300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Abstract

General Description The MAX1080/MAX1081 10-bit analog-to-digital converters (ADCs) combine an 8-channel analog-input multiplexer, high-bandwidth track/hold (T/H), and serial interface with high conversion speed and low power consumption. The MAX1080 operates from a single +4.5 V to +5.5 V supply; the MAX1081 operates from a single +2.7 V to +3.6 V supply. Both devices' analog inputs are software configurable for unipolar/bipolar and single-ended/pseudo-differential operation. The 4-wire serial interface connects directly to SPITM/QSPITM and MICROWIRE ${ }^{\text {TM }}$ devices without external logic. A serial strobe output allows direct connection to TMS320-family digital signal processors. The MAX1080/ MAX1081 use an external serial-interface clock to perform successive-approximation analog-to-digital conversions. The devices feature an internal +2.5 V reference and a ref-erence-buffer amplifier with a $\pm 1.5 \%$ voltage-adjustment range. An external reference with a 1 V to V_{DD} range may also be used. The MAX1080/MAX1081 provide a hard-wired SHDN pin and four software-selectable power modes (normal operation, reduced power (REDP), fast power-down (FASTPD), and full power-down (FULLPD)). These devices can be programmed to automatically shut down at the end of a conversion or to operate with reduced power. When using the power-down modes, accessing the serial interface automatically powers up the devices, and the quick turnon time allows them to be shut down between all conversions. This technique can cut supply current below 100 mA at lower sampling rates. The MAX1080/MAX1081 are available in a 20-pin TSSOP package. These devices are higher-speed versions of the MAX148/MAX149. For more information, refer to the respective data sheet.

Applications
Portable Data Logging
Data Acquisition
Medical Instruments
Battery-Powered Instruments
Pen Digitizers
Process Control

Typical Operating Circuit appears at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.

- 8-Channel Single-Ended or 4-Channel Pseudo-Differential Inputs
- Internal Multiplexer and Track/Hold
- Single-Supply Operation
+4.5 V to +5.5 V (MAX1080)
+2.7 V to +3.6 V (MAX1081)
- Internal +2.5V Reference
- 400ksps Sampling Rate (MAX1080)
- Low Power: 2.5mA (400ksps)
1.3mA (REDP)
0.9mA (FASTPD)
$2 \mu \mathrm{~A}$ (FULLPD)
- SPI/QSPI/MICROWIRE/TMS320-Compatible 4-Wire Serial Interface
- Software-Configurable Unipolar or Bipolar Inputs
- 20-Pin TSSOP Package

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	INL (LSB)
MAX1080ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	$\pm 1 / 2$
MAX1080BCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	± 1
MAX1080AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$\pm 1 / 2$

Ordering Information continued at end of data sheet.
Pin Configuration
TOP VIEW

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

ABSOLUTE MAXIMUM RATINGS

$V_{D D_{-}}$to GND	-0.3V to 6V
$V_{\text {DD1 }}$ to $V_{\text {DD2 }}$	-0.3V to 0.3V
CH0-CH7, COM to GND.	-0.3V to ($\left.\mathrm{V}_{\mathrm{DD} 1}+0.3 \mathrm{~V}\right)$
REF, REFADJ to GND	-0.3V to ($\left.\mathrm{V}_{\mathrm{DD} 1}+0.3 \mathrm{~V}\right)$
Digital Inputs to GND	-0.3V to 6V
Digital Outputs to GND	-0.3 V to $\left(\mathrm{V}_{\mathrm{DD} 2}+0.3 \mathrm{~V}\right)$
Digital Output Sink Curren	. 25 mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX1080

$\left(V_{D D 1}=V_{D D 2}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{COM}=\mathrm{GND}, \mathrm{fSCLK}=6.4 \mathrm{MHz}, 50 \%$ duty cycle, 16 clocks/conversion cycle (400ksps), external +2.5 V at REF, REFADJ $=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DC ACCURACY (Note 1)					
Resolution			10		Bits
Relative Accuracy (Note 2)	INL	MAX1080A		± 0.5	LSB
		MAX1080B		± 1.0	
Differential Nonlinearity	DNL	No missing codes over temperature		± 1.0	LSB
Offset Error				± 3.0	LSB
Gain Error (Note 3)				± 3.0	LSB
Gain-Error Temperature Coefficient			± 0.8		ppm/ ${ }^{\circ} \mathrm{C}$
Channel-to-Channel Offset-Error Matching			± 0.1		LSB
DYNAMIC SPECIFICATIONS (100kHz sine-wave input, 2.5Vp-p, 400ksps, 6.4 MHz clock, bipolar input mode)					
Signal-to-Noise plus Distortion Ratio	SINAD		60		dB
Total Harmonic Distortion	THD	Up to the 5th harmonic	-70		dB
Spurious-Free Dynamic Range	SFDR		70		dB
Intermodulation Distortion	IMD	$\mathrm{fin} 1=99 \mathrm{kHz}, \mathrm{fiN2}=102 \mathrm{kHz}$	76		dB
Channel-to-Channel Crosstalk (Note 4)		$\mathrm{fIN}=200 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{Vp}-\mathrm{p}$	-78		dB
Full-Power Bandwidth		-3dB point	6		MHz
Full-Linear Bandwidth		SINAD > 58dB	350		kHz
CONVERSION RATE					
Conversion Time (Note 5)	tCONV		2.5		$\mu \mathrm{s}$
Track/Hold Acquisition Time	tACQ			468	ns
Aperture Delay			10		ns
Aperture Jitter			<50		ps
Serial Clock Frequency	fSCLK		0.5	6.4	MHz
Duty Cycle			40	60	\%

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

ELECTRICAL CHARACTERISTICS—MAX1080 (continued)

