General Description

The MAX6305-MAX6313 CMOS microprocessor ($\mu \mathrm{P}$) supervisory circuits are designed to monitor more than one power supply. Ideal for monitoring both 5 V and 3.3 V in personal computer systems, these devices assert a system reset if any of the monitored supplies falls outside the programmed threshold. Low supply current $(15 \mu \mathrm{~A})$ and a small package suit them for portable applications. The MAX6305-MAX6313 are specifically designed to ignore fast transients on any monitored supply.
These devices are available in a SOT23-5 package, have factory-programmed reset thresholds from 2.5 V to 5.0 V (in 100 mV increments), and feature four power-on reset timeout periods. Ten standard versions are available. Contact the factory for availability of non standard versions.

Applications

Portable Computers
Computers
Controllers
Intelligent Instruments
Portable/Battery-Powered Equipment
Multivoltage Systems: 3V/5V, 5V/12V, 5V/24V Embedded Control Systems

Pin Configurations and Typical Operating Circuit appear at end of data sheet.
Ordering Information continued at end of data sheet.
Standard Versions Table appears at end of data sheet.

Features

- Small 5-Pin SOT23 Package
- Precision Factory-Set Vcc Reset Thresholds; Available in 0.1 V Increments from 2.5 V to 5 V
- Immune to Short VCC Transients
- Guaranteed $\overline{\text { RESET }}$ Valid to $\mathrm{VcC}=1 \mathrm{~V}$
- Guaranteed Over Temperature
- $8 \mu \mathrm{~A}$ Supply Current
- Factory-Set Reset Timeout Delay from $1 \mathrm{~ms}(\mathrm{~min})$ to 1120 ms (min)
- No External Components
- Manual Reset Input
- Under/Overvoltage Supply Monitoring

Ordering Information

PART †	TEMP RANGE	PIN- PACKAGE
MAX6305UK00D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6305EUK00D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23

\dagger The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/ MAX6313 are available with factory-set VCC reset thresholds from 2.5 V to 5 V , in 0.1 V increments. Insert the desired nominal reset threshold (from Table 1) into the blanks following the letters UK. All parts also offer factory-programmed reset timeout periods. Insert the number corresponding to the desired nominal timeout period index following the " D " in the part number ($D 1=1 \mathrm{~ms}$ min, $D 2=20 \mathrm{~ms}$ min, $D 3=140 \mathrm{~ms} \mathrm{~min}$, and $D 4=1120 \mathrm{~ms} \mathrm{~min})$. There are 10 standard versions with a required order increment of 2,500 pieces. Sample stock is generally held on the standard versions only (see Standard Versions table). Required order increment is 10,000 pieces for non-standard versions. Contact factory for availability of non-standard versions. All devices available in tape-and-reel only.
Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with " $+T$ " when ordering.

Selector Table
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { PART } & \begin{array}{c}\text { OPEN-DRAIN } \\ \text { RESET } \\ \text { OUTPUT }\end{array} & \begin{array}{c}\text { PUSH/PULL } \\ \text { RESET } \\ \text { OUTPUT }\end{array} & \begin{array}{c}\text { PUSH/PULL } \\ \text { RESET } \\ \text { OUTPUT }\end{array} & \begin{array}{c}\text { FACTORY- } \\ \text { SET RESET } \\ \text { THRESHOLD } \\ \text { ON VCC }\end{array} & \begin{array}{c}\text { ADDITIONAL } \\ \text { UNDERVOLTAGE } \\ \text { RESET INPUTS }\end{array} & \begin{array}{c}\text { NEGATIVE/ } \\ \text { OVERVOLTAGE } \\ \text { RESET INPUT }\end{array} \\ \hline \text { MAX6305 } & \boldsymbol{V} & - & - & - & 2 & - \\ \hline \text { MAX6306 } \\ \text { INPUT }\end{array}\right]$

5-Pin, Multiple-Input,
 Programmable Reset ICs

ABSOLUTE MAXIMUM RATINGS

Input/Output Current, All Pins	20 mA
Rate of Rise, VCC	100V/us
Continuous Power Dissipation	
SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. 571 mW

