100MHz HCSL Clock Oscillator

Abstract

General Description The DS 4100 H is a low-jitter 100 MHz clock oscillator with a high-speed current steering logic (HCSL) output. It combines an AT-cut crystal, an oscillator, and a lownoise phase-locked loop (PLL) in a 5 mm by 3.2 mm ceramic package. Typical phase jitter is 0.9 psRMS from 12 kHz to 20 MHz . The device operates from a single +3.3 V supply.

PCI Express ${ }^{\circledR}$
Applications
\qquad Features

- 100MHz Output Frequency
- $3.3 \mathrm{~V} \pm 5 \%$ Operating Voltage
- HCSL Output
- Phase Jitter (RMS): 0.9ps Typical
- ± 39 ppm Frequency Stability Over Voltage, Temperature, 10 Years of Aging - Output-Enable (OE) Control Input
$\checkmark 5 \mathrm{~mm} \times 3.2 \mathrm{~mm} \times 1.49 \mathrm{~mm}$ Ceramic Package (LCCC)
- Pb Free/RoHS Compliant

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
DS4100H +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 LCCC	10 H

+Denotes a lead(Pb)-free package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes.

Typical Operating Circuit

Pin Configuration

$(5.00 \mathrm{~mm} \times 3.20 \mathrm{~mm} \times 1.49 \mathrm{~mm})$
*EXPOSED PAD

PCI Express is a registered trademark of PCI-SIG Corp.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

100MHz HCSL Clock Oscillator

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VCC) ...
\qquad
\qquad
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) \qquad $-0.3 \mathrm{~V},+4 \mathrm{~V}$

Operating Temperature Range \qquad 280 mW

Junction Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=3.135 \mathrm{~V}$ to $3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC	(Note 1)	3.135	3.300	3.465	V
Supply Current	IcC	$\mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$, Figure 2		71	85	mA
Input High Voltage (OE)	V_{IH}	(Note 1)	2.0		VCC	V
Input Low Voltage (OE)	VIL	(Note 1)	0		0.8	V
Input Leakage Current (OE)	IIN	$\mathrm{GND} \leq \mathrm{OE} \leq \mathrm{V}_{\mathrm{CC}}$	-55		+10	$\mu \mathrm{A}$
HCSL OUTPUTS (OUTP, OUTN)						
Output High Current	IOH	475Ω resistor connected between RREF and GND, Voutn or $\mathrm{V}_{\text {OUTP }}=1.2 \mathrm{~V}, \mathrm{~V}$ CC $=3.3 \mathrm{~V} \pm 5 \%$	12.25	13.92	15.59	mA
Output High Voltage	V OH	$\mathrm{R}_{S}=0 \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega$ (Notes 1, 2)	612.5	696.0	779.5	mV
Output Low Voltage	VOL	$\mathrm{R}_{S}=0 \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega$ (Notes 1, 2)		0	50	mV
Output Leakage High Current	I_LEAKH	VOE $=0 ;$ Voutn, VOUTP $=$ VCC	-10		+10	$\mu \mathrm{A}$
Output Leakage Low Current	I_LEAKL	Voe $=0 ;$ Voutn, Voutp $=0$	-10		+10	$\mu \mathrm{A}$
Output Resistance	Ro	Measure current out of OUTN pin at $\mathrm{V}_{\text {OUTN }}=0.5 \mathrm{~V}$ and 1.0 V ; $\mathrm{Ro}=0.5 / \mathrm{I}_{0.5}-\mathrm{I}_{1.0}$	3000			Ω
Crossover Voltage	VCROSS	Measure crossing voltage at OUTP and OUTN (Notes 1, 2, and 3)	$\begin{gathered} (50 \% \times \\ \mathrm{VOH}) \pm 5 \% \end{gathered}$			mV
Output Rise Time	tR	20\% to 80\%, CL $=2 \mathrm{pF}$	175		700	ps
Output Fall Time	$\mathrm{tF}_{\text {F }}$	80\% to 20\%, CL $=2 \mathrm{pF}$	175		700	ps
Overshoot	Vover	Measure overshoot voltage at OUTP and OUTN (Notes 1, 2, and 3)	$\begin{gathered} \mathrm{VOH}+ \\ 0.2 \mathrm{~V} \end{gathered}$			V
Undershoot	Vunder	Measure undershoot voltage at OUTP and OUTN (Notes 1, 2, and 3)	-0.2			V
Output-Enable Time to Low Level	tPZL	Figure 3 (Note 4)			200	ns
Output-Enable Time to High Level	tPZH	Figure 3 (Note 5)			200	ns