(VD1 $=\mathrm{V}_{\mathrm{DD} 2}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{COM}=\mathrm{GND}$, fSCLK $=6.4 \mathrm{MHz}, 50 \%$ duty cycle, 16 clocks/conversion cycle (400ksps), external +2.5 V at REF, REFADJ $=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
ANALOG INPUTS (CH7-CH0, COM)					
Input Voltage Range, Single Ended and Differential (Note 6)	V_{CH}	Unipolar, V COM $=0$		VREF	V
		Bipolar, $\mathrm{V}_{\text {COM }}$ or $\mathrm{V}_{\mathrm{CH}_{-}}=\mathrm{V}_{\text {REF }} / 2$, referenced to COM or CH_{-}		$\pm \mathrm{V}_{\text {REF/2 }}$	
Multiplexer Leakage Current		On/off leakage current, $\mathrm{V}_{\mathrm{CH}}=0$ or $\mathrm{V}_{\mathrm{DD} 1}$		$\pm 0.001 \pm 1$	$\mu \mathrm{A}$
Input Capacitance				18	pF
INTERNAL REFERENCE					
REF Output Voltage	$V_{\text {REF }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.480	$2.500 \quad 2.520$	V
REF Short-Circuit Current				30	mA
REF Output Temperature Coefficient	TC V $\mathrm{V}_{\text {ef }}$			± 15	ppm/ ${ }^{\circ} \mathrm{C}$
Load Regulation (Note 7)		0 to 1mA output load		0.12 .0	$\mathrm{mV} / \mathrm{mA}$
Capacitive Bypass at REF			4.7	10	$\mu \mathrm{F}$
Capacitive Bypass at REFADJ			0.01	10	$\mu \mathrm{F}$
REFADJ Output Voltage				1.22	V
REFADJ Input Range		For small adjustments, from 1.22V		± 100	mV
REFADJ Buffer Disable Threshold		To power down the internal reference	1.4	VDD1-1.0	V
Buffer Voltage Gain				+2.05	V/V
EXTERNAL REFERENCE (reference buffer disabled, reference applied to REF)					
REF Input Voltage Range		(Note 8)	1.0	$V_{D D 1}+$ 50 mV	V
REF Input Current		$\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}$, fSCLK $=6.4 \mathrm{MHz}$		200350	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}$, fSCLK $=0$		320	
		In power-down mode, fSCLK $=0$		5	
DIGITAL INPUTS (DIN, SCLK, $\overline{C S}, \overline{\text { SHDN }}$)					
Input High Voltage	VINH		3.0		V
Input Low Voltage	$V_{\text {INL }}$			0.8	V
Input Hysteresis	$\mathrm{V}_{\text {HYST }}$			0.2	V
Input Leakage	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {DD2 }}$		± 1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}_{\text {N }}$			15	pF
DIGITAL OUTPUTS (DOUT, SSTRB)					
Output Voltage Low	VOL	ISINK $=5 \mathrm{~mA}$		0.4	V
Output Voltage High	VOH	ISOURCE $=1 \mathrm{~mA}$	4		V
Three-State Leakage Current	IL	$\overline{\mathrm{CS}}=5 \mathrm{~V}$		± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout	$\overline{\mathrm{CS}}=5 \mathrm{~V}$		15	pF

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

ELECTRICAL CHARACTERISTICS—MAX1080 (continued)

(VDD1 $=\mathrm{V}_{\mathrm{DD} 2}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{COM}=\mathrm{GND}, \mathrm{f} C \mathrm{CK}=6.4 \mathrm{MHz}, 50 \%$ duty cycle, 16 clocks/conversion cycle (400ksps), external +2.5 V at REF, REFADJ $=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

ELECTRICAL CHARACTERISTICS—MAX1081

$\left(V_{D D 1}=V_{D D 2}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{COM}=\mathrm{GND}, \mathrm{fSCLK}=4.8 \mathrm{MHz}, 50 \%$ duty cycle, 16 clocks/conversion cycle (300ksps), external +2.5 V at REF, REFADJ $=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DC ACCURACY (Note 1)					
Resolution			10		Bits
Relative Accuracy (Note 2)	INL	MAX1081A		± 0.5	LSB
		MAX1081B		± 1.0	
Differential Nonlinearity	DNL	No missing codes over temperature		± 1.0	LSB
Offset Error				± 3.0	LSB
Gain Error (Note 3)				± 3.0	LSB
Gain-Error Temperature Coefficient			± 1.6		ppm/ ${ }^{\circ} \mathrm{C}$
Channel-to-Channel Offset-Error Matching			± 0.2		LSB
DYNAMIC SPECIFICATIONS (75kHz sine-wave input, $2.5 \mathrm{Vp}-\mathrm{p}, 300 \mathrm{ksps}, 4.8 \mathrm{MHz}$ clock, bipolar input mode)					
Signal-to-Noise plus Distortion Ratio	SINAD		60		dB
Total Harmonic Distortion	THD	Up to the 5th harmonic	-70		dB
Spurious-Free Dynamic Range	SFDR		70		dB
Intermodulation Distortion	IMD	$\mathrm{f}_{\mathrm{IN} 1}=73 \mathrm{kHz}, \mathrm{f} \mathrm{IN} 2=77 \mathrm{kHz}$	76		dB
Channel-to-Channel Crosstalk (Note 4)		$\mathrm{fin}^{\prime}=150 \mathrm{kHz}, \mathrm{V}$ IN $=2.5 \mathrm{Vp}-\mathrm{p}$	-78		dB
Full-Power Bandwidth		-3dB point	3		MHz
Full-Linear Bandwidth		SINAD > 58dB	250		kHz

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

ELECTRICAL CHARACTERISTICS—MAX1081 (continued)