Operating Temperature Range	
MAX63 _ UK _ D_-	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX63__EUK _ D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$	
Soldering Temperature (reflow)	
Lead (Pb) - free packages.	$+260^{\circ} \mathrm{C}$
Packages containing lead (Pb)	$+240^{\circ}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to +5.5 V for the MAX6305/MAX6308/MAX6311, $\mathrm{V}_{\mathrm{CC}}=\left(\mathrm{V}_{\mathrm{TH}}+2.5 \%\right)$ to +5.5 V for the MAX6306/MAX6307/MAX6309/ MAX6310/MAX6312/MAX6313; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
VCC Range		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 2)		1.0		5.5	V
Supply Current	ICC	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			8	16	$\mu \mathrm{A}$
Reset Threshold (Note 3)	$V_{\text {TH }}$	MAX6306/MAX6307/ MAX6309/MAX6310/ MAX6312/MAX6313	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {TH }}- \\ & 1.5 \% \end{aligned}$	$\mathrm{V}_{\text {TH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{TH}}+ \\ 1.5 \% \end{gathered}$	V
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {TH }}- \\ & 2.5 \% \end{aligned}$	$V_{\text {TH }}$	$\begin{aligned} & V_{\text {TH }}+ \\ & 2.5 \% \end{aligned}$	
		MAX6306E/MAX6307/ MAX6309E/MAX6310E/ MAX6312E/MAX6313E	/ $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {TH }}- \\ & 2.5 \% \end{aligned}$	$\mathrm{V}_{\text {TH }}$	$\begin{aligned} & V_{T H}+ \\ & 2.5 \% \end{aligned}$	
Reset Threshold	$\mathrm{V}_{\text {TH }} /{ }^{\circ} \mathrm{C}$				40		ppm/ ${ }^{\circ} \mathrm{C}$
Reset Threshold	$\mathrm{V}_{\text {TH }} \mathrm{HYST}$				$2 \times \mathrm{V}_{\text {TH }}$		mV
Reset Timeout Period	trP	D1		1.0	1.4	2.0	ms
		D2		20	28	40	
		D3		140	200	280	
		D4		1120	1570	2240	
$\overline{\text { RESET Output Voltage }}$	VOL	MAX6305-MAX6310	$\mathrm{V}_{\mathrm{CC}}>4.25 \mathrm{~V}, \mathrm{ISINK}=3.2 \mathrm{~mA}$			0.4	V
			$\mathrm{V}_{\mathrm{CC}}>2.5 \mathrm{~V}, \mathrm{ISINK}=1.2 \mathrm{~mA}$			0.3	
			$\mathrm{V}_{C C}>1.2 \mathrm{~V}$, ISINK $=500 \mu \mathrm{~A}$			0.3	
			$\mathrm{V}_{\mathrm{CC}}>1.0 \mathrm{~V}, \mathrm{ISINK}=50 \mu \mathrm{~A}$	0.3			
	VOH	MAX6308/MAX6309/ MAX6310	$\begin{array}{\|l} \mathrm{VCC}>4.25 \mathrm{~V}, \\ \text { ISOURCE }=800 \mu \mathrm{~A} \end{array}$	$V_{C C}-1.5$			V
			$\begin{aligned} & \text { VCC }>2.5 \mathrm{~V}, \\ & \text { ISOURCE }=500 \mu \mathrm{~A} \end{aligned}$	$0.8 \times \mathrm{VCC}$			
RESET Output Voltage	Vol	MAX6311/MAX6312/MAX6313	$\mathrm{V}_{\text {CC }}>4.25 \mathrm{~V}$, $\mathrm{ISINK}=3.2 \mathrm{~mA}$			0.4	V
			$\mathrm{V}_{\mathrm{CC}}>2.5 \mathrm{~V}, \mathrm{ISINK}=1.2 \mathrm{~mA}$			0.3	
	VOH		$\begin{array}{\|l} \mathrm{VCC}>1.8 \mathrm{~V}, \\ \text { ISOURCE }=150 \mu \mathrm{~A} \end{array}$	$0.8 \times \mathrm{VCC}$			
			$\begin{aligned} & \text { VCC > 1.0V, } \\ & \text { ISOURCE }=10 \mu \mathrm{~A} \end{aligned}$	$0.8 \times \mathrm{VCC}$			

