CMOS Voltage Converters

General Description

The ICL7662/Si7661 is a monolithic charge pump voltage inverter that will convert a positive voltage in the range of +4.5 V to +20 V to the corresponding negative voltage of -4.5 V to -20 V . The ICL7662/Si7661 provides performance far superior to previous implementations of charge pump voltage inverters by combining low quiescent current with high efficiency. The ICL7662/Si7661 has an oscillator, control circuitry, and 4 power MOS switches on-chip, with the only required external components being two low cost capacitors.
Inexpensive Negative Supplies
Data Acquisition Systems
Up to $-20 V$ for Op Amps, and Other Linear
Circuits
Supply Splitter, $V_{\text {OUT }}=V s / 2$
RS-232 Power Supplies

Pin Configurations

Features

- +4.5V to +20V Supply to -4.5V to -20V Output
- Cascaded Voltage Multiplication ($\mathrm{V}_{\mathrm{Out}}=-\boldsymbol{n} \times \mathrm{V}^{+}$)
- 99.7\% Typical Open Circuit Conversion Efficiency
- Requires Only 2 External Capacitors
- Pin Compatible with the ICL7660

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
ICL7662CPA	$0^{\circ} \mathrm{C}$ t $+70^{\circ} \mathrm{C}$	8 Plastic DIP
ICL7662CBD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
ICL7662CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
ICL7662C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
ICL7662EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
ICL7662EBD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
ICL7662EBA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
ICL7662MTV-4	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 TO-99
ICL7662MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

Ordering Information continued at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxintegrated.com.

ICL7662/Si7661

CMOS Voltage Converters

ABSOLUTE MAXIMUM RATINGS

V+ TO GND ..-0.3V, +22V	
Oscillator Input to GND (Note 1)	
(V - $<12 \mathrm{~V}$)...	-0.3VV $\mathrm{V}++0.3 \mathrm{~V}$
($\mathrm{V}_{+}>12 \mathrm{~V}$)	V $V_{+}-12.3 \mathrm{~V}, \mathrm{~V}_{+}+0.3 \mathrm{~V}$
Power Dissipation (Note 2)	
Plastic DIP.	. 300 mW
SO.	. 500 mW
TO-99	. 500 mW
CERDIP	. 500 mW

ELECTRICAL CHARACTERISTICS: ICL7662

$\left(\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0\right.$, unless otherwise noted. See Test Cuircuit Figure 1.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range-Lo	V+L	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{GND}$	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$	4.5		11	V
Supply Voltage Range-Hi	$V+\mathrm{H}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$, LV $=$ Open	$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	9		20	
			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$	9		16.5	
Supply Current	$1+$	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=$ Open	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.25	0.60	mA
			$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		0.30	0.85	
			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$		0.40	1.0	
Output Source Resistance	R_{O}	$\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{LV}=$ Open	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	100	Ω
			$0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}$		70	120	
			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$		90	150	
Supply Current	$1+$	$\begin{aligned} & V+=5 \mathrm{~V}, \\ & R_{L}=\infty, L V=G N D \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	150	$\mu \mathrm{A}$
			$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$		25	200	
			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$		30	250	
Output Source Resistance	R_{0}	$\begin{aligned} & V+=5 V \\ & I_{O}=3 \mathrm{~mA}, L V=G N D \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		125	200	Ω
			$0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}$		150	250	
			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$		200	350	
Oscillator Frequency	$\mathrm{f}_{\text {OSC }}$				10		kHz
Power Efficiency	$\mathrm{P}_{\text {eff }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$,	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	93	96		\%
			Min < $\mathrm{A}_{\mathrm{A}}<$ Max	90	95		
Voltage Conversion Efficiency	$V_{\text {OEf }}$	$\mathrm{R}_{\mathrm{L}}=\infty$	Min $<\mathrm{T}_{\mathrm{A}}<\operatorname{Max}$	97	99.9		\%
Oscillator Sink or Source Current	losc	$\mathrm{V}+=5 \mathrm{~V}$ (V OSC $=0 \mathrm{~V}$ to +5 V)			0.5		$\mu \mathrm{A}$
		$\mathrm{V}+=15 \mathrm{~V}(\mathrm{~V}$ OSC $=+5 \mathrm{~V}$ to $+15 \mathrm{~V})$			4.0		

Note 1: Connecting any terminal to voltages greater than $\mathrm{V}+$ or less than ground may cause destructive latchup. It is recommended that no input from sources operating from external supplies be applied prior to power-up of the ICL7662.
Note 2: Derate linearly above $+50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: Pin 1 is a test pin and is not connected in normal use.