$\left(V_{D D 1}=V_{D D 2}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{COM}=\mathrm{GND}$, fSCLK $=4.8 \mathrm{MHz}, 50 \%$ duty cycle, 16 clocks/conversion cycle (300ksps), external +2.5 V at REF, REFADJ $=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONVERSION RATE						
Conversion Time (Note 5)	tconv	Normal operating mode	3.3			$\mu \mathrm{s}$
Track/Hold Acquisition Time	tACQ	Normal operating mode			625	ns
Aperture Delay				10		ns
Aperture Jitter				<50		ps
Serial Clock Frequency	fsclk	Normal operating mode	0.5		4.8	MHz
Duty Cycle			40		60	\%
ANALOG INPUTS (CH7-CH0, COM)						
Input Voltage Range, Single Ended and Differential (Note 6)	V_{CH}	Unipolar, $\mathrm{V}_{\text {COM }}=0$			VREF	V
		Bipolar, $\mathrm{V}_{\mathrm{COM}}$ or $\mathrm{V}_{\mathrm{CH}}=\mathrm{V}_{\text {REF/2 }}$, referenced to COM or CH_{-}			$\pm \mathrm{V}_{\text {ReF }} / 2$	
Multiplexer Leakage Current		On/off leakage current, $\mathrm{V}_{\mathrm{CH}}=0$ or $\mathrm{V}_{\text {DD1 }}$		± 0.001	± 1	$\mu \mathrm{A}$
Input Capacitance				18		pF
INTERNAL REFERENCE						
REF Output Voltage	VREF	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.480	2.500	2.520	V
REF Short-Circuit Current				15		mA
REF Output Temperature Coefficient	TC V $\mathrm{V}_{\text {REF }}$			± 15		ppm/ ${ }^{\circ} \mathrm{C}$
Load Regulation (Note 7)		0 to 0.75 mA output load		0.1	2.0	$\mathrm{mV} / \mathrm{mA}$
Capacitive Bypass at REF			4.7		10	$\mu \mathrm{F}$
Capacitive Bypass at REFADJ			0.01		10	HF
REFADJ Output Voltage				1.22		V
REFADJ Input Range		For small adjustments, from 1.22V		± 100		mV
REFADJ Buffer Disable Threshold		To power down the internal reference	1.4		$V_{\text {DD1 }}-1$	V
Buffer Voltage Gain				+2.05		V/V

EXTERNAL REFERENCE (reference buffer disabled, reference applied to REF)

REF Input Voltage Range	(Note 8)	1.0	VDD1 + 50 mV	V
REF Input Current	$\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}$, fSCLK $=4.8 \mathrm{MHz}$	200	350	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}$, fSCLK $=0$		320	
	In power-down mode, fSCLK $=0$		5	

DIGITAL INPUTS (DIN, SCLK, $\overline{\mathrm{CS}}, \overline{\mathrm{SHDN}}$)

Input High Voltage	$\mathrm{V}_{\mathrm{INH}}$		2.0	V
Input Low Voltage	$\mathrm{V}_{\mathrm{INL}}$		0.8	V
Input Hysteresis	$\mathrm{V}_{\mathrm{HYST}}$		0.2	V
Input Leakage	I_{IN}	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{\mathrm{DD} 2}$	± 1	$\mu \mathrm{~A}$
Input Capacitance	C_{IN}		15	pF

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

ELECTRICAL CHARACTERISTICS—MAX1081 (continued)

$\left(V_{D D 1}=V_{D D 2}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{COM}=\mathrm{GND}, \mathrm{fSCLK}=4.8 \mathrm{MHz}, 50 \%$ duty cycle, 16 clocks/conversion cycle (300ksps), external +2.5 V at REF, REFADJ $=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
DIGITAL OUTPUTS (DOUT, SSTRB)						
Output Voltage Low	VOL	ISINK $=5 \mathrm{~mA}$			0.4	V
Output Voltage High	VOH	ISOURCE $=0.5 \mathrm{~mA}$		VDD2 - 0.5V		V
Three-State Leakage Current	IL	$\overline{\mathrm{CS}}=3 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout	$\overline{\overline{C S}}=3 \mathrm{~V}$		15		pF
POWER SUPPLY						
Positive Supply Voltage (Note 9)	VDD1, VDD2			2.7	3.6	V
Supply Current	IVDD1+ lvDD2	$\begin{aligned} & \mathrm{VDD1}= \\ & \mathrm{V}_{\mathrm{DD2}}= \\ & 3.6 \mathrm{~V} \end{aligned}$	Normal operating mode (Note 10)	2.5	3.5	mA
			Reduced-power mode (Note 11)	1.3	2.0	
			Fast power-down mode (Note 11)	0.9	1.5	
			Full power-down mode (Note 11)	2	10	$\mu \mathrm{A}$
Power-Supply Rejection	PSR	$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD2}}=2.7 \mathrm{~V}$ to 3.6V, midscale input		± 0.5	± 2.0	mV

TIMING CHARACTERISTICS-MAX1080

(Figures 1, 2, 6, $7 ; \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Period	tcP		156			ns
SCLK Pulse Width High	tch		62			ns
SCLK Pulse Width Low	tCL		62			ns
DIN to SCLK Setup	tDS		35			ns
DIN to SCLK Hold	tDH		0			ns
$\overline{\overline{C S}}$ Fall to SCLK Rise Setup	tcss		35			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold	tCSH		0			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Fall Ignore	tcso		35			ns
$\overline{\mathrm{CS}}$ Rise to SCLK Rise Ignore	tCS1		35			ns
SCLK Rise to DOUT Hold	tDOH	CLOAD $=20 \mathrm{pF}$	10	20		ns
SCLK Rise to SSTRB Hold	tSTH	CLOAD $=20 \mathrm{pF}$	10	20		ns
SCLK Rise to DOUT Valid	toov	CLOAD $=20 \mathrm{pF}$			80	ns
SCLK Rise to SSTRB Valid	tsTV	CLOAD $=20 \mathrm{pF}$			80	ns
$\overline{\mathrm{CS}}$ Rise to DOUT Disable	tDOD	CLOAD $=20 \mathrm{pF}$	10		65	ns
$\overline{\overline{C S}}$ Rise to SSTRB Disable	tstD	CLOAD $=20 \mathrm{pF}$	10		65	ns
$\overline{\text { CS }}$ Fall to DOUT Enable	tDoe	CLOAD $=20 \mathrm{pF}$			65	ns
$\overline{\overline{C S}}$ Fall to SSTRB Enable	tste	CLOAD $=20 \mathrm{pF}$			65	ns
$\overline{\mathrm{CS}}$ Pulse Width High	tcsw		100			ns