100MHz HCSL Clock Oscillator

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=3.135 \mathrm{~V}$ to $3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Disable Time	tpz	Figure 3 (Note 6)			10	ns
CLOCK OUTPUT AS MEASURED AT OUTP WITH RESPECT TO OUTN						
Clock Output	fout			100		MHz
Frequency Stability Total	$\Delta f / f o$	Over temperature range, aging, load, and supply (Note 7)	-39		+39	ppm
Initial Frequency Tolerance	f_TOL	$\mathrm{V}_{\mathrm{C}} \mathrm{C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 15		ppm
Frequency Stability vs. Temperature	$\Delta f / f o \mid T A$	$V_{C C}=3.3 \mathrm{~V}$	-30		+30	ppm
Frequency Stability vs. VcC	$\Delta \mathrm{f} / \mathrm{fol} \mathrm{l}$	$V_{C C}=3.3 V \pm 5 \%$	-3		+3	ppm/ $/$
Frequency Stability vs. Load	$\Delta \mathrm{f} / \mathrm{fo}$ \| LOAD	$\pm 10 \%$ variation in termination resistance		± 1		ppm
Aging (10 Years)	${ }_{\text {faging }}$		-7		+7	ppm
Phase Jitter (RMS)	PJRMS	12 kHz to 20 MHz		0.9		ps
Accumulated Deterministic Jitter Due to Power-Supply Noise (Note 8)	DJPN,P-P	10 kHz		3.0		ps
		100 kHz		27		
		200 kHz		15		
		1 MHz		7.0		
Rise and Fall Time Mismatching		$\begin{aligned} & 20 \% \text { to } 80 \% ; C L=2 p F ; \text { Figure } 2 ; \\ & 2 \times\left(t_{R}-t_{F}\right) /\left(t_{R}+t_{F}\right) \end{aligned}$		± 20		\%
Duty Cycle	tDC	Measure at OUTP and OUTN, Figure 2	45		55	\%
Oscillation Startup Time		(Note 9)		3		ms
Clock Output SSB Phase Noise		100 Hz		-90.0		$\begin{gathered} \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
		1 kHz		-112		
		10kHz		-115		
		100 kHz		-123		
		1 MHz		-142		
		10 MHz		-147		

Note 1: All voltages are referenced to ground.
Note 2: With 50Ω load to ground on each output pin.
Note 3: Guaranteed by design and not production tested.
Note 4: tpzl is defined as the time at which VOE $=1.0 \mathrm{~V}$ on the rising edge of OE to the time at which Voutp or $\mathrm{V}_{\text {OUTN }}=0.1 \mathrm{VOH}$ on the falling edge of OUTP or OUTN.
Note 5: tpzH is defined as the time at which the voltage on the rising edge of OE is equal to 1.0 V to the time at which Voutp or VOUTN $=0.9 \mathrm{~V}_{\text {OH }}$ on the rising edge of $\mathrm{V}_{\text {OUTP }}$ or VOUTN.
Note 6: tpz is defined as the time at which VOE $=1.0 \mathrm{~V}$ on the falling edge of OE to the time at which both Voutp and Voutn are less than $0.1 \mathrm{~V}_{\text {OH. }}$.
Note 7: Frequency stability is calculated as: Δ ftotal $=\Delta f$ TEMP $+\Delta f \vee C C \times 0.165+\Delta f$ LOAD $+\Delta f_{\text {AGIING }}$.
Note 8: Measured with 50 mV P-p sinusoidal signal on the supply from 10 kHz to 1 MHz .
Note 9: Including oscillator startup time and PLL acquisition time measured after V_{Cc} reaches 3.0V from power-on.