CMOS Voltage Converters

ELECTRICAL CHARACTERISTICS: Si7661

$\left(V_{+}=+15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0\right.$, unless otherwise noted. See Test Cuircuit Figure 1.)

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED: $c_{\text {osc }}=0$		LIMTTS				UNITS
				$\begin{gathered} 1=25^{\circ} \mathrm{C} \\ 2=125,85,70^{\circ} \mathrm{C} \\ 3=-55,-25,0^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { A, B, C, D, E } \\ \text { SUFFIX } \end{gathered}$		
				TEMP	TYP	MIN	MAX	
INPUT								
Supply Voltage Range (LV)	$\mathrm{V}+\mathrm{LV}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=0 \mathrm{~V}$		1, 2, 3		4.5	9	
Supply Voltage Range	V+	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Open	Si7661B, C, D, E	1, 2, 3		8	20	V
			Si7661A	1, 2, 3		8	16.5	
Supply Current	I+	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=0 \mathrm{~V}$		1			500	$\mu \mathrm{A}$
		$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=$ Open		1			2	mA
OUTPUT								
Output Source Resistance	Rout	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{LV}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}$		1	100			Ω
		$\mathrm{V}+=15 \mathrm{~V}, \mathrm{LV}=$ Open, $\mathrm{I}_{0}=20 \mathrm{~mA}$		1,3	55		100	
				2			120	
Power Conversion Efficiency	PE	$\mathrm{V}+=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		1	92			\%
Voltage Conversion Efficiency	VOUTE	$\mathrm{V}+=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		1	99.7	97		
DYNAMIC								
Oscillator Frequency	fosc	$\mathrm{V}+=15 \mathrm{~V}$		1	10			kHz
Oscillator Impedance	Zosc	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{LV}=0 \mathrm{~V}$		1	1			$\mathrm{M} \Omega$
		$\mathrm{V}+=15 \mathrm{~V}$		1	100			$\mathrm{k} \Omega$

CMOS Voltage Converters

Figure 2. Idealized Negative Voltage Converter

Efficiency Considerations

Theoretically, a voltage multiplier can approach 100\% efficiency if certain conditions are met. The ICL7662 (Si7661) approaches the conditions listed below for negative voltage multiplication if large values of C1 and C2 are used.

- The output switches have virtually no offset and extremely low ON resistance.
- Minimal power is consumed by the drive circuitry.
- The impedances of the reservoir and pump capacitors are negligible.

The energy loss per charge pump cycle is:

$$
E=1 / 2 \times C 1 \times\left(V_{I N}{ }^{2}-V_{O U T}{ }^{2}\right)
$$

There will be a substantial voltage difference between $V_{\text {IN }}$ and $V_{\text {OUT }}$ if the impedances of C 1 and C 2 (at the pump frequency) are high compared to output load R1. To reduce output ripple, make C 2 as large in value as is practical. Increasing the value of both C1 and C2 will improve the efficiency.

General Precautions

- The positive terminal of C 1 must be connected to Pin 2 of the ICL7662 (Si7661), and the positive terminal of C2 must be connected to Ground.
- Never exceed maximum supply voltages.
- For higher efficiency, connect LV to Ground for supply voltages less than 8 volts.
- $V_{\text {OUt }}$ should not be shorted to V^{+}for extended periods of time. Transient conditions (including startup) are acceptable.

Applications

Changing Oscillator Frequency
Normally the OSC pin of the ICL7662 (Si 7661) is left open, and the 10 kHz nominal frequency (5 kHz charge pump frequency) is used. The oscillator can be lowered by connecting an external capacitor between

OSC and V^{+}(see Figure 3). A graph in the Typical Operating Characteristics section shows the nominal frequency versus capacitor value. Lowering the oscillator frequency will improve the conversion efficiency with very low output current values. An undesirable effect of lowering the oscillator frequency is that the impedance level of the pump capacitor will increase. Increasing the value of C 1 and C2 will compensate for this effect.

Figure 3. Lowering Oscillator Frequency
In some applications, particularly audio amplifiers, the 5 kHz output ripple frequency is objectionable. The oscillator frequency may be increased by one of two methods. The first method is to overdrive the OSC pin with an external oscillator. To eliminate the possibility of latchup, insert a $1 \mathrm{k} \Omega$ resistor in series with the OSC input (see Figure 4). If the external clock source does not pullup close to V^{+}, then a $10 \mathrm{k} \Omega$ pullup resistor is suggested. The pump frequency, and, therefore, the output ripple will be one-half of the external clock frequency. Driving the ICL7662 (Si7661) with a higher frequency clock will slightly increase the supply current, but allows the use of smaller external capacitors and increases the ripple frequency.