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

TIMING CHARACTERISTICS—MAX1081

(Figures 1, 2, 6, 7; $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=+2.7 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Period	tcP		208			ns
SCLK Pulse Width High	tch		83			ns
SCLK Pulse Width Low	tcL		83			ns
DIN to SCLK Setup	tDS		45			ns
DIN to SCLK Hold	tDH		0			ns
$\overline{\text { CS }}$ Fall to SCLK Rise Setup	tcss		45			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold	tCSH		0			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Fall ignore	tcso		45			ns
$\overline{\overline{C S}}$ Rise to SCLK Rise Ignore	tcs1		45			ns
SCLK Rise to DOUT Hold	tDOH	CLOAD $=20 \mathrm{pF}$	13	20		ns
SCLK Rise to SSTRB Hold	tsth	CLOAD $=20 \mathrm{pF}$	13	20		ns
SCLK Rise to DOUT Valid	toov	CLOAD $=20 \mathrm{pF}$			100	ns
SCLK Rise to SSTRB Valid	tSTV	CLOAD $=20 \mathrm{pF}$			100	ns
$\overline{\mathrm{CS}}$ Rise to DOUT Disable	tDOD	CLOAD $=20 \mathrm{pF}$	13		85	ns
$\overline{\overline{C S}}$ Rise to SSTRB Disable	tstD	CLOAD $=20 \mathrm{pF}$	13		85	ns
$\overline{\overline{C S}}$ Fall to DOUT Enable	tDOE	CLOAD $=20 \mathrm{pF}$			85	ns
$\overline{\overline{C S}}$ Fall to SSTRB Enable	tste	CLOAD $=20 \mathrm{pF}$			85	ns
$\overline{\overline{C S}}$ Pulse Width High	tcsw		100			ns

Note 1: Tested at $V_{D D 1}=V_{D D 2}=V_{D D(M I N)}, C O M=G N D$, unipolar single-ended input mode.
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has been calibrated.
Note 3: Offset nulled.
Note 4: Ground the "on" channel; sine wave is applied to all "off" channels.
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.
Note 6: The common-mode range for the analog inputs ($\mathrm{CH} 7-\mathrm{CH} 0$ and COM) is from GND to VDD1.
Note 7: External load should not change during conversion for specified accuracy. Guaranteed specification of $2 \mathrm{mV} / \mathrm{mA}$ is the result of production test limitations.
Note 8: ADC performance is limited by the converter's noise floor, typically $300 \mu \mathrm{Vp}-\mathrm{p}$.
Note 9: Electrical characteristics are guaranteed from $V_{D D 1(M I N)}=V_{D D 2(M I N)}$ to $V_{D D 1(M A X)}=V_{D D 2(M I N)}$. For operations beyond this range, see Typical Operating Characteristics. For guaranteed specifications beyond the limits, contact the factory.
Note 10: AIN = midscale. Unipolar mode. MAX1080 tested with 20 pF on DOUT, 20 pF on SSTRB, and fscLk $=6.4 \mathrm{MHz}, 0$ to 5 V . MAX1081 tested with same loads, fSCLK $=4.8 \mathrm{MHz}, 0$ to 3 V .
Note 11: SCLK $=$ DIN $=$ GND, $\overline{C S}=V_{D D 1}$.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

$\left(\right.$ MAX1080: $V_{D D 1}=V_{D D 2}=5.0 \mathrm{~V}$, fSCLK $=6.4 \mathrm{MHz} ;$ MAX1081: $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$, fSCLK $=4.8 \mathrm{MHz} ;$ CLOAD $=20 \mathrm{pF}, 4.7 \mu \mathrm{~F}$ capacitor at REF, $0.01 \mu \mathrm{~F}$ capacitor at REFADJ, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Typical Operating Characteristics (continued)
$\left(\right.$ MAX1080: $V_{D D 1}=V_{D D 2}=5.0 \mathrm{~V}$, fSCLK $=6.4 \mathrm{MHz} ;$ MAX1081: $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$, fSCLK $=4.8 \mathrm{MHz} ;$ CLOAD $=20 \mathrm{pF}, 4.7 \mu \mathrm{~F}$ capacitor at REF, $0.01 \mu \mathrm{~F}$ capacitor at REFADJ, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX1081
GAIN ERROR vs. TEMPERATURE

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

PIN	NAME	FUNCTION
$1-8$	CH0-CH7	Sampling Analog Inputs
9	COM	Ground Reference for Analog Inputs. COM sets zero-code voltage in single-ended mode. Must be stable to $\pm 0.5 L$ SB.
10	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Pulling $\overline{\text { SHDN }}$ (typ). low shuts down the device, reducing supply current to 2MA
11	REF	Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion. In internal reference mode, the reference buffer provides a 2.500V nominal output, externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling REFADJ to VDD1.
12	REFADJ	Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, connect REFADJ to VDD1.
13	GND	Analog and Digital Ground
14	DOUT	Serial Data Output. Data is clocked out at SCLK's rising edge. High impedance when $\overline{\text { CS }}$ is high.
15	SSTRB	Serial Strobe Output. SSTRB pulses high for one clock period before the MSB decision. High imped- ance when $\overline{\text { CS }}$ is high.
16	DIN	Serial Data Input. Data is clocked in at SCLK's rising edge. 17
18	$\overline{\text { CS }}$	Active-Low Chip Select. Data will not be clocked into DIN unless $\overline{\text { CS }}$ is low. When $\overline{\text { CS }}$ is high, DOUT and SSTRB are high impedance.
19	SCLK	Serial Clock Input. Clocks data in and out of serial interface and sets the conversion speed. (Duty cycle must be 40\% to 60\%.)
20	VDD1	Positive Supply Voltage Positive Supply Voltage

Figure 1. Load Circuits for Enable Time

Figure 2. Load Circuits for Disable Time

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Detailed Description

The MAX1080/MAX1081 ADCs use a successiveapproximation conversion technique and input T/H circuitry to convert an analog signal to a 10-bit digital output. A flexible serial interface provides easy interface to microprocessors ($\mu \mathrm{Ps}$). Figure 3 shows a functional diagram of the MAX1080/MAX1081.