5-Pin, Multiple-Input, Programmable Reset ICs

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to +5.5 V for the MAX6305/MAX6308/MAX6311, $\mathrm{V}_{\mathrm{CC}}=\left(\mathrm{V}_{\mathrm{TH}}+2.5 \%\right)$ to +5.5 V for the MAX6306/MAX6307/MAX6309/ MAX6310/MAX6312/MAX6313; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MANUAL-RESET INPUT (MAX6306/MAX6309/MAX6312)						
$\overline{\mathrm{MR}}$ Input	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{TH}}>4.0 \mathrm{~V}$			0.8	V
	V_{IH}		2.4			
	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {TH }}<4.0 \mathrm{~V}$	$0.3 \times \mathrm{VCC}$			
	V_{IH}		$0.7 \times \mathrm{VCC}$			
$\overline{\mathrm{MR}}$ Minimum Input Pulse Width		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1			$\mu \mathrm{s}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.5			
$\overline{\mathrm{MR}}$ Glitch Rejection			0.1			$\mu \mathrm{s}$
$\overline{\mathrm{MR}}$ to Reset Delay			500			nsV
$\overline{\mathrm{MR}}$ Pullup Resistance			32	63.5	100	$\mathrm{k} \Omega$
ADJUSTABLE RESET COMPARATOR INPUTS						
RST IN_/OVRST_IN Input Threshold	VRSTH	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.21	1.23	1.25	V
		MAX6305-MAX6313, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1.20		1.26	
		MAX6305E-MAX6313E, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.20		1.26	
RST IN_JOVRST_IN Input Current	IRST IN_	OV < VRST IN $<\mathrm{V}_{\text {CC }}-0.3 \mathrm{~V}$ (Note 4)	-25		+25	nA
RST IN_JOVRST_IN Hysteresis				2.5		mV

Note 1: Overtemperature limits are guaranteed by design, not production tested.
Note 2: The MAX6305/MAX6308/MAX6311 switch from undervoltage reset to normal operation between 1.5 V < $\mathrm{V}_{\mathrm{CC}}<2.5 \mathrm{~V}$.
Note 3: The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 monitor VCC through an internal factory-trimmed voltage divider, which programs the nominal reset threshold. Factory-trimmed reset thresholds are available in approximately 100 mV increments from 2.5 V to 5 V (Table 1).
Note 4: Guaranteed by design.

5-Pin, Multiple-Input, Programmable Reset ICs

```
\(\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted. \()\)
```

Typical Operating Characteristics

RST IN_ FALLING PROPAGATION DELAY vs. TEMPERATURE

RESET TIMEOUT
vs. TEMPERATURE

MAXIMUM TRANSIENT DURATION vs. OVRST IN THRESHOLD OVERDRIVE

OVRST IN RISING PROPAGATION DELAY vs. TEMPERATURE (OVERVOLTAGE RESET INPUT)

