Hex Nonvolatile Potentiometer with I/O and Memory

General Description

The DS3930 contains six 256-position nonvolatile (NV) potentiometers, 64 bytes of NV user EEPROM memory, and four programmable NV I/O pins. The six potentiometers all share a common low side. The potentiometers are separated into two groups of three $50 \mathrm{k} \Omega$ potentiometers in parallel. Each group of three potentiometers shares a common high side and forms an equivalent resistance of $16.6 \mathrm{k} \Omega$ (three $50 \mathrm{k} \Omega$ potentiometers in parallel).

Applications
RF Transceivers
Voltage References
Power Supply Calibration
Mobile Phones and PDAs
Fiber Optic Transceiver Modules
Portable Electronics
Radio Tuners
Small, Low-Cost Replacement for Mechanical Potentiometers

Features

- Six 256-Position NV Potentiometers
- Four General-Purpose NV I/O Pins
- 64 Bytes of User EEPROM Memory
- 0 to 5.5 V on Any Potentiometer Terminal, Independent of VCC
- All Six Potentiometers Share a Common Low Side
- Potentiometers Separated into Two Groups of Three Potentiometers, Each Sharing a Common High Side
- 2-Wire Serial Interface
- Wide Supply Range (2.7V to 5.5V)
- Up to Eight DS3930s Can Share the Same 2-Wire Bus

Ordering Information

PART	PIN-PACKAGE
DS3930E	20 TSSOP

Typical Operating Circuit

Hex Nonvolatile Potentiometer with I/O and Memory

ABSOLUTE MAXIMUM RATINGS

Voltage on Vcc Relative to Ground \qquad -0.5 V to +6.0 V
Voltage on $\mathrm{I} / \mathrm{O}_{0}, \mathrm{I} / \mathrm{O}_{1}, \mathrm{I} / \mathrm{O}_{2}, \mathrm{I} / \mathrm{O}_{3}, \mathrm{SDA}, \mathrm{SCL}, \mathrm{A0}, \mathrm{~A} 1$, and A2
Relative to Ground* -0.5V to (VCC +0.5 V)
Voltage on $\mathrm{LO}_{0-5}, \mathrm{~W}_{0-5}, \mathrm{HI}_{0-2}$, and HI_{3-5}
Relative to Ground
-0.5 V to +6.0 V
Current Through W0-5 \qquad $\pm 1 \mathrm{~mA}$
*This voltage must not exceed 6.0V

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Programming Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Soldering Temperature.................. See IPC/JEDEC J-STD-020A

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC	(Note 1)	+2.7		+5.5	V
Input Logic 1 (SDA, SCL, A0, A1, $\mathrm{A} 2, \mathrm{I} / \mathrm{O}_{0}, \mathrm{I} / \mathrm{O}_{1}, \mathrm{I} / \mathrm{O}_{2}, \mathrm{I} / \mathrm{O}_{3}$)	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
Input Logic 0 (SDA, SCL, A0, A1, A2, $\mathrm{I} / \mathrm{O}_{0}, \mathrm{I} / \mathrm{O}_{1}, \mathrm{I} / \mathrm{O}_{2}, \mathrm{I} / \mathrm{O}_{3}$)	VIL		-0.3		$\begin{aligned} & 0.3 x \\ & V_{C C} \end{aligned}$	V
Wiper Current	Iw		-1		+1	mA
Potentiometer Terminals (LO0-5, $\mathrm{W}_{0-5}, \mathrm{HI}_{0-2}$, and HI_{3-5})		$\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ to +5.5 V	-0.3		+5.5	V

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage	IIL		-1		+1	$\mu \mathrm{A}$
Low-Level Output Voltage (SDA, $\mathrm{I} / \mathrm{O}_{0}, \mathrm{I} / \mathrm{O}_{1}, \mathrm{I} / \mathrm{O}_{2}, \mathrm{I} / \mathrm{O}_{3}$)	VOL1	3 mA sink current	0		0.4	V
	VOL2	6 mA sink current	0		0.6	V
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$				10	pF
I/O Pullup Resistor Value	RI/O		3.5	5	7.0	$\mathrm{k} \Omega$
Standby Current	Istby	3V (Note 2)		160	300	$\mu \mathrm{A}$
		5 V (Note 2)		195	350	