Pseudo-Differential Input

The equivalent circuit of Figure 4 shows the MAX1080/ MAX1081s' input architecture, which is composed of a T/H, input multiplexer, input comparator, switchedcapacitor DAC, and reference.
In single-ended mode, the positive input ($\mathrm{IN}+$) is connected to the selected input channel and the negative input (IN-) is set to COM. In differential mode, IN+ and IN - are selected from the following pairs: $\mathrm{CHO} / \mathrm{CH} 1$, $\mathrm{CH} 2 / \mathrm{CH} 3, \mathrm{CH} 4 / \mathrm{CH} 5$, and $\mathrm{CH} 6 / \mathrm{CH} 7$. Configure the channels according to Tables 1 and 2.
The MAX1080/MAX1081 input configuration is pseudodifferential because only the signal at $\mathrm{IN}+$ is sampled. The return side (IN -) is connected to the sampling capacitor while converting and must remain stable within $\pm 0.5 \mathrm{LSB}(\pm 0.1 \mathrm{LSB}$ for best results) with respect to GND during a conversion.
If a varying signal is applied to the selected $I N$-, its amplitude and frequency must be limited to maintain accuracy. The following equations express the relationship between the maximum signal amplitude and its frequency to maintain $\pm 0.5 \mathrm{LSB}$ accuracy. Assuming a

Figure 3. Functional Diagram
sinusoidal signal at IN-, the input voltage is determined by:

$$
v_{I N-}=\left(V_{I N-}\right) \sin (2 \pi \mathrm{ft})
$$

The maximum voltage variation is determined by:

$$
\max \frac{d v_{\text {IN }-}}{d t}=\left(V_{V_{N-}-}\right) 2 \pi f \leq \frac{1 \mathrm{LSB}}{\mathrm{t}_{\mathrm{CONV}}}=\frac{V_{\mathrm{REF}}}{2^{10} \mathrm{t}_{\mathrm{CONV}}}
$$

A $2.6 \mathrm{Vp}-\mathrm{p}, 60 \mathrm{~Hz}$ signal at IN - will generate a $\pm 0.5 \mathrm{LSB}$ error when using a +2.5 V reference voltage and a 2.5μ s conversion time (15 / fSCLK). When a DC reference voltage is used at IN -, connect a $0.1 \mu \mathrm{~F}$ capacitor to GND to minimize noise at the input.
During the acquisition interval, the channel selected as the positive input (IN+) charges capacitor ChOLD. The acquisition interval spans three SCLK cycles and ends on the falling SCLK edge after the input control word's last bit has been entered. At the end of the acquisition interval, the T / H switch opens, retaining charge on CHOLD as a sample of the signal at IN+. The conversion interval begins with the input multiplexer switching Chold from IN+ to IN-. This unbalances node ZERO at the comparator's input. The capacitive DAC adjusts during the remainder of the conversion cycle to restore node ZERO to VDD1/2 within the limits of 10-bit resolution. This action is equivalent to transferring a $12 \mathrm{pF} \times\left[\left(\mathrm{V}_{\mathrm{IN}}+-\mathrm{V}_{\mathrm{IN}}-\right)\right]$ charge from CHOLD to the binaryweighted capacitive DAC, which in turn forms a digital representation of the analog input signal.

Figure 4. Equivalent Input Circuit

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Track/Hold

The T/H enters its tracking mode on the falling clock edge after the fifth bit of the 8 -bit control word has been shifted in. It enters its hold mode on the falling clock edge after the eighth bit of the control word has been shifted in. If the converter is set up for single-ended inputs, IN - is connected to COM and the converter converts the " + " input. If the converter is set up for differential inputs, the difference of $[(1 \mathrm{~N}+)-(\mathrm{IN}-)]$ is converted. At the end of the conversion, the positive input connects back to $\mathrm{IN}+$ and Chold charges to the input signal.
The time required for the T / H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens, and more time must be allowed between conversions. The acquisition time, $t_{A C Q}$, is the maximum time the device takes to acquire the signal and the minimum time needed for the signal to be acquired. It is calculated by the following equation:

$$
t_{A C Q}=7 \times(R s+R I N) \times 12 p F
$$

where RIN $=800 \Omega$, Rs $=$ the source impedance of the
input signal, and $t_{A C Q}$ is never less than 468 ns (MAX1080) or 625ns (MAX1081). Note that source impedances below $4 \mathrm{k} \Omega$ do not significantly affect the ADC's AC performance.

Input Bandwidth

The ADC's input tracking circuitry has a 6 MHz (MAX1080) or 3 MHz (MAX1081) small-signal bandwidth, so it is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, antialias filtering is recommended.

Analog Input Protection

Internal protection diodes, which clamp the analog input to VDD1 and GND, allow the channel input pins to swing from GND - 0.3V to VDD1 +0.3 V without damage. However, for accurate conversions near full scale, the inputs must not exceed VDD1 by more than 50 mV or be lower than GND by 50 mV .
If the analog input exceeds 50 mV beyond the supplies, do not allow the input current to exceed 2 mA .

Table 1. Channel Selection in Single-Ended Mode (SGL/DIF $=1$)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3	CH4	CH5	CH6	CH7
0	0	0	+						COM	
0	0	1			+				-	
0	1	0					+			
0	1	1							-	
1	0	0		+					-	
1	0	1				+			-	
1	1	0					+	-		
1	1	1						-		

Table 2. Channel Selection in Pseudo-Differential Mode (SGL/DIF = 0)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3	CH4	CH5	CH6	CH7
0	0	0	+	-						
0	0	1			+	-				
0	1	0					+	-		
0	1	1								
1	0	0	-	+						
1	0	1			-	+				
1	1	0					-	+		
1	1	1							-	+

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 5. Quick-Look Circuit

Quick Look

To quickly evaluate the MAX1080/MAX1081s' analog performance, use the circuit of Figure 5. The devices require a control byte to be written to DIN before each conversion. Connecting DIN to VDD2 feeds in control bytes of \$FF (HEX), which trigger single-ended unipolar conversions on CH7 without powering down between conversions. The SSTRB output pulses high for one clock period before the MSB of the conversion result is shifted out of DOUT. Varying the analog input to CH 7 will alter the sequence of bits from DOUT. A total of 16 clock cycles is required per conversion. All transitions of the SSTRB and DOUT outputs typically occur 20ns after the rising edge of SCLK.

Starting a Conversion

Start a conversion by clocking a control byte into DIN. With $\overline{\mathrm{CS}}$ low, each rising edge on SCLK clocks a bit from DIN into the MAX1080/MAX1081s' internal shift register. After $\overline{\mathrm{CS}}$ falls, the first arriving logic "1" bit defines the control byte's MSB. Until this first "start" bit arrives, any number of logic " 0 " bits can be clocked into DIN with no effect. Table 3 shows the control-byte format.
The MAX1080/MAX1081 are compatible with SPI/ QSPI and MICROWIRE devices. For SPI, select the correct clock polarity and sampling edge in the SPI control registers: set CPOL $=0$ and CPHA $=0$. MICROWIRE, SPI, and QSPI all transmit a byte and receive a byte at the same time. Using the Typical Operating Circuit, the simplest software interface requires only three 8 -bit
transfers to perform a conversion (one 8-bit transfer to configure the ADC, and two more 8-bit transfers to clock out the conversion result). See Figure 17 for MAX1080/ MAX1081 QSPI connections.

