+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 μ A Power-Down

General Description

The MAX113/MAX117 are microprocessor-compatible, 8-bit, 4-channel and 8-channel analog-to-digital converters (ADCs). They operate from a single +3 V supply and use a half-flash technique to achieve a 1.8μ s conversion time (400ksps). A power-down pin (PWRDN) reduces current consumption to $1 \mu \mathrm{~A}$ typical. The devices return from power-down mode to normal operating mode in less than 900 ns , allowing large supplycurrent reductions in burst-mode applications. (In burst mode, the ADC wakes up from a low-power state at specified intervals to sample the analog input signals.) Both converters include a track/hold, enabling the ADC to digitize fast analog signals.
Microprocessor ($\mu \mathrm{P}$) interfaces are simplified because the ADC can appear as a memory location or I/O port without external interface logic. The data outputs use latched, three-state buffer circuitry for direct connection to an 8-bit parallel $\mu \mathrm{P}$ data bus or system input port. The MAX113/MAX117 input/reference configuration enables ratiometric operation.
The 4-channel MAX113 is available in a 24-pin DIP or SSOP. The 8-channel MAX117 is available in a 28 -pin DIP or SSOP. For +5 V applications, refer to the MAX114/MAX118 data sheet.

Applications

Battery-Powered Systems
System-Health Monitoring
Communications Systems

Portable Equipment
Remote Data Acquisition

- +3.0V to +3.6V Single-Supply Operation
- 4 (MAX113) or 8 (MAX117) Analog Input Channels
- Low Power: 1.5mA (operating mode)
- Total Unadjusted Error ≤ 1 LSB
- Fast Conversion Time: 1.8 μ s per Channel
- No External Clock Required
- Internal Track/Hold
- Ratiometric Reference Inputs
- Internally Connected 8th Channel Monitors Reference Voltage (MAX117)

PART	TEMP. RANGE	PIN-PACKAGE
MAX113CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX113CAG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 SSOP
MAX113C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX113ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX113EAG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP
MAX113MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow CERDIP**

Ordering Information continued at end of data sheet.
${ }^{*}$ Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}, D C$ parameters only.
**Contact factory for availability.
Pin Configuration appears at end of data sheet.
$1 \mu \mathrm{~A}$ (power-down mode)

Ordering Information
Features

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

ABSOLUTE MAXIMUM RATINGS

VDD to GND .. 0.3 V to +7 V
Digital Input Voltage to GND................$-0.3 V ~ t o ~(V D D ~$

28 Wide Plastic DIP
(derate $14.29 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)1.14W
28 SSOP (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................. 762 mW
28 Wide CERDIP (derate $16.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 1.33 W
Operating Temperature Ranges
MAX113C_G/MAX117C_I $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX113E_G/MAX117E_I. \qquad 40°

MAX113MRG/MAX117M $\quad-55^{\circ} \mathrm{C}$ to
Storage Temperature Range .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}\right.$ to +3.6 V, REF $+=3 \mathrm{~V}$, REF- $=\mathrm{GND}$, Read Mode (MODE $=\mathrm{GND}$), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ACCURACY (Note 1)						
Resolution	N		8			Bits
Total Unadjusted Error	TUE				± 1	LSB
Differential Nonlinearity	DNL	No-missing-codes guaranteed			± 1	LSB
Zero-Code Error					± 1	LSB
Full-Scale Error					± 1	LSB
Channel-to-Channel Mismatch					$\pm 1 / 4$	LSB
DYNAMIC PERFORMANCE						
Signal-to-Noise Plus Distortion Ratio	SINAD	MAX11_C/E, fSAMPLE $=400 \mathrm{kHz}$, fin $=30.273 \mathrm{kHz}$	45			dB
		MAX11_M, fSAMPLE $=340 \mathrm{kHz}$, f IN $=30.725 \mathrm{kHz}$	45			
Total Harmonic Distortion	THD	MAX11_C/E, fSAMPLE $=400 \mathrm{kHz}, \mathrm{fIN}=30.273 \mathrm{kHz}$			-50	dB
		MAX11_M, fSAMPLE $=340 \mathrm{kHz}$, f IN $=30.725 \mathrm{kHz}$			-50	
Spurious-Free Dynamic Range	SFDR	MAX11_C/E, fSAMPLE $=400 \mathrm{kHz}$, fin $=30.273 \mathrm{kHz}$	50			dB
		MAX11_M, fSAMPLE $=340 \mathrm{kHz}, \mathrm{f} \mathrm{IN}=30.725 \mathrm{kHz}$	50			
Input Full-Power Bandwidth		$\mathrm{VIN}_{\text {_ }}=3 \mathrm{Vp}-\mathrm{p}$		0.3		MHz
Input Slew Rate, Tracking			0.28	0.5		V/ $/ \mathrm{s}$
ANALOG INPUT						
Input Voltage Range	VIN_		VREF-		VREF+	V
Input Leakage Current	IIN_	GND < VIN_ < V ${ }_{\text {DD }}$			± 3	$\mu \mathrm{A}$
Input Capacitance	CIN_			32		pF
REFERENCE INPUT						
Reference Resistance	RREF		1	2	4	k Ω
REF+ Input Voltage Range			VREF-		VDD	V
REF- Input Voltage Range			GND		VREF+	V