Hex Nonvolatile Potentiometer with I/O and Memory

ANALOG RESISTOR CHARACTERISTICS

($\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}$ to +5.5 V ; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
End-to-End Resistance		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (three $50 \mathrm{k} \boldsymbol{\Omega}$ pots in parallel)	13.2	16.5	19.8	k Ω
Wiper Resistance	RW			400	1000	Ω
Factory Default Wiper Setting				FF		Hex
Factory Default I/O Setting				OF		Hex
POT-to-POT Matching			-1		+1	LSB
Differential Linearity			-0.5		+0.5	LSB
Integral Linearity			-1		+1	LSB
End-to-End Temperature Coefficient		3 potentiometers in parallel	-250	0	+250	ppm/ ${ }^{\circ} \mathrm{C}$
Ratiometric Temperature Coefficient				2		ppm/ ${ }^{\circ} \mathrm{C}$

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V} \mathrm{CC}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCL Clock Frequency (Note 3)	fSCL	Fast mode	0		400	kHz
		Standard mode	0		100	
Bus Free Time Between STOP and START Condition (Note 3)	tBuF	Fast mode	1.3			$\mu \mathrm{s}$
		Standard mode	4.7			
Hold Time (Repeated) START Condition (Notes 3 and 4)	thD:STA	Fast mode	0.6			$\mu \mathrm{s}$
		Standard mode	4.0			
Low Period of SCL Clock (Note 3)	tLow	Fast mode	1.3			$\mu \mathrm{s}$
		Standard mode	4.7			
High Period of SCL Clock (Note 3)	thigh	Fast mode	0.6			$\mu \mathrm{s}$
		Standard mode	4.0			

Hex Nonvolatile Potentiometer with I/O and Memory

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Data Hold Time (Notes 3, 5, 7)	thD:DAT	Fast mode	0	0.9	$\mu \mathrm{s}$
		Standard mode	0	0.9	
Data Setup Time (Note 3)	tSu:DAT	Fast mode	100		ns
		Standard mode	250		
Start Setup Time (Note 3)	tSU:STA	Fast mode	0.6		$\mu \mathrm{s}$
		Standard mode	4.7		
Rise Time of Both SDA and SCL Signals (Note 7)	tR	Fast mode	$20+0.1 C_{B}$	300	ns
		Standard mode	$20+0.1 C_{B}$	1000	
Fall Time of Both SDA and SCL Signals (Note 7)	$t_{\text {F }}$	Fast mode	$20+0.1 C_{B}$	300	ns
		Standard mode	$20+0.1 C_{B}$	300	
Setup Time for STOP Condition	tsu:STO	Fast mode	0.6		$\mu \mathrm{s}$
		Standard mode	4.0		
Capacitive Load for Each Bus	СВ	(Note 7)		400	pF
EEPROM Write Time	tw	(Note 8)	5	20	ms

EEPROM CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Writes		$+70^{\circ} \mathrm{C}$	50,000			

Note 1: All voltages are referenced to ground.
Note 2: ISTBY specified for $\mathrm{V}_{C C}$ equal 3.0 V and $5.0 \mathrm{~V}, \mathrm{SDA}=\mathrm{SCL}=\mathrm{VCC}$, and $\mathrm{I} / \mathrm{O}_{0}=\mathrm{I} / \mathrm{O}_{1}=\mathrm{I} / \mathrm{O}_{2}=\mathrm{I} / \mathrm{O}_{3}=\mathrm{AO}=\mathrm{A} 1=\mathrm{A} 2=\mathrm{GND}$.
Note 3: A fast-mode device can be used in a standard-mode system, but the requirement tSU:DAT $>250 \mathrm{~ns}$ must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trMAX + tsu:DAT $=1000 \mathrm{~ns}$ $+250 n s=1250$ ns before the SCL line is released.
Note 4: After this period, the first clock pulse is generated.
Note 5: The maximum thD:DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.
Note 6: A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the $\mathrm{V}_{\text {IH MIN }}$ of the SCL signal) in order to bridge the undefined region of the falling edge of SCL
Note 7: $\quad C_{B}$-total capacitance of one bus line in picofarads, timing referenced to $0.9 \mathrm{~V}_{C C}$ and $0.1 \mathrm{~V}_{C C}$.
Note 8: EEPROM write begins after a STOP condition occurs.