RESET THRESHOLD
vs. TEMPERATURE

MAXIMUM TRANSIENT DURATION vs. RST IN_THRESHOLD OVERDRIVE

5-Pin, Multiple-Input, Programmable Reset ICs

Pin Description

PIN			NAME	FUNCTION
MAX6305 MAX6308 MAX6311	MAX6306 MAX6309 MAX6312	MAX6307 MAX6310 MAX6313		
1	1	1	$\overline{\text { RESET }}$	Active-Low, Open-Drain Reset Output for the MAX6305/MAX6306/ MAX6307. Active-Low, Push/Pull Reset Output (sources and sinks current) for the MAX6308/MAX6309/MAX6310.
			RESET	Active-High, Push/Pull Reset Output for the MAX6311/MAX6312/MAX6313
2	2	2	GND	System Ground
-	3	-	$\overline{M R}$	Manual-Reset Input. Pull low to force a reset. $\overline{\mathrm{RESET}} / \mathrm{RESET}$ remains active as long as $\overline{\mathrm{MR}}$ is low and for the timeout period after $\overline{\mathrm{MR}}$ goes high. Leave unconnected or connect to $\mathrm{V}_{\text {Cc }}$ if unused.
3, 4	-	-	RST IN1, RST IN2	Undervoltage Reset Comparator Input. Asserts reset when the monitored voltage falls below the programmed threshold. Set the
-	4	3	RST IN	
-	-	4	OVRST IN	Overvoltage Reset Comparator Input. Asserts reset when the monitored voltage exceeds the programmed threshold. Set the reset threshold with an external resistor divider. Connect to GND if unused.
5	5	5	VCC	System Supply. The MAX6306/MAX6307/MAX6309/MAX6310/ MAX6312/MAX6313 also monitor VCC through an internal factorytrimmed resistor divider to the reset comparator.

Detailed Description

The MAX6305-MAX6313 CMOS microprocessor ($\mu \mathrm{P}$) supervisory circuits are designed to monitor more than one power supply and issue a system reset when any monitored supply falls out of regulation. The MAX6305/ MAX6308/MAX6311 have two adjustable undervoltage reset inputs (RST IN1 and RST IN2). The MAX6306/ MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 monitor $V_{C C}$ through an internal, factory-trimmed voltage divider. The MAX6306/MAX6309/MAX6312 have, in addition, an adjustable undervoltage reset input and a manual-reset input. The internal voltage divider sets the reset threshold as specified in the device part number (Table 1). The MAX6307/MAX6310/ MAX6313 feature an adjustable undervoltage reset input (RST IN) and an adjustable overvoltage reset input (OVRST IN) in addition to the factory-trimmed reset threshold on the V_{CC} monitor. Program the adjustable reset inputs with an external resistor divider (see Adjustable Reset Inputs section).

Reset Outputs

A μ P's reset input starts the $\mu \mathrm{P}$ in a known state. These $\mu \mathrm{P}$ supervisory circuits assert reset to prevent codeexecution errors during power-up, power-down, or brownout conditions.
RESET (MAX6305-MAX6310) and RESET (MAX6311/ MAX6312/MAX6313) are guaranteed to be asserted at a valid logic level for VCC $>1 \mathrm{~V}$ (see Electrical Characteristics). Once all monitored voltages exceed their programmed reset thresholds, an internal timer keeps reset asserted for the reset timeout period (tRP); after this interval, reset deasserts.
If a brownout condition occurs (any or all monitored voltages dip outside their programmed reset threshold), reset asserts (RESET goes high; $\overline{R E S E T}$ goes low). Any time any of the monitored voltages dip below their reset threshold, the internal timer resets to zero and reset asserts. The internal timer starts when all of the monitored voltages return above their reset thresholds, and reset remains asserted for a reset timeout period. The MAX6305/MAX6306/MAX6307 feature an active-low,

5-Pin, Multiple-Input, Programmable Reset ICs

*MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 ONLY
** MAX6305-MAX6310 ONLY
*** MAX6311/MAX6312/MAX6313 ONLY
\dagger MAX6307/MAX6310/MAX6313 ONLY
\dagger MAX6305/MAX6308/MAX6311 ONLY
$\dagger \dagger \dagger$ MAX6306/MAX6309/MAX6312 ONLY

Figure 1. Functional Diagram
open-drain, N-channel output. The MAX6308/MAX6309/ MAX6310 feature an active-low, complementary output structure that both sinks and sources current, and the MAX6311/MAX6312/MAX6313 have an active-high complementary reset output.
The MAX6305/MAX6308/MAX6311 switch from undervoltage lockout operation to normal operation between $1.5 \mathrm{~V}<\mathrm{VCC}<2.5 \mathrm{~V}$. Below $1.5 \mathrm{~V}, \mathrm{VCC}$ undervoltagelockout mode asserts RESET. Above 2.5V, Vcc normaloperation mode asserts reset if RST IN_ falls below the RST IN_ threshold.