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V} D \mathrm{D}=+3 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{REF}+=3 \mathrm{~V}$, REF- $=$ GND, Read Mode (MODE $=\mathrm{GND}$), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
LOGIC INPUTS						
Input High Voltage	VINH	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{PW} R \mathrm{DN}}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$		2 2.4		V
		MODE				
Input Low Voltage	VINL	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{PW} R \mathrm{DN}}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$			0.66	V
		MODE			0.8	
Input High Current	linh	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{PW} R \mathrm{DN}}, \mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$			± 1	$\mu \mathrm{A}$
		$\overline{\mathrm{WR}}$			± 3	
		MODE		15	100	
Input Low Current	IINL	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\text { PWRDN, }}$, MODE, A0, A1, A2			± 1	$\mu \mathrm{A}$
Input Capacitance (Note 2)	CIN	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{PWRDN}}, \mathrm{MODE}, \mathrm{A} 0, \mathrm{~A} 1, ~ A 2$		5	8	pF
LOGIC OUTPUTS						
Output Low Voltage	VOL	ISINK $=20 \mu \mathrm{~A}, \overline{\mathrm{INT}}, \mathrm{D} 0-\mathrm{D7}$			0.1	V
		ISINK $=400 \mu \mathrm{~A}, \overline{\text { INT, }}$, D0-D7			0.4	
		RDY, ISINK = 1mA			0.4	
Output High Voltage	VOH	ISOURCE $=20 \mu \mathrm{~A}, \overline{\mathrm{INT}}$, D0-D7		VDD -0.1		V
		ISOURCE $=400 \mu \mathrm{~A}, \overline{\mathrm{INT}}, \mathrm{D} 0-\mathrm{D7}$		VDD - 0.4		
Three-State Current	ILKG	D0-D7, RDY, digital outputs = 0V to VDD			± 3	$\mu \mathrm{A}$
Three-State Capacitance (Note 2)	Cout	D0-D7, RDY		5	8	pF
POWER REQUIREMENTS						
Supply Voltage	VDD			3.0	3.6	V
VDD Supply Current	IDD	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0 \mathrm{~V}$,	MAX11_C	2.5	5	mA
		$\overline{\text { PWRDN }}=\mathrm{V}_{\text {DD }}$	MAX11_E/M	2.5	6	
		$\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V}, \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0 \mathrm{~V}, \\ & \mathrm{PWRDN}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	MAX11_C	1.5	3	
			MAX11_E/M	1.5	3.5	
Power-Down VDD Current		$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{PWRDN}}=0 \mathrm{~V}$ (Note 3)		1	10	$\mu \mathrm{A}$
Power-Supply Rejection	PSR	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6V, V REF $=3.0 \mathrm{~V}$		$\pm 1 / 16$	$\pm 1 / 4$	LSB

Note 1: Accuracy measurements performed at $\mathrm{V}_{D D}=+3.0 \mathrm{~V}$. Operation over supply range is guaranteed by power-supply rejection test.
Note 2: Guaranteed by design.
Note 3: Power-down current increases if logic inputs are not driven to GND or VDD.