Hex Nonvolatile Potentiometer with I/O and Memory

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

ALL POTS DNL (LSB)

END-TO-END RESISTANCE \% CHANGE FROM $+\mathbf{2 5}^{\circ} \mathrm{C}$ vs. TEMPERATURE

POTS 0, 2, 4, INL (LSB)

ACTIVE SUPPLY CURRENT vs. SCL FREQUENCY

VOLTAGE DIVIDER \% CHANGE FROM $+25^{\circ} \mathrm{C}$ vs. TEMPERATURE

POTS 1, 3, 5 INL (LSB)

Hex Nonvolatile Potentiometer with I/O and Memory

Pin Description

PIN	NAME	FUNCTION
1	A0	Address Input. The address input pins determine the 2-wire address of the device.
2	A1	Address Input
3	A2	Address Input
4	SDA	2-Wire Serial Data I/O. This pin is for serial data transfer to and from the device.
5	SCL	2-Wire Serial Clock Input. The serial clock input is used to clock data into and out of the device.
6	I/O0	General-Purpose NV I/O Pin
7	I/O ${ }_{1}$	General-Purpose NV I/O Pin
8	$\mathrm{l} / \mathrm{O}_{2}$	General-Purpose NV I/O Pin
9	VCC	Supply Voltage
10	GND	Ground
11	I/O3	General-Purpose NV I/O Pin
12	W_{5}	Wiper Terminal of Potentiometer 5
13	W_{4}	Wiper Terminal of Potentiometer 4
14	W3	Wiper Terminal of Potentiometer 3
15	$\mathrm{H}_{3} \mathbf{- 5}$	High-End Terminal of Potentiometers 3 to 5 . This is the common high-side terminal of potentiometers 3, 4, and 5 .
16	LO0-5	Low-End Terminal of the Potentiometers. This is the common low-side terminal of all six potentiometers.
17	W_{2}	Wiper Terminal of Potentiometer 2
18	W_{1}	Wiper Terminal of Potentiometer 1
19	W_{0}	Wiper Terminal of Potentiometer 0
20	HIO_{0}	High-End Terminal of Potentiometers 0 to 2. This is the common high-side terminal of potentiometers 0,1 , and 2.

Hex Nonvolatile Potentiometer with I/O and Memory

Figure 1. DS3930 Functional Diagram

Detailed Description
The DS3930 contains six NV potentiometers with 64 bytes of NV user memory (EEPROM), and four programmable NV I/O pins. Figure 1 is a functional diagram of the DS3930.

Potentiometers
The six potentiometers share a common low side and are separated into two groups of three potentiometers, each group sharing a common high side. The six 256position potentiometers are controllable using six 8-bit EEPROM registers through the 2-wire interface.

Hex Nonvolatile Potentiometer with I/O and Memory

I/O Signals

The I/O pins can be used as general-purpose digital I/O signals. The I/O pins have CMOS outputs with an

Table 1. I/O Pin Truth Table

PULLUP CTRL (I/O CONTROL REGISTER) (BITS 7 TO 4)	I/O PIN SETTING (I/O CONTROL REGISTER) (BITS 3 TO 0)	I/O PIN OUTPUT
0	0	0
0	1	1
1	0	0
1	1	Pullup disabled (HI-Z)

internal pullup resistor (see Figure 2). The I/O pins are configured with the I/O Control register (F6h) and monitored with the I/O State register (F7h). The I/O Control register controls the state of the internal pullup resistor ($\mathrm{R}_{\mathrm{I} / \mathrm{O}}$) with bits 7 to 4 and the I/O pin setting with bits 3 to 0 (see Table 1). The read-only values of the I/O State register contains the values of the I/O pin setting bits of the I/O Control register unless the I/O output is tri-stated. When the I/O is tri-stated the I/O State register will read high or low depending on the external source on the I/O pin. Since the I/O pins are controlled by EEPROM, the number of writes is limited.