Simple Software Interface

Make sure the CPU's serial interface runs in master mode so the CPU generates the serial clock. Choose a clock frequency from 500 kHz to 6.4 MHz (MAX1080) or 4.8MHz (MAX1081):

1) Set up the control byte and call it TB1. TB1 should be of the format: 1 XXXXXXX binary, where the Xs denote the particular channel, selected conversion mode, and power mode.
2) Use a general-purpose I/O line on the CPU to pull $\overline{\mathrm{CS}}$ low.
3) Transmit TB1 and simultaneously receive a byte and call it RB1. Ignore RB1.
4) Transmit a byte of all zeros (\$00 hex) and simultaneously receive byte RB2.
5) Transmit a byte of all zeros ($\$ 00$ hex) and simultaneously receive byte RB3.
6) Pull $\overline{C S}$ high.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Table 3. Control-Byte Format
$\left.\begin{array}{|lllllll|}\hline \begin{array}{llllll|}\hline \text { BIT 7 } \\ \text { (MSB) }\end{array} & \text { BIT 6 } & \text { BIT 5 } & \text { BIT 4 } & \text { BIT 3 } & \text { BIT 2 } & \text { BIT 1 }\end{array} \quad \begin{array}{l}\text { BIT 0 } \\ \text { (LSB) }\end{array}\right]$

Figure 6 shows the timing for this sequence. Bytes RB2 and RB3 contain the result of the conversion, padded with three leading zeros, two sub-LSB bits, and one trailing zero. The total conversion time is a function of the serial-clock frequency and the amount of idle time between 8-bit transfers. To avoid excessive T/H droop, make sure the total conversion time does not exceed $120 \mu \mathrm{~s}$.

Digital Output

In unipolar input mode, the output is straight binary (Figure 14). For bipolar input mode, the output is two's complement (Figure 15). Data is clocked out on the rising edge of SCLK in MSB-first format.

Serial Clock

The external clock not only shifts data in and out but also drives the analog-to-digital conversion steps. SSTRB pulses high for one clock period after the last bit of the control byte. Successive-approximation bit decisions are made and appear at DOUT on each of the next 12 SCLK rising edges (Figure 6). SSTRB and DOUT go into a high-impedance state when $\overline{\mathrm{CS}}$ goes high; after the next $\overline{\mathrm{CS}}$ falling edge, SSTRB outputs a logic low. Figure 7 shows the detailed serial-interface timings.

The conversion must complete in 120μ s or less, or droop on the sample-and-hold capacitors may degrade conversion results.

Data Framing

The falling edge of $\overline{\mathrm{CS}}$ does not start a conversion. The first logic high clocked into DIN is interpreted as a start bit and defines the first bit of the control byte. A conversion starts on SCLK's falling edge, after the eighth bit of the control byte (the PDO bit) is clocked into DIN. The start bit is defined as follows:

The first high bit clocked into DIN with $\overline{\mathrm{CS}}$ low any time the converter is idle, e.g., after VDD1 and VDD2 are applied.

OR

The first high bit clocked into DIN after bit 4 of a conversion in progress is clocked onto the DOUT pin.
Once a start bit has been recognized, the current conversion may only be terminated by pulling SHDN low.
The fastest the MAX1080/MAX1081 can run with $\overline{\mathrm{CS}}$ held low between conversions is 16 clocks per conversion. Figure 8 shows the serial-interface timing necessary to perform a conversion every 16 SCLK cycles. If $\overline{\mathrm{CS}}$ is tied low and SCLK is continuous, guarantee a start bit by first clocking in 16 zeros.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 6. Single-Conversion Timing

Applications Information

Power-On Reset

When power is first applied, and if SHDN is not pulled low, internal power-on reset circuitry activates the MAX1080/MAX1081 in normal operating mode, ready to convert with SSTRB = low. The MAX1080/MAX1081 require 10μ s to reset after the power supplies stabilize; no conversions should be initiated during this time. If $\overline{\mathrm{CS}}$ is low, the first logical 1 on DIN is interpreted as a start bit. Until a conversion takes place, DOUT shifts out zeros. Additionally, wait for the reference to stabilize when using the internal reference.

Power Modes
You can save power by placing the converter in one of two low-current operating modes or in full power-down between conversions. Select the power mode through bit 1 and bit 0 of the DIN control byte (Tables 3 and 4), or force the converter into hardware shutdown by driving $\overline{\text { SHDN }}$ to GND.
The software power-down modes take effect after the conversion is completed; SHDN overrides any software power mode and immediately stops any conversion in progress. In software power-down mode, the serial interface remains active while waiting for a new control byte to start conversion and switch to full-power mode. Once the conversion is completed, the device goes into the programmed power mode until a new control byte is written.

The power-up delay is dependent on the power-down state. Software low-power modes will be able to start conversion immediately when running at decreased clock rates (see Power-Down Sequencing). During power-on reset, when exiting software full power-down mode, or when exiting hardware shutdown, the device goes immediately into full-power mode and is ready to convert after 2μ s when using an external reference. When using the internal reference, wait for the typical power-up delay from a full power-down (software or hardware) as shown in Figure 9.

Software Power-Down

Software power-down is activated using bits PD1 and PDO of the control byte. When software power-down is asserted, the ADC completes the conversion in progress and powers down into the specified low-qui-escent-current state ($2 \mu \mathrm{~A}, 0.9 \mathrm{~mA}$, or 1.3 mA).
The first logic 1 on DIN is interpreted as a start bit and puts the MAX1080/MAX1081 into its full-power mode. Following the start bit, the data input word or control byte also determines the next power-down state. For example, if the DIN word contains PD1 $=0$ and $\mathrm{PDO}=1$, a 0.9 mA power-down resumes after one conversion. Table 4 details the four power modes with the corresponding supply current and operating sections. For data rates achievable in software power-down modes, see Power-Down Sequencing.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 7. Detailed Serial-Interface Timing
Table 4. Software-Controlled Power Modes

PD1/PDO	MODE		TOTAL SUPPLY CURRENT		CIRCUIT SECTIONS*	
		CONVERTING $(\mathbf{m A})$	AFTER CONVERSION	INPUT COMPARATOR	REFERENCE	
00	Full Power-Down (FULLPD)	2.5	$2 \mu \mathrm{~A}$	Off	Off	
01	Fast Power-Down (FASTPD)	2.5	0.9 mA	Reduced Power	On	
10	Reduced-Power Mode (REDP)	2.5	1.3 mA	Reduced Power	On	
11	Normal Operating	2.5	2.0 mA	Full Power	On	

*Circuit operation between conversions; during conversion all circuits are fully powered up.

