Single-Supply, Low-Power, Serial 8-Bit ADCs

General Description

The MAX1115/MAX1116 low-power, 8-bit, analog-todigital converters (ADCs) feature an internal track/hold (T/H), voltage reference, VDD monitor, clock, and serial interface. The MAX1115 is specified from +2.7 V to +5.5 V , and the MAX1116 is specified from +4.5 V to +5.5 V . Both parts consume only $175 \mu \mathrm{~A}$ at 100 ksps .
The full-scale analog input range is determined by the internal reference of +2.048 V (MAX1115) or +4.096 V (MAX1116). The MAX1115/MAX1116 also feature AutoShutdown ${ }^{\text {TM }}$ power-down mode which reduces power consumption to $<1 \mu \mathrm{~A}$ when the device is not in use. The 3-wire serial interface directly connects to SPITM ${ }^{\text {TM }}$ QSPI ${ }^{\text {TM }}$, and MICROWIRE ${ }^{\text {TM }}$ devices without external logic. Conversions up to 100ksps are performed using an internal clock.
The MAX1115/MAX1116 are available in an 8-pin SOT23 package with a footprint that is just 30% of an 8 -pin SO.

Applications
Low-Power, Hand-Held Portable Devices
System Diagnostics
Battery-Powered Test Equipment
Receive-Signal-Strength Indicators
4 mA to 20 mA Powered Remote Data-Acquisition Systems

Single Supply
$\quad+2.7 \mathrm{~V}$ to +3.6 V (MAX1115)
+4.5 V to +5.5 V (MAX1116)

- Input Voltage Range: 0 to $V_{\text {REF }}$
- Internal Track/Hold; 100kHz Sampling Rate
- Internal Reference
+2.048 V (MAX1115)
+4.096V (MAX1116)
- SPI/QSPI/MICROWIRE-Compatible Serial Interface
- Small 8-Pin SOT23 Package
- Automatic Power-Down
- Low Power
$175 \mu \mathrm{~A}$ at 100 ksps
$18 \mu \mathrm{~A}$ at +3 V and 10 ksps
$1 \mu \mathrm{~A}$ in Power-Down Mode

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX1115EKA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23	AADU
MAX1116EKA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT 23	AADV

Pin Configuration

Single-Supply, Low-Power, Serial 8-Bit ADCs

ABSOLUTE MAXIMUM RATINGS
VDD to GND
\qquad
...
-0.3 V to +6.0 V
CHO to GND
-0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Digital Output to GND
.-0.3V to (VDD +0.3 V)
Digital Input to GND
\qquad
. -0.3 V to +6.0 V
Maximum Current into Any Pin ... $\pm 50 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin SOT23 (derate $8.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 714 mW

Operating Temperature Range
MAX111_EKA .. ${ }^{\circ} \mathrm{C}$
Junction Temperature.................................... $+300^{\circ} \mathrm{C}$
Storage Temperature Range

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to +3.6 V (MAX1115), $\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}$ to +5.5 V (MAX1116), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