Manual-Reset Input

(MAX6306/MAX6309/MAX6312)
Many $\mu \mathrm{P}$-based products require manual-reset capability, allowing an operator or external logic circuitry to initiate a reset. A logic low on $\overline{\mathrm{MR}}$ asserts reset. Reset remains asserted while $\overline{\mathrm{MR}}$ is low, and for a reset active timeout period (tRP) after $\overline{\mathrm{MR}}$ returns high. This input has an internal $63.5 \mathrm{k} \Omega$ pull-up resistor, so it can be left open if it is not used. $\overline{\mathrm{MR}}$ can be driven with TTL-logic levels in 5 V systems, with CMOS-logic levels in 3V systems, or with opendrain/collector output devices. Connect a normally open momentary switch from $\overline{M R}$ to GND to create a manualreset function; external debounce circuitry is not required. If $\overline{\mathrm{MR}}$ is driven from long cables or if the device is used in a noisy environment, connecting a $0.1 \mu \mathrm{~F}$ capacitor from $\overline{\mathrm{MR}}$ to ground provides additional noise immunity.
The $\overline{\mathrm{MR}}$ pin has internal ESD-protection circuitry that may be forward biased under certain conditions, drawing excessive current. For example, assume the circuitry driving $\overline{M R}$ uses a +5 V supply other than V_{C}. If V_{CC} drops or browns out lower than $+4.7 \mathrm{~V}, \overline{\mathrm{MR}}$'s absolute maximum rating is violated $\left(-0.3 \mathrm{~V}\right.$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$), and undesirable current flows through the ESD structure from $\overline{\mathrm{MR}}$ to V_{CC}. To avoid this, it is recommended that the supply for the $\overline{\mathrm{MR}}$ pin be the same as the supply monitored by $V_{C C}$. In this way, the voltage at $\overline{\mathrm{MR}}$ will not exceed V_{CC}.

Adjustable Reset Inputs

The MAX6305-MAX6313 each have one or more reset inputs (RST IN_ /OVRST IN). These inputs are compared to the internal reference voltage (Figure 1). Connect a resistor voltage divider to RST IN_ such that VRST IN_ falls below VRSTH (1.23V) when the monitored voltage (VIN) falls below the desired reset threshold $\left(\mathrm{V}_{\mathrm{TH}}\right)$ (Figure 2). Calculate the desired reset voltage with the following formula:

$$
V_{T H}=\frac{R 1+R 2}{R 2} \times V_{R S T H}
$$

5-Pin, Multiple-Input, Programmable Reset ICs

*FOR ADDITIONAL NOISE IMMUNITY

Figure 2. Increasing Noise Immunity

The $\pm 25 n A$ max input leakage current allows resistors on the order of megohms. Choose the pull-up resistor in the divider to minimize the error due to the input leakage current. The error term in the calculated threshold is simply:

$$
\pm 25 \mathrm{nA} \times \mathrm{R} 1
$$

If you choose R1 to be $1 \mathrm{M} \Omega$, the resulting error is $\pm 25 \times 10^{-9} \times 1 \times 10^{6}= \pm 25 \mathrm{mV}$.
Like the VCC voltage monitors on the MAX6306/MAX6307/ MAX6309/MAX6310/MAX6312/MAX6313, the RST IN_ inputs (when used with a voltage divider) are designed to ignore fast voltage transients. Increase the noise immunity by connecting a capacitor on the order of $0.1 \mu \mathrm{~F}$ between RST IN and GND (Figure 2). This creates a single-pole lowpass filter with a corner frequency given by:

$$
f=(1 / 2 \pi) /(R 1+R 2)(R 1 \times R 2 \times C)
$$

For example, if $R 1=1 \mathrm{M} \Omega$ and $\mathrm{R} 2=1.6 \mathrm{M} \Omega$, adding a $0.1 \mu \mathrm{~F}$ capacitor from RST IN_ to ground results in a lowpass corner frequency of $f=2.59 \mathrm{~Hz}$. Note that adding capacitance to RST IN slows the circuit's overall response time.

Applications Information

Interfacing to μ Ps with Bidirectional Reset Pins

Since the RESET output on the MAX6305/MAX6306/ MAX6307 is open drain, these devices interface easily with μ Ps that have bidirectional reset pins, such as the Motorola 68 HC 11 . Connecting the $\mu \mathrm{P}$ supervisor's RESET output directly to the microcontroller's RESET pin with a single pull-up resistor allows either device to assert reset (Figure 3).