Hardware Power-Down
Pulling $\overline{\text { SHDN }}$ low places the converter in hardware power-down. Unlike software power-down mode, the conversion is terminated immediately. When returning to normal operation from SHDN with an external reference, the MAX1080/MAX1081 can be considered fully powered up within $2 \mu \mathrm{~s}$ of actively pulling SHDN high. When using the internal reference, the conversion should be initiated only after the reference has settled; its recovery time is dependent on the external bypass capacitors and shutdown duration.

Power-Down Sequencing

The MAX1080/MAX1081 automatic power-down modes can save considerable power when operating at less than maximum sample rates. Figures 10 and 11 show
the average supply current as a function of the sampling rate.

Using Full Power-Down Mode Full power-down mode (FULLPD) achieves the lowest power consumption, up to 1000 conversions per channel per second. Figure 10a shows the MAX1081's power consumption for one- or eight-channel conversions utilizing full power-down mode (PD1 $=$ PD0 $=0$), with the internal reference and the maximum clock speed. A $0.01 \mu \mathrm{~F}$ bypass capacitor at REFADJ forms an RC filter with the internal $17 \mathrm{k} \Omega$ reference resistor, with a $200 \mu s$ time constant. To achieve full 10-bit accuracy, seven time constants or 1.4 ms are required after power-up if the bypass capacitor is fully discharged between conversions. Waiting this 1.4 ms duration in

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 8. Continuous 16-Clock/Conversion Timing

Figure 9. Reference Power-Up Delay vs. Time in Shutdown

Figure 10a. Average Supply Current vs. Sampling Rate (sps) Using FULLPD and Internal Reference

Figure 10b. Average Supply Current vs. Sampling Rate (sps) Using FULLPD and External Reference

Figure 11. Average Supply Current vs. Sampling Rate (sps) Using FASTPD, REDP, Normal Operation, and Internal Reference

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

fast power-down (FASTPD) or reduced-power (REDP) mode instead of in full power-up can further reduce power consumption. This is achieved by using the sequence shown in Figure 12a.
Figure 10b shows the MAX1081's power consumption for one- or eight-channel conversions utilizing FULLPD mode (PD1 = PD0 $=0$), an external reference, and the maximum clock speed. One dummy conversion to power up the device is needed, but no wait time is necessary to start the second conversion, thereby achieving lower power consumption at up to half the full sampling rate.

Using Fast Power-Down and Reduced Power Modes

 FASTPD and REDP modes achieve the lowest power consumption at speeds close to the maximum sampling rate. Figure 11 shows the MAX1081's power consumption in FASTPD mode (PD1 = 0, PD0 = 1), REDP mode (PD1 = 1, PD0 $=0$), and for comparison, normal operating mode (PD1 = 1, PD0 = 1). The figure shows power consumption using the specified power-down mode, with the internal reference and conversion con-trolled at the maximum clock speed. The clock speed in FASTPD or REDP should be limited to 4.8 MHz for the MAX1080/MAX1081. FULLPD mode may provide increased power savings in applications where the MAX1080/MAX1081 are inactive for long periods of time, but intermittent bursts of high-speed conversions are required. Figure 12b shows FASTPD and REDP timing.

Internal and External References
The MAX1080/MAX1081 can be used with an internal or external reference. An external reference can be connected directly at REF or at the REFADJ pin.
An internal buffer is designed to provide 2.5 V at REF for the MAX1080/MAX1081. The internally trimmed 1.22 V reference is buffered with a $2.05 \mathrm{~V} / \mathrm{V}$ gain.

Internal Reference
The MAX1080/MAX1081s' full-scale range with the internal reference is 2.5 V with unipolar inputs and $\pm 1.25 \mathrm{~V}$ with bipolar inputs. The internal reference voltage is adjustable by $\pm 100 \mathrm{mV}$ with the circuit in Figure 13.

Figure 12a. Full Power-Down Timing

REF $\quad 2.5 \mathrm{~V}$ (ALWAYS ON)

Figure 12b. FASTPD and REDP Timing

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 13. MAX1081 Reference-Adjust Circuit

Figure 14. Unipolar Transfer Function, Full Scale (FS) $=V_{\text {REF }}$ $+V_{C O M}$, Zero Scale (ZS) $=$ VCOM

External Reference

An external reference can be placed at the input (REFADJ) or the output (REF) of the internal referencebuffer amplifier. The REFADJ input impedance is typically $17 \mathrm{k} \Omega$. At REF, the DC input resistance is a minimum of $18 \mathrm{k} \Omega$. During conversion, an external reference at REF must deliver up to $350 \mu \mathrm{~A}$ DC load current and have 10Ω or less output impedance. If the reference has a higher output impedance or is noisy, bypass it close to the REF pin with a $4.7 \mu \mathrm{~F}$ capacitor.
Using the REFADJ input makes buffering the external reference unnecessary. To use the direct REF input, disable the internal buffer by connecting REFADJ to VDD1.

${ }^{*} V_{\text {com }} \geq V_{\text {Ref }} / 2$
Figure 15. Bipolar Transfer Function, Full Scale (FS) =
$V_{\text {REF }} / 2+V_{C O M}$, Zero Scale $(Z S)=V_{C O M}$

Transfer Function

Table 5 shows the full-scale voltage ranges for unipolar and bipolar modes. Figure 14 depicts the nominal, unipolar input/output (I/O) transfer function, and Figure 15 shows the bipolar I/O transfer function. Code transitions occur halfway between successive-integer LSB values. Output coding is binary, with $1 \mathrm{LSB}=2.44 \mathrm{mV}$ for unipolar and bipolar operation.