Single-Supply, Low-Power, Serial 8-Bit ADCs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}(\mathrm{MAX1115}), \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}$ to +5.5 V (MAX1116), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Supply Rejection Ratio	PSRR	Full-scale or zero input	± 0.5	± 1	LSB/V
DIGITAL INPUTS (CNVST AND SCLK)					
Input High Voltage	V_{IH}		2		V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			0.8	V
Input Hystersis	V HYST		0.2		V
Input Current High	IIH			± 10	$\mu \mathrm{A}$
Input Current Low	IIL			± 10	$\mu \mathrm{A}$
Input Capacitance	CIN		2		pF
DIGITAL OUTPUT (DOUT)					
Output High Voltage	VOH	ISOURCE $=2 \mathrm{~mA}$	VDD - 0.5		V
Output Low Voltage	VoL	ISINK $=2 \mathrm{~mA}$		0.4	V
		ISINK $=4 \mathrm{~mA}$		0.8	
Three-State Leakage Current	IL		± 0.01	± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout		4		pF
TIMING CHARACTERISTICS (Figures 6a-6d)					
CNVST High Time	$\mathrm{t}_{\text {csh }}$		100		ns
CNVST Low Time	$\mathrm{t}_{\text {cs }}$		100		ns
Conversion Time	tconv			7.5	$\mu \mathrm{s}$
Serial Clock High Time	$\mathrm{t}_{\text {ch }}$		75		ns
Serial Clock Low Time	t_{cl}		75		ns
Serial Clock Period	t_{cp}		200		ns
Falling of CNVST to DOUT Active	$\mathrm{t}_{\text {csd }}$	CLOAD $=100 \mathrm{pF}$, Figure 1		100	ns
Serial Clock Falling Edge to DOUT	$t_{c d}$	CLOAD $=100 \mathrm{pF}$	10	100	ns
Serial Clock Rising Edge To DOUT High-Z	tchz	CLOAD $=100 \mathrm{pF}$, Figure 2	100	500	ns
Last Serial Clock to Next CNVST (successive conversions on CHO)	tccs		50		ns

Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range and offset have been calibrated.
Note 2: Input $=0$, with logic input levels of 0 and $V_{D D}$.

Single-Supply, Low-Power, Serial 8-Bit ADCs

$\left(V_{D D}=+3 V(M A X 1115), V_{D D}=+5 V(M A X 1116), f_{S C u}=5 M H z, f_{\text {sample }}=100 \mathrm{ksps}, C_{\text {LOAD }}=100 \mathrm{pF}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Single-Supply, Low-Power, Serial 8-Bit ADCs

Typical Operating Characteristics (continued)

$\left(V_{D D}=+3 V(M A X 1115), V_{D D}=+5 V(M A X 1116), f_{S C u}=5 M H z, f_{\text {sample }}=100 \mathrm{ksps}, C_{\text {LOAD }}=100 \mathrm{pF}, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

GAIN ERROR
vs. TEMPERATURE

OFFSET ERROR vs. SUPPLY VOLTAGE

MAX1115
REFERENCE VOLTAGE
vs. NUMBER OF PIECES

FFT PLOT

OFFSET ERROR vs. TEMPERATURE

MAX1116
REFERENCE VOLTAGE
vs. NUMBER OF PIECES

Single-Supply, Low-Power, Serial 8-Bit ADCs

PIN		
1	NAME	
2	VDD	Positive Supply Voltage
3,5	I.C.	Internally Connected. Connect to ground.
4	GND	Ground
6	CNVST	Convert/Start Input. CNVST initiates a power-up and starts a conversion on its falling edge.
7	DOUT	Serial Data Output. Data is clocked out on the falling edge of SCLK. DOUT goes low at the start of a conversion and presents the MSB at the completion of a conversion. DOUT goes high impedance once data has been fully clocked out.
8	SCLK	Serial Clock. Used for clocking out data on DOUT.

Figure 1. Load Circuits for Enable Time

Detailed Description

The MAX1115/MAX1116 ADCs use a successiveapproximation conversion technique and input track/hold (T/H) circuitry to convert an analog signal to an 8-bit digital output. The SPI/QSPI/MICROWIREcompatible interface directly connects to microprocessors ($\mu \mathrm{Ps}$) without additional circuitry (Figure 3).

Track/Hold

The input architecture of the ADC is illustrated in the equivalent-input circuit shown in Figure 4 and is composed of the T / H, input multiplexer, input comparator, switched capacitor DAC, and auto-zero rail.
The acquisition interval begins with the falling edge of CNVST. During the acquisition interval, the analog input (CHO) is connected to the hold capacitor (CHOLD). Once the acquisition is complete, the T/H switch opens and CHOLD is connected to GND, which retains the charge on CHOLD as a sample of the signal at the analog input.

Figure 2. Load Circuits for Disable Time
Sufficiently low source impedance is required to ensure an accurate sample. A source impedance of $<1.5 \mathrm{k} \Omega$ is recommended for accurate sample settling. A 100pF capacitor at the ADC inputs also improves the accuracy of an input sample.