Memory The memory map is shown in Table 2.

Table 2. Memory Map

ADDRESS	BIT	DEFAULT (HEX)	FUNCTION
OOh to 3Fh		FF	64 bytes of general-purpose EEPROM
40h to EFh		FF	Reserved
FOh		FF	Controls potentiometer 0
F1h		FF	Controls potentiometer 1
F2h		FF	Controls potentiometer 2
F3h		FF	Controls potentiometer 3
F4h		FF	Controls potentiometer 4
F5h		FF	Controls potentiometer 5
F6h		OF	I/O Control
	Bit 7		Set to 0 to enable $\mathrm{I} / \mathrm{O}_{3}$ pullup, set to 1 to disable pullup
	Bit 6		Set to 0 to enable $\mathrm{I} / \mathrm{O}_{2}$ pullup, set to 1 to disable pullup
	Bit 5		Set to 0 to enable I/O1 pullup, set to 1 to disable pullup
	Bit 4		Set to 0 to enable I/O0 pullup, set to 1 to disable pullup
	Bit 3		Sets I/O3 to 0 or 1
	Bit 2		Sets I/O2 to 0 or 1
	Bit 1		Sets l/O O_{1} to 0 or 1
	Bit 0		Sets I/Oo to 0 or 1
F7h		0X	I/O State
	Bit 7		0
	Bit 6		0
	Bit 5		0
	Bit 4		0
	Bit 3		Contains state of $\mathrm{I} / \mathrm{O}_{3}$ pin (read only)
	Bit 2		Contains state of $\mathrm{I} / \mathrm{O}_{2}$ pin (read only)
	Bit 1		Contains state of I/O $/$ pin (read only)
	Bit 0		Contains state of l/Oo pin (read only)
F8h to FFh		FF	Reserved

Hex Nonvolatile Potentiometer with I/O and Memory

Figure 2. I/O Cell

2-Wire Serial Port Operation

The 2-wire serial port interface supports a bidirectional data transmission protocol with device addressing. A device that sends data on the bus is defined as a transmitter, and a device receiving data as a receiver. The device that controls the message is called a "master." The devices that are controlled by the master are "slaves." The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the start and stop conditions. The DS3930 operates as a slave on the 2-wire bus. Connections to the bus are made through the open-drain I/O lines, SDA and SCL. The following I/O terminals control the 2-wire serial port: SDA, SCL, and A0. Timing diagrams for the 2 -wire serial port can be
found in Figures 3 and 5. Timing information for the 2wire serial port is provided in the AC Electrical Characteristics table for 2-wire serial communications.
The following bus protocol has been defined:

- Data transfer can be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high are interpreted as control signals.
Accordingly, the following bus conditions have been defined:
Bus Not Busy: Both data and clock lines remain high.
Start Data Transfer: A change in the state of the data line from high to low while the clock is high defines a start condition.
Stop Data Transfer: A change in the state of the data line from low to high while the clock line is high defines the stop condition.
Data Valid: The state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line can be changed during the low period of the clock signal. There is one clock pulse per bit of data. Figures 3 and 5 detail how data transfer is accomplished on the 2-wire bus. Depending upon the state of the R/W bit, two types of data transfer are possible.
Each data transfer is initiated with a start condition and