100MHz HCSL Clock Oscillator

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Figure 1. Functional Diagram

100MHz HCSL Clock Oscillator

Figure 2. Typical Termination for HCSL Driver and Test Conditions

Figure 3. HCSL Output Timing Diagram When OE is Enabled and Disabled

PIN	NAME	FUNCTION
1	OE	Output Enable. On-chip pullup resistor. If connected to logic-high or left open, the clock output is enabled. If connected to logic-low, the output is three-stated.
2	RREF	Connect a $475 \Omega \pm 1 \%$ resistor from RREF to ground.
3	GND	Ground
4	OUTP	Positive Clock Output. Requires a series resistor and a pulldown resistor.
5	OUTN	Negative Clock Output. Requires a series resistor and a pulldown resister.
6	VCC	$+3.3 V$ Supply Input. Device power can range from 3.135V to 3.465V.
$7-10$	N.C.	No Connection
-	EP	Exposed Paddle. Do not connect this pad or place exposed metal under the pad.

100MHz HCSL Clock Oscillator

Detailed Description

The DS4100H is a low-jitter HCSL 100 MHz clock oscillator. It combines an AT-cut crystal, an oscillator, and a low-noise PLL in a 5 mm by 3.2 mm ceramic package. The typical phase jitter is 0.9 psRms from 12 kHz to 20 MHz . The device operates from a single +3.3 V supply.

PLL
The PLL generates a 1.6 GHz high-speed clock signal based on the 25 MHz crystal oscillator output. Clockdivider circuit M generates the output clock by scaling the VCO output frequency. Clock-divider circuit N applies a scaled version of the output clock signal to the phase/frequency detector (PFD) circuit.

Output Drivers

The DS4100H is available with HCSL output buffers. When not needed, the output buffers can be disabled by driving the OE input to a logic-low. OE has an internal pullup resistor so that, if OE is left open, the outputs are enabled by default. When disabled, the output buffer goes to a high-impedance state.

Chip Information
TRANSISTOR COUNT: 2850
SUBSTRATE CONNECTED TO GROUND
PROCESS: Bipolar SiGe
Thermal Information

THETA-JA (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
90

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 LCCC	L1053+H2	$\underline{\mathbf{2 1 - 0 3 8 9}}$

100MHz HCSL Clock Oscillator

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $11 / 07$ | Initial release. | - |
| 1 | $4 / 08$ | In the Electrical Characteristics table, added the typical supply current value of
 71 mA ; corrected the units for the clock phase noise parameter from ps to dBc/Hz. | 2,3 |
| | In the Pin Description, changed the exposed pad description to indicate that it
 should not be connected and to avoid placing exposed metal under the pad
 location. | 5 | | implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard Clock Oscillators category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
$\underline{601252}$ F335-12 F335-25 F535L-33.333 F535L-50 ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C66.6666MHZ SiT8209AI-32-33E-125.000000 SM4420TEV-40.0M-T1K F335-24 F335-40 F535L-10 F535L-12 F535L-16 F535L-24 F535L-27 F535L-48 PE7744DW-100.0M CSX-750FCC14745600T ASF1-3.686MHZ-N-K-S XO57CTECNA3M6864 ECS-2100A-147.4 601251 EP16E7E2H26.000MTR SIT8918AA-11-33S-16.000000G XO3003 9120AC-2D2-33E212.500000 9102AI-243N25E100.00000 8208AC-82-18E-25.00000 ASDK2-32.768KHZ-LR-T3 8008AI-72-XXE-24.545454E 8004AC-13-33E-133.33000X AS-4.9152-16-SMD-TR ASFL1-48.000MHZ-LC-T SIT8920AM-31-33E-25.0000 DSC1028DI2-019.2000 9121AC-2C3-25E100.00000 9102AI-233N33E100.00000X 9102AI-233N25E200.00000 9102AI-232H25S125.00000 9102AI-133N25E200.00000 9102AC-283N25E200.00000 9001AC-33-33E1-30.000 XLH536125.000JS4I 3921AI-2CF-33NZ125.000000 5730-1SF PXA000010 SIT1602BC-83-33E-10.000000Y