Conversion Process

 The MAX1115/MAX1116 conversion process is internally timed. The total acquisition and conversion process takes $<7.5 \mu$ s. Once an input sample has been acquired, the comparator's negative input is then connected to an auto-zero supply. Since the device requires only a single supply, the negative input of the comparator is set to equal $V_{D D} / 2$. The capacitive DAC restores the positive input to $\mathrm{V}_{\mathrm{DD}} / 2$ within the limits of 8bit resolution. This action is equivalent to transferring a charge $Q_{I N}=16 p F \times V_{I N}$ from CHOLD to the binaryweighted capacitive DAC, which forms a digital representation of the analog-input signal.
Single－Supply，Low－Power，Serial 8－Bit ADCs

Figure 3．Typical Operating Circuit

Input Voltage Range
Internal protection diodes that clamp the analog input to V_{DD} and GND allow the input pin (CHO) to swing from（GND－0．3V）to（VDD +0.3 V ）without damage． However，for accurate conversions，the inputs must not exceed（VDD +50 mV ）or be less than（GND -50 mV ）．

Input Bandwidth
The ADC＇s input tracking circuitry has a 4 MHz small－ signal bandwidth，so it is possible to digitize high－ speed transient events and measure periodic signals with bandwidths exceeding the ADC＇s sampling rate by using undersampling techniques．Anti－alias filtering is recommended to avoid high－frequency signals being aliased into the frequency band of interest．

Serial Interface

The MAX1115／MAX1116 have a 3－wire serial interface． The CNVST and SCLK inputs are used to control the device，while the three－state DOUT pin is used to access the conversion results．
The serial interface provides connection to microcon－ trollers（ $\mu \mathrm{Cs}$ ）with SPI，QSPI，and MICROWIRE serial interfaces at clock rates up to 5 MHz ．The interface sup－ ports either an idle high or low SCLK format．For SPI and QSPI，set CPOL $=\mathrm{CPHA}=0$ or $\mathrm{CPOL}=\mathrm{CPHA}=1$ in the SPI control registers of the $\mu \mathrm{C}$ ．Figure 5 shows the MAX1115／MAX1116 common serial－interface con－ nections．See Figures $6 a-6 d$ for details on the serial－ interface timing and protocol．

Figure 4．Equivalent Input Circuit

Figure 5．Common Serial－Interface Connections

Single-Supply, Low-Power, Serial 8-Bit ADCs

Figure 6a. Conversion and Interface Timing, Conversion on CHO with SCLK Idle Low

Figure 6b. Conversion and Interface Timing, Conversion on CHO with SCLK Idle High

Digital Inputs and Outputs
The MAX1115/MAX1116 perform conversions by using an internal clock. This frees the $\mu \mathrm{P}$ from the burden of running the SAR conversion clock, and allows the conversion results to be read back at the μ P's convenience at any clock rate up to 5 MHz .

The acquisition interval begins with the falling edge of CNVST. CNVST can idle between conversions in either a high or low state. If idled in a low state, CNVST must be brought high for at least 50 ns, then brought low to initiate a conversion. To select $\mathrm{V}_{\mathrm{DD}} / 2$ for conversion, the CNVST pin must be brought high and low for a second time (Figures 6c and 6d).

Single－Supply，Low－Power，Serial 8－Bit ADCs

Figure 6c．Conversion and Interface Timing，Conversion on VDD／ 2 with SCLK Idle Low

Figure 6d．Conversion and Interface Timing，Conversion on VDD／ 2 with SCLK Idle High

After CNVST is brought low，allow $7.5 \mu \mathrm{~s}$ for the conver－ sion to be completed．While the internal conversion is in progress，DOUT is low．The MSB is present at the DOUT pin immediately after conversion is completed． The conversion result is clocked out at the DOUT pin and is coded in straight binary（Figure 7）．Data is clocked out at SCLK＇s falling edge in MSB－first format
at rates up to 5 MHz ．Once all data bits are clocked out， DOUT goes high impedance（100ns to 500ns after the rising edge）of the eighth SCLK pulse．
SCLK is ignored during the conversion process．Only after a conversion is complete will SCLK cause serial data to be output．Falling edges on CNVST during an