Figure 4. External Clocking
The second method is to tie pin 1 (TEST) to V^{+}. This disconnects the internal oscillator from the OSC pin. Since there is always a small amount of parasitic capacitance from the OSC pin, tying the TEST pin to V^{+}will allow the capacitor to oscillate faster (depending on how much parasitic capacitance there is from the OSC pin).

ICL7662/Si7661
 CMOS Voltage Converters

Cascading Devices

To produce larger negative voltage multiplication of the initial supply voltage, the ICL7662 (Si7661) may be cascaded as shown in Figure 5. The resulting output resistance is approximately equal to the weighted sum of the individual ICL7662 (Si7661) R RUT values. For light loads, the practical limit is 10 devices. The output voltage is defined by $\mathrm{V}_{\text {OUT }}=-\mathrm{n} \times \mathrm{V}^{+}$ (where n is an integer representing the number of cascaded devices).

*Pin 8 tied to Pin 3 of device $n-1$.

Figure 5. Cascading ICL7662s for Increased Output Voltage

Negative Voltage Converter

The most common application of the ICL7662 (Si7661) is as a charge pump voltage inverter, converting a positive voltage to the corresponding negative equivalent. The simple circuit of Figure 6 shows that only two external components (C1 and C2) are needed. In most applications C 1 and C 2 are low cost $10 \mu \mathrm{~F}$ electrolytic capacitors. The ICL7662 (Si7661) is NOT a voltage regulator, and the output source resistance is approximately 60Ω with a +15 V supply. This means that with an input voltage of +15 V , the output voltage will be -15 V , under light loads (less than 1 mA load current), but will decrease to -14.4 V with a 10 mA load current. The output source impedance of the complete circuit is the sum of the ICL7662 (Si7661) output resistance and the impedance of the pump capacitor at the pump frequency.

Figure 6. Negative Voltage Converter

The output ripple of the voltage inverter can be calculated by noting that the output current is supplied solely by the reservoir capacitor during one-half of the charge pump cycle. This introduces an output ripple of:

$$
V_{\text {RIPPLE }}=1 / 2 \times \mathrm{I}_{\text {OUT }} \times\left(1 / \mathrm{F}_{\text {PUMP }}\right) \times(1 / \mathrm{C} 2)
$$

For the nominal $F_{\text {puMp }}$ of 5 kHz (one-half of the nominal 10 kHz oscillator frequency) and a $10 \mu \mathrm{FC} 2$, the output ripple will be approximately 10 mV with a load current of 10 mA .

Positive Voltage Doubler

The ICL7662 (Si7661) can double a positive voltage as shown in Figure 7. It basically uses the ICL7662 (Si 7661) as a power inverter. The only drawback from this circuit is the inevitable voltage drop across the two diodes.

NOTE: D_{1} and D_{2} can be any suitable diode.

Figure 7. Positive Voltage Doubler

Paralleling Devices

Paralleling ICL7662s (or Si7661s) reduces the output resistance. As illustrated in Figure 8, each device requires its own pump capacitor C 1 ; however, the reservoir capacitor C2 serves all devices. The equation for calculating output resistance is also shown in Figure 8.

Figure 8. Paralleling ICL7662s to Reduce Output Resistance

CMOS Voltage Converters

Combining Positive Supply Multiplication and Negative Voltage Conversion

This dual function is illustrated in Figure 9. In this circuit, capacitors C1 and C3 perform the pump and reservoir functions respectively for the generation of the negative voltage. Capacitors C2 (pump capacitor) and C4 (reservoir capacitor) are used for the positive voltage converter. The circuit configuration, however, does lead to a higher source impedance of the generated supplies. This is due to the finite impedance of the common charge pump driver.

Voltage Splitting
The ICL7662 (Si7661) can also be used to split a power supply or battery. In Figure 10 the ICL7662 (Si7661) has the positive terminal of the power supply connected to V^{+}and the negative terminal connected to $V_{\text {out. }}$ The midpoint of the power supply is found on Pin 3. The output resistance is much lower than in other applications, and higher currents can be drawn from this configuration.

Figure 9. Combined Positive Multiplier and Negative Converter

Figure 10. Splitting a Supply in Half

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
Si7661CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
Si7661CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
Si7661CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
Si7661 $/ \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
Si7661DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
Si7661DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
Si7661ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
Si7661AA-4	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 TO-99
Si7661AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

ICL7662/Si7661
 CMOS Voltage Converters

8 Lead TO-99 (TV)
$\theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=45^{\circ} \mathrm{C} / \mathrm{W}$

14 Lead Small Outline (SD)
$\theta_{\mathrm{JAA}}=115^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}=60^{\circ} \mathrm{C} / \mathrm{W}$

maxim

integrated $_{m}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC

