Typical Application Circuit

DeepCover and 1-Wire are registered trademarks of Maxim Integrated Products, Inc.

For related parts and recommended products to use with this part, refer to: www.maximintegrated.com/DS28EL22.related

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

DS28EL22

DeepCover Secure Authenticator with 1-Wire SHA-256 and 2Kb User EEPROM

ABSOLUTE MAXIMUM RATINGS

IO Voltage Range to GND	0.5V to 4.0V
IO Sink Current	20mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C

Storage Temperature Range	-55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(T_A = -40°C to +85°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS
IO PIN: GENERAL DATA			•		
1-Wire Pullup Voltage	V _{PUP}	(Note 2)	1.71	1.89	V
1-Wire Pullup Resistance	R _{PUP}	V _{PUP} = 1.8V ± 5% (Note 3)	300	750	Ω
Input Capacitance	CIO	(Notes 4, 5)	15	500	pF
Input Load Current	١L	IO pin at V _{PUP}		5 19.5	μA
High-to-Low Switching Threshold	V _{TL}	(Notes 6, 7)	0.65 >	(V _{PUP}	V
Input Low Voltage	VIL	(Notes 2, 8)		0.3	V
Low-to-High Switching Threshold	V _{TH}	(Notes 6, 9)	0.75 >	(V _{PUP}	V
Switching Hysteresis	V _{HY}	(Notes 6, 10)	0).3	V
Output Low Voltage	V _{OL}	I _{OL} = 4mA (Note 11)		0.4	V
Recovery Time	t _{REC}	R _{PUP} = 750Ω (Notes 2, 12)	5		μs
Time-Slot Duration	t _{SLOT}	(Notes 2, 13)	13		μs
IO PIN: 1-Wire RESET, PRESENC	E-DETECT (CYCLE			
Reset Low Time	t _{RSTL}	(Note 2)	48	80	μs
Reset High Time	t _{RSTH}	(Note 14)	48		μs
Presence-Detect Sample Time	t _{MSP}	(Notes 2, 15)	8	10	μs
IO PIN: 1-Wire WRITE		·			
Write-Zero Low Time	t _{WOL}	(Notes 2, 16)	8	16	μs
Write-One Low Time	t _{W1L}	(Notes 2, 16)	0.25	2	μs
IO PIN: 1-Wire READ					
Read Low Time	t _{RL}	(Notes 2, 17)	0.25	2 - δ	μs
Read Sample Time	t _{MSR}	(Notes 2, 17)	t _{RL} + δ	2	μs
EEPROM					
Programming Current	IPROG	V _{PUP} = 1.89V (Notes 5, 18)		1	mA
Programming Time for a 32-Bit Segment or Page Protection	t _{PRD}	Refer to the full data sheet.		ms	
Programming Time for the Secret	t _{PRS}				ms
Write/Erase Cycling Endurance	N _{CY}	T _A = +85°C (Notes 21, 22)	100k		_
Data Retention	t _{DR}	T _A = +85°C (Notes 23, 24, 25)	10		Years

DS28EL22

DeepCover Secure Authenticator with 1-Wire SHA-256 and 2Kb User EEPROM

ELECTRICAL CHARACTERISTICS (continued)

(T_A = -40°C to +85°C, unless otherwise noted.) (Note 1)

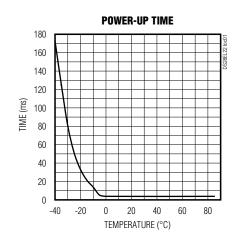
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SHA-256 ENGINE		1				
Computation Current	I _{CSHA}				mA	
Computation Time	t _{CSHA}	Refer to the full data sheet.				ms
			e.			
		$A = +25^{\circ}C$ and/or $T_A = +85^{\circ}C$. Limits over the				e and rel
	ge are guaran	teed by design and characterization. Typical	values are	not guara	anteed.	
Note 2: System requirement.	n radiatanaa i	a a function of the number of 1 Wire devices	in the evet	om and 1	Wire ree	0.000
		s a function of the number of 1-Wire devices s to systems with only one device and with th				
		arasite capacitance when V_{PUP} is first applie			-	
charged, it does not affect				- parasite	сарасна	
		rization only; not production tested.				
		ie internal supply voltage, which is a function	of Voun F	1-V	Vire timina	n and
		higher R_{PUP} , shorter t_{RFC} , and heavier capa				
V_{TI} , V_{TH} , and V_{HY} .	POP,					
	ina a fallina e	dge on IO, a logic-zero is detected.				
		r equal to V _{ILMAX} at all times when the mast	er is drivind	IO to a l	ogic-zero	level.
		dge on IO, a logic-one is detected.		-	5	
		ge on IO, the voltage on IO must drop by at I	east V _{HY} t	o be dete	cted as lo	gic-zero
lote 11: The I-V characteristic is li						•
Note 12: Applies to a single device	e attached to a	a 1-Wire line.				
Note 13: Defines maximum possib	le bit rate. Eq	ual to 1/(t _{W0LMIN} + t _{RECMIN}).				
		sequence cannot begin until the reset high tin				
		master can read a logic 0 on IO if there is a			The pow	er-up pre
		s interval. See the <u>Typical Operating Characte</u>				
		ired for the pullup circuitry to pull the voltage				e actual
		III the line low is $t_{W1LMAX} + t_F - \epsilon$ and t_{W0LM}				
		ired for the pullup circuitry to pull the voltage				it-high
		I maximum duration for the master to pull the				
		ROM programming interval or SHA-256 com				
		interval should be such that the voltage at IC				
	or RPUP activ	vated during programming and computation is	s une recom	mended	way to m	eet this
requirement. Note 19: Refer to the full data sh	oot					
Note 19: Refer to the full data sh						
lote 20. Refer to the full data sh		voliance with IESD470				