Single-Supply, Low-Power, Serial 8-Bit ADCs

Figure 7. Input/Output Transfer Function
active conversion process interrupt the current conversion and cause the input multiplexer to switch to VDD/2. To reinitiate a conversion on CHO , it is necessary to allow for a conversion to be complete and all of the data to be read out. Once a conversion has been completed, the MAX1115/MAX1116 goes into Autoshutdown mode (typically $<1 \mu \mathrm{~A}$) until the next conversion is initiated.

Applications Information

Power-On Reset
When power is first applied, the MAX1115/MAX1116 are in AutoShutdown (typically $<1 \mu \mathrm{~A}$). A conversion can be started by toggling CNVST high to low. Powering up the MAX1115/MAX1116 with CNVST low does not start a conversion.

AutoShutdown and Supply Current Requirements

The MAX1115/MAX1116 are designed to automatically shutdown once a conversion is complete, without any external control. An input sample and conversion process typically takes $5 \mu \mathrm{~s}$ to complete, during which time the supply current to the analog sections of the device are fully on. All analog circuitry is shutdown after a conversion completes, which results in a supply current of $<1 \mu \mathrm{~A}$ (see Shutdown Current vs. Supply Voltage plot in the Typical Operating Characteristics section). The digital conversion result is maintained in a static register and is available for access through the serial interface at any time.

Figure 8. Power-Supply Connections
The power consumption consequence of this architecture is dramatic when relatively slow conversion rates are needed. For example, at a conversion rate of 10ksps, the average supply current for the MAX1115 is $15 \mu \mathrm{~A}$, while at 1 ksps it drops to $15 \mu \mathrm{~A}$. At 0.1 ksps it is just $0.3 \mu \mathrm{~A}$, or a miniscule $1 \mu \mathrm{~W}$ of power consumption (see Average Supply Current vs. Conversion Rate plot in the Typical Operating Characteristics sections).

Transfer Function

Figure 7 depicts the input/output transfer function. Output coding is binary with a +2.048 V reference, $1 \mathrm{LSB}=8 \mathrm{mV}(\mathrm{VREF} / 256)$.

Layout, Grounding, and Bypassing
For best performance, board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another or run digital lines underneath the ADC package.
Figure 8 shows the recommended system-ground connections. A single-point analog ground (star-ground point) should be established at the ADC ground. Connect all analog grounds to the star-ground. The ground-return to the power supply for the star ground should be low impedance and as short as possible for noise-free operation.
High-frequency noise in the VDD power supply can affect the comparator in the ADC. Bypass the supply to the star ground with a $0.1 \mu \mathrm{~F}$ capacitor close to the VDD pin of the MAX1115/MAX1116. Minimize capacitor lead

Single-Supply, Low-Power, Serial 8-Bit ADCs

Functional Diagram

lengths for best supply-noise rejection. If the power supply is noisy, a $0.1 \mu \mathrm{~F}$ capacitor in conjunction with a 10Ω series resistor can be connected to form a lowpass filter.

Chip Information

TRANSISTOR COUNT: 2000
PROCESS: BiCMOS

Single-Supply, Low-Power, Serial 8-Bit ADCs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP3202T-CI/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN
LTC1605IG LTC2238IUH LTC1418AIG LTC1605ACG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW
MCP3422A0-E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW
NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1
ADS7955QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3422A0-E/MC AD9220AR MAX11212AEUB+
TLV1570CDW TLC3574IDWR TLC1542IDWR TLC0838CDWR AD7914BRUZ-REEL7 AD977ABRZ ADC12130CIWM/NOPB
MCP3426A1-EMC MCP3426A0-EMC AD7192BRUZ-REEL AD7193BRUZ-REEL