Layout, Grounding, and Bypassing

For best performance, use PC boards; wire-wrap boards are not recommended. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package.
Figure 16 shows the recommended system ground connections. Establish a single-point analog ground (star ground point) at GND. Connect all other analog grounds to the star ground. Connect the digital system ground to this ground only at this point. For lowestnoise operation, the ground return to the star ground's power supply should be low impedance and as short as possible.
High-frequency noise in the VDD1 power supply may affect the high-speed comparator in the ADC. Bypass the supply to the star ground with $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors close to pin 20 of the MAX1080/MAX1081.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Table 5. Full Scale and Zero Scale

UNIPOLAR MODE		BIPOLAR MODE		
Full Scale	Zero Scale	Positive Full Scale	Zero Scale	Negative Full Scale
VREF + VCOM	VCOM	$V_{\text {REF }} / 2$ $+V_{C O M}$	VCOM	$-V_{\text {REF }} / 2$ $+V_{\text {COM }}$

Figure 16. Power-Supply Grounding Connection
Minimize capacitor lead lengths for best supply-noise rejection. If the power supply is very noisy, a 10Ω resistor can be connected as a lowpass filter (Figure 16).

High-Speed Digital Interfacing with QSPI The MAX1080/MAX1081 can interface with QSPI using the circuit in Figure 17 (fSCLK $=4.0 \mathrm{MHz}, \mathrm{CPOL}=0$, $C P H A=0$). This QSPI circuit can be programmed to do a conversion on each of the eight channels. The result is stored in memory without taxing the CPU, since QSPI incorporates its own microsequencer.

TMS320LC3x Interface
Figure 18 shows an application circuit to interface the MAX1080/MAX1081 to the TMS320 in external clock mode. Figure 19 shows the timing diagram for this interface circuit.
Use the following steps to initiate a conversion in the MAX1080/MAX1081 and to read the results:

1) The TMS320 should be configured with CLKX (trans-
mit clock) as an active-high output clock and CLKR (TMS320 receive clock) as an active-high input clock. CLKX and CLKR on the TMS320 are connected to the MAX1080/MAX1081's SCLK input.
2) The MAX1080/MAX1081's $\overline{C S}$ pin is driven low by the TMS320's XF_ I/O port to enable data to be clocked into the MAX1080/MAX1081s' DIN pin.
3) An 8-bit word (1XXXXX11) should be written to the MAX1080/MAX1081 to initiate a conversion and place the device into normal operating mode. See Table 3 to select the proper XXXXX bit values for your specific application.
4) The MAX1080/MAX1081s' SSTRB output is monitored through the TMS320's FSR input. A falling edge on the SSTRB output indicates that the conversion is in progress and data is ready to be received from the device.
5) The TMS320 reads in 1 data bit on each of the next 16 rising edges of SCLK. These data bits represent the $10+2$-bit conversion result followed by 4 trailing bits, which should be ignored.
6) Pull $\overline{\mathrm{CS}}$ high to disable the MAX1080/MAX1081 until the next conversion is initiated.

Definitions

Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values from a straight line on an actual transfer function. This straight line can be a best-straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1080/MAX1081 are measured using the best-straight-line fit method.

Differential Nonlinearity Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1LSB. A DNL error specification of less than 1LSB guarantees no missing codes and a monotonic transfer function.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 17. QSPI Connections

Figure 18. MAX1080/MAX1081-to-TMS320 Serial Interface

Aperture Width

Aperture width (tAW) is the time the T / H circuit requires to disconnect the hold capacitor from the input circuit (for instance, to turn off the sampling bridge and put the T / H unit in hold mode).

Aperture Jitter
Aperture jitter (taJ) is the sample-to-sample variation in the time between the samples.

Aperture Delay
Aperture delay (t_{AD}) is the time defined between the rising edge of the sampling clock and the instant when an actual sample is taken.

Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital samples, the SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused only by quantization error and results directly from the ADC's resolution (N bits):

$$
S N R=(6.02 \times N+1.76) \mathrm{dB}
$$

In reality, there are other noise sources besides quantization noise, including thermal noise, reference noise, clock jitter, etc. Therefore, SNR is calculated by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Figure 19. MAX1080/MAX1081-to-TMS320 Serial Interface

Signal-to-Noise Plus Distortion (SINAD)
SINAD is the ratio of the fundamental input frequency's RMS amplitude to RMS equivalent of all other ADC output signals:

$$
\text { SINAD (dB) }=20 \times \log (\text { SignalRMS / Noiserms) }
$$

Effective Number of Bits (ENOB)
ENOB indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists only of quantization noise. With an input range equal to the ADC's full-scale range, calculate ENOB as follows:

$$
\text { ENOB }=(\text { SINAD - 1.76) / } 6.02
$$

Total Harmonic Distortion (THD)
THD is the ratio of the RMS sum of the input signal's first five harmonics to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \frac{\left(\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{4}^{2}+V_{5}^{2}}\right)}{V_{1}}
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{5} are the amplitudes of the 2nd-through 5th-order harmonics.

Spurious-Free Dynamic Range (SFDR) SFDR is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest distortion component.

_Ordering Information (continued)

PART	TEMP. RANGE	PIN- PACKAGE	INL (LSB)
MAX1080BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	± 1
MAX1081ACUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	$\pm 1 / 2$
MAX1081BCUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP	± 1
MAX1081AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	$\pm 1 / 2$
MAX1081BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	± 1

Typical Operating Circuit

Chip Information
TRANSISTOR COUNT: 4286
PROCESS: BiCMOS

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

Note: The MAX1080/MAX1081 do not have an exposed die pad.

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP3202T-CI/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN LTC1605IG LTC2238IUH LTC1418AIG LTC1605ACG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW MCP3422A0-E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1 ADS7955QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3422A0-E/MC AD9220AR MAX11212AEUB+ MAX11135ATI $+\underline{\text { TLV1570CDW TLC3574IDWR TLC0838CDWR AD7914BRUZ-REEL7 AD977ABRZ ADC101S021CIMFX/NOPB }}$ $\underline{\text { ADC12130CIWM/NOPB MAX11626EEE }+~ M A X 11136 A T I+~ M C P 3426 A 1-E M C ~}$