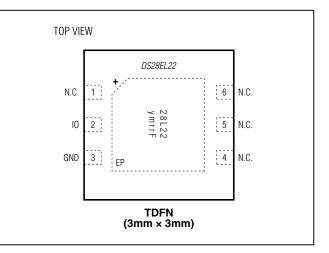
- Note 21: Write-cycle endurance is tested in compliance with JESD47G.
- Note 22: Not 100% production tested; guaranteed by reliability monitor sampling.
- Note 23: Data retention is tested in compliance with JESD47G.
- Note 24: Guaranteed by 100% production test at elevated temperature for a shorter time; equivalence of this production test to the data sheet limit at operating temperature range is established by reliability testing.
- Note 25: EEPROM writes can become nonfunctional after the data retention time is exceeded. Long-term storage at elevated temperatures is not recommended.

ABRIDGED DATA SHEET

DS28EL22

DeepCover Secure Authenticator with 1-Wire SHA-256 and 2Kb User EEPROM


ELECTRICAL CHARACTERISTICS (continued)


(T_A = -40°C to +85°C, unless otherwise noted.) (Note 1)

Note 26: Refer to the full data sheet.

Typical Operating Characteristics

(V_{PUP} = 1.71V, V_{IL} = 0.3V, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 4, 5, 6	N.C.	Not Connected
2	IO	1-Wire Bus Interface. Open-drain signal that requires an external pullup resistor.
3	GND	Ground Reference
_	EP	Exposed Pad. Solder evenly to the board's ground plane for proper operation. Refer to Application Note 3273: <i>Exposed Pads: A Brief Introduction</i> for additional information.

Pin Configuration

ABRIDGED DATA SHEET

DS28EL22 DeepCover Secure Authenticator with 1-Wire SHA-256 and 2Kb User EEPROM

Note to readers: This document is an abridged version of the full data sheet. Additional device information is available only in the full version of the data sheet. To request the full data sheet, go to <u>www.maximintegrated.com/DS28EL22</u> and click on **Request Full Data Sheet**.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE			
DS28EL22Q+T	-40°C to +85°C	6 TDFN-EP* (2.5k pcs)			
+Denotes a lead(Pb)-free/RoHS-compliant package.					

T = Tape and reel. **EP* = Exposed pad. **Package Information**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
6 TDFN-EP	T633+2	<u>21-0137</u>	<u>90-0058</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Security ICs / Authentication ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

RJM8L151F6P6R AT97SC3204T-X2A1B-10 SLS32AIA020A4USON10XTMA2 AT97SC3205T-G3M4C-00 AT97SC3205T-H3M4C-20 AT97SC3204-U4A14-20 AT97SC3205T-H3M4C20B AT97SC3205-X3A12-10 AT97SC3204-U2MA-20 AT97SC3204-X2A1A-10 ATAES132-SH-EQ ATECC508A-MAHDA-S DS2401+ DS1990A-F3+ DS1990A-F5+ DS2401P+T&R DS2401Z+T&R DS2411P+ DS2411P+T&R ATSHA204-TH-CZ-T DS28CM00R-A00+T DS28C22Q+T ATTPM20P-G3MA1-10-B HCS515-IP HCS515P MCS3122-I/ST MIKROE-3047 ATECC508A-SSHDA-T ATSHA204A-SSHDA-B ATAES132A-SHEQ-B ATECC108A-SSHCZ-B ATSHA204A-SSHDA-T W74M32FVSSIQ IPL-CHP1.8V ATSHA204A-STUCZ-T DS2411R+T&R RJM8L151K8Q6Y CW3802 RJGT102WDP8 FM15160 508-03 RJGT102WDT6 RJMU401FH0 ATECC108A-RBHCZ-T IPL-CHP 404726X AT88SC0808CA-Y6H-T AT88SA102S-SH-T MAX66240ESA+