Figure 3. Interfacing to μ Ps with Bidirectional Reset I/O

Negative-Going Vcc Transients

In addition to issuing a reset to the $\mu \mathrm{P}$ during power-up, power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going VCC transients (glitches).
The Typical Operating Characteristics show the Maximum Transient Duration vs. Vcc Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going pulses, starting at V_{TH} max, and ending below the programmed reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going VCC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases.
RST IN_/OVRST IN are also immune to negative/positivegoing transients (see Typical Operating Characteristics). A $0.1 \mu \mathrm{~F}$ bypass capacitor mounted close to the RST IN_, OVRST IN, and/or the VCC pin provides additional transient immunity.

Ensuring a Valid $\overline{\text { RESET/RESET }}$ Output Down to VCC = OV

When Vcc falls below 1V, push/pull structured $\overline{\mathrm{RESET}} /$ RESET current sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applications, since most $\mu \mathrm{Ps}$ and other circuitry do not operate with VCc below 1V. In those applications where RESET must be valid down to OV, adding a pull-down resistor between $\overline{R E S E T}$ and ground sinks any stray leakage

5-Pin, Multiple-Input, Programmable Reset ICs

currents, holding $\overline{\text { RESET }}$ low (Figure 4). The pull-down resistor's value is not critical; $100 \mathrm{k} \Omega$ is large enough not to load $\overline{\operatorname{RESET}}$ and small enough to pull $\overline{\text { RESET }}$ to ground. For applications where RESET must be valid to VCC, a $100 \mathrm{k} \Omega$ pull-up resistor between RESET and VCC will hold RESET high when $V_{C C}$ falls below 1V (Figure 5).
Since the MAX6305/MAX6306/MAX6307 have opendrain, active-low outputs, they typically use a pull-up resistor. With these devices and under these conditions ($\mathrm{VCC}<1 \mathrm{~V}$), $\overline{\text { RESET will most likely not maintain an }}$ active condition, but will drift toward a nonactive level due to the pull-up resistor and the RESET output's reduction in sinking capability. These devices are not recommended for applications that require a valid RESET output below 1 V .

Figure 4. Ensuring $\overline{R E S E T}$ Valid to $V_{C C}=O V$

Figure 5. Ensuring RESET Valid to $V C C=O V$

Table 1. Factory-Trimmed Reset Thresholds*

SUFFIX	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
	MIN	TYP	MAX	MIN	MAX
00	Preprogrammed Threshold Not Available			Preprogrammed Threshold Not Available	
50	4.925	5.000	5.075	4.875	5.125
49	4.827	4.900	4.974	4.778	5.023
48	4.728	4.800	4.872	4.680	4.920
47	4.630	4.700	4.771	4.583	4.818
46	4.561	4.630	4.699	4.514	4.746
45	4.433	4.500	4.568	4.388	4.613
44	4.314	4.380	4.446	4.270	4.490
43	4.236	4.300	4.365	4.193	4.408
42	4.137	4.200	4.263	4.095	4.305
41	4.039	4.100	4.162	3.998	4.203
40	3.940	4.000	4.060	3.900	4.100
39	3.842	3.900	3.959	3.803	3.998
38	3.743	3.800	3.857	3.705	3.895
37	3.645	3.700	3.756	3.608	3.793
36	3.546	3.600	3.654	3.510	3.690
35	3.448	3.500	3.553	3.413	3.588
34	3.349	3.400	3.451	3.315	3.485
33	3.251	3.300	3.350	3.218	3.383
32	3.152	3.200	3.248	3.120	3.280
31	3.034	3.080	3.126	3.003	3.157
30	2.955	3.000	3.045	2.925	3.075
29	2.886	2.930	2.974	2.857	3.000
28	2.758	2.800	2.842	2.730	2.870
27	2.660	2.700	2.741	2.633	2.768
26	2.591	2.630	2.669	2.564	2.696
25	2.463	2.500	2.538	2.438	2.563

* Factory-trimmed reset thresholds are available in approximately 100 mV increments with $a \pm 1.5 \%$ room-temperature variance.