Figure 3. 2-Wire Data Transfer Protocol

Hex Nonvolatile Potentiometer with I/O and Memory

Figure 4. Slave Address
terminated with a stop condition. The number of data bytes transferred between start and stop conditions is not limited and is determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.
Within the bus specifications, a regular mode (100kHz clock rate) and a fast mode (400 kHz clock rate) are defined. The DS3930 works in both modes.
Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the byte has been received. The master device must generate an extra clock pulse that is associated with this acknowledge bit.
A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable low during the high period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the stop condition.
Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the command/control byte. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte.
Data transfer from a slave transmitter to a master receiver. The master transmits the first byte (the command/control byte) to the slave. The slave then returns an acknowledge bit. Next follows a number of data bytes transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received
byte, a not acknowledge can be returned.
The master device generates all serial clock pulses and the start and stop conditions. A transfer is ended with a stop condition or with a repeated start condition. Since a repeated start condition is also the beginning of the next serial transfer, the bus is not released.
The DS3930 can operate in the following three modes:

1) Slave Receiver Mode: Serial data and clock are received through SDA and SCL, respectively. After each byte is received, an acknowledge bit is transmitted. Start and stop conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after the slave (device) address and direction bit have been received.
2) Slave Transmitter Mode: The first byte is received and handled as in the slave receiver mode. However, in this mode the direction bit indicates that the transfer direction is reversed. Serial data is transmitted on SDA by the DS3930 while the serial clock is input on SCL. Start and stop conditions are recognized as the beginning and end of a serial transfer.
3) Slave Address: This is the first byte received following the start condition from the master device. The slave address consists of a 4-bit control code. For the DS3930, this is set as 1010 binary for read/write operations. The next bits of the slave address are the device address (A2-A0). The last bit of the slave address (R/W) defines the operation to be performed. When set to a '1,' a read operation is selected, and when set to a ' 0 ,' a write operation is selected (see Figure 4).
Following the start condition, the DS3930 monitors the SDA bus checking the device type identifier being transmitted. Upon receiving the 1010 device identifier, the appropriate device address bit, and the read/write bit, the slave device outputs an acknowledge signal on the SDA line.

Hex Nonvolatile Potentiometer with I/O and Memory

Figure 5. 2-Wire AC Characteristics

Figure 6. Example 2-Wire Transactions

Applications Information

Power Supply Decoupling

To achieve the best results when using the DS3930, decouple the power supply with a $0.1 \mu \mathrm{~F}$ high-quality, ceramic, surface-mount capacitor. Surface-mount com-
ponents minimize lead inductance, which improves performance, and ceramic capacitors tend to have adequate high-frequency response for decoupling applications. The capacitor should be placed as close as possible to the $V_{C C}$ and GND pins.

Hex Nonvolatile Potentiometer with I/O and Memory

Wiper Resistance
One difference between digital potentiometers and mechanical potentiometers is the wiper resistance. The wiper resistance (Rw) is a result of the interconnecting materials on the IC between the internal resistive elements and the wiper pin. This can be modeled by using an ideal potentiometer, with a resistance of Rw connected between the ideal wiper and wiper terminal of the digital potentiometer.

Chip Information

TRANSISTOR COUNT: 27,000 SUBSTRATE CONNECTED TO GROUND

Package Information
For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C103S CAT5110TBI-50GT3 CAT5112ZI-50-GT3
CAT5111YI-10-GT3 MCP4351-502E/ML MCP4641-502E/ST MCP4651T-503E/ML MCP4162-103E/SN MCP4451-103E/ML MCP4451-
502E/ST MCP4532T-103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4021-103E/MS DS1855E-010+
MAX5160LEUA+T MCP4231T-503E/ML MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-50-G CAT5114LI-00-G
AD5116BCPZ10-500R7 AD5116BCPZ80-500R7 AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5142ABRUZ100 AD5143BCPZ10-RL7
AD5253BRUZ10 AD5253BRUZ50 AD5144TRUZ10-EP AD5160BRJZ10-RL7 AD5162BRMZ100 AD5170BRMZ2.5-RL7
AD5162WBRMZ100-RL7 AD5165BUJZ100-R7 AD5170BRMZ10 AD5170BRMZ10-RL7 AD5170BRMZ2.5 AD5170BRMZ50
$\underline{\text { AD5171BRJZ100-R2 }} \underline{\text { AD5171BRJZ10-R2 }}$ AD5171BRJZ5-R7 AD5171BRJZ10-R7 AD5171BRJZ5-R2 AD5172BRMZ10