5-Pin, Multiple-Input, Programmable Reset ICs

Ordering Information (continued)

PART ${ }^{\dagger}$	TEMP RANGE	PIN- PACKAGE
MAX6306UK__D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6306EUK__D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX6307UK__D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6307EUK__D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX6308UK00D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6308EUK00D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX6309UK__D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6309EUK__D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX6310UK__D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6310EUK_-_D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX6311UK00D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6311EUK00D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX6312UK___D_-T	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23
MAX6312EUK__D_-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23

\dagger The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/ MAX6313 are available with factory-set VCC reset thresholds from 2.5 V to 5 V , in 0.1 V increments. Insert the desired nominal reset threshold (from Table 1) into the blanks following the letters UK. All parts also offer factory-programmed reset timeout periods. Insert the number corresponding to the desired nominal timeout period index following the " D " in the part number ($D 1=1 \mathrm{~ms}$ min, $D 2=20 \mathrm{~ms} \mathrm{~min}, D 3=140 \mathrm{~ms} \mathrm{~min}$, and $D 4=1120 \mathrm{~ms} \mathrm{~min})$. There are 10 standard versions with a required order increment of 2,500 pieces. Sample stock is generally held on the standard versions only (see Standard Versions table). Required order increment is 10,000 pieces for non-standard versions. Contact factory for availability of non-standard versions. All devices available in tape-andreel only.
Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with " $+T$ " when ordering.

Standard Versions Table

MAX6305UK00D3-T	MAX6309UK29D3-T
MAX6306UK29D3-T	MAX6309UK46D3-T
MAX6306UK46D3-T	MAX6311UK00D3-T
MAX6307UK46D3-T	MAX6312UK29D3-T
MAX6308UK00D3-T	MAX6312UK46D3-T

Typical Operating Circuit

5-Pin, Multiple-Input, Programmable Reset ICs

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	$\begin{gathered} \hline \text { PACKAGE } \\ \text { CODE } \end{gathered}$	OUTLINE NO.	$\begin{array}{c\|} \hline \text { LAND } \\ \text { PATTERN NO. } \end{array}$
5 SOT23	U5+1	21-0057	90-0174

5-Pin, Multiple-Input, Programmable Reset ICs

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 96$	Initial release	-
1	$8 / 98$	Make corrections to EC table and Figures 1 and 8.	$3,6,8$
2	$4 / 99$	Added Standard Versions Table and note to the Ordering Information table. Text added to the General Description.	1,13
3	$11 / 05$	Added lead-free option to the Ordering Information table.	1,13
4	$12 / 07$	Updated Table 2 and Package Outline.	$9,10,14$
5	$4 / 08$	Added MAX6305E-MAX6313E to Ordering Information table, updated Electrical Characteristics table and global conditions, updated Table 1, and removed Table 2.	$1,2,3,8-15$
6	$7 / 12$	Updated the Electrical Characteristics table.	2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Drivers \& Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR LX27901IDW SSD2828QN4 ICB2FL01GXUMA2 DLP2000FQC PAD1000YFFR S1D13746F01A600 FIN324CMLX AD8387JSVZ DLPC6421ZPC HV852K7-G HV859K7-G HV857K7-G DIO2133CT14 S1D13506F00A200 S1D13L03F00A100-40 TW2836-BA1-GR SSD2829QL9 MAX749CSA+T MAX4820EUP+T ICL7135CAI+ ICL7135CMH+D ICL7137CMH+D MAX25221BATJ/V+ S1D13748B00B100 S1D13A05B00B200 MAX3738ETG+T MAX8722CEEG+ MAX749CPA+ MAX8785AETI+ ICL7135CQI+ HV518PJ-G-M903 HV5812P-G HV5812PJ-G HV7224PG-G HV853K7-G HV860K7-G HV6810WG-G HV823LG-G HV857MG-G HV833MG-G HV857LMG-G HV859MG-G FMS6363ACSX FMS6364AMTC14X