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

TIMING CHARACTERISTICS

$\left(V_{D D}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ALL GRADES			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				UNITS
						MAX117C/E		MAX117M		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Conversion Time (WR-RD Mode)	tcwr	$\begin{aligned} & \text { tRD < tINTL, CL = 100pF } \\ & \text { (Note 5) } \end{aligned}$			1.8		2.06		2.4	$\mu \mathrm{s}$
Conversion Time (RD Mode)	tCRD				2.0		2.4		2.6	$\mu \mathrm{s}$
Power-Up Time	tup				0.9		1.2		1.4	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Setup Time	tcss		0			0		0		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Hold Time	tcSH		0			0		0		ns
$\overline{\mathrm{CS}}$ to RDY Delay	tRDY	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=5.1 \mathrm{k} \Omega \text { to } V_{D D} \end{aligned}$			100		120		140	ns
Data Access Time (RD Mode)	tacco	$C \mathrm{~L}=100 \mathrm{pF}$ (Note 5)			$\begin{gathered} \text { tCRD + } \\ 100 \end{gathered}$		$\begin{gathered} \mathrm{t}_{\mathrm{CRD}}+ \\ 130 \end{gathered}$		$\begin{gathered} \mathrm{t}_{\mathrm{CRD}}+ \\ 150 \end{gathered}$	ns
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{NT}}$ Delay (RD Mode)	tinth	$C \mathrm{~L}=50 \mathrm{pF}$		100	160		170		180	ns
Data Hold Time	tDH	(Note 6)			100		130		150	ns
Minimum Acquisition Time	$\mathrm{t}_{\text {ACQ }}$	(Note 7)	450			600		700		ns
$\overline{\text { WR Pulse Width }}$	twR		0.6		10	0.66	10	0.8	10	$\mu \mathrm{s}$
Delay Between $\overline{W R}$ and RD Pulses	tRD		0.8			0.9		1.0		$\mu \mathrm{s}$
$\overline{\mathrm{RD}}$ Pulse Width (WR-RD Mode)	tread 1	```tRD < tINTL, determined by tACC1```	400			500		600		ns
Data Access Time (WR-RD Mode)	tacc1	$\begin{aligned} & \mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INTL}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { (Note 5) } \end{aligned}$			400		500		600	ns
$\overline{\mathrm{RD}}$ to INT Delay	tRI				300		340		400	ns
$\overline{\text { WR }}$ to INT Delay	tINTL	$\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$		0.7	1.45		1.6		1.8	$\mu \mathrm{s}$
$\overline{\overline{R D}}$ Pulse Width (WR-RD Mode)	tread2	```tRD > tINTL, determined by tACC2```	180			220		250		ns
Data Access Time (WR-RD Mode)	tacc2	$\begin{aligned} & \text { tRD > tiNTL, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { (Note 5) } \end{aligned}$			180		220		250	ns
$\overline{\overline{W R}}$ to INT Delay	tIHWR	Pipelined mode, $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$			180		200		240	ns
Data Access Time After INT	tID	Pipelined mode, CL $=100 \mathrm{pF}$			100		130		150	ns
Multiplexer Address Hold Time	$\mathrm{t}_{\text {A }}$		50			60		70		ns

Note 4: Input control signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}, 10 \%$ to 90% of 3 V , and timed from a voltage level of 1.3 V . Timing delays get shorter at higher supply voltages. See the Conversion Time vs. Supply Voltage graph in the Typical Operating Characteristics to extrapolate timing delays at other power-supply voltages.
Note 5: See Figure 1 for load circuit. Parameter defined as the time required for the output to cross 0.66 V or 2.0 V .
Note 6: See Figure 2 for load circuit. Parameter defined as the time required for the data lines to change 0.5 V .
Note 7: Also defined as the Minimum Address-Valid to Convert-Start Time.

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

Typical Operating Characteristics
$\left(\overline{\mathrm{V} D}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

Pin Description

PIN		NAME	FUNCTION
MAX113	MAX117		
-	1	IN6	Analog Input Channel 6
-	2	IN5	Analog Input Channel 5
1	3	IN4	Analog Input Channel 4
2	4	IN3	Analog Input Channel 3
3	5	IN2	Analog Input Channel 2
4	6	IN1	Analog Input Channel 1
5	7	MODE	Mode Selection Input. Internally pulled low with a $15 \mu \mathrm{~A}$ current source. MODE = 0 activates read mode; MODE = 1 activates write-read mode (see Digital Interface section).
6	8	D0	Three-State Data Output (LSB)
7, 8, 9	9, 10, 11	D1, D2, D3	Three-State Data Outputs
10	12	$\overline{\mathrm{RD}}$	Read Input. $\overline{\mathrm{RD}}$ must be low to access data (see Digital Interface section).
11	13	INT	Interrupt Output. INT goes low to indicate end of conversion (see Digital Interface section).
12	14	GND	Ground
13	15	REF-	Lower limit of reference span. REF- sets the zero-code voltage. Range is GND \leq VREF- < VREF+.
14	16	REF+	Upper limit of reference span. REF+ sets the full-scale input voltage. Range is $V_{\text {REF }}-<$ VREF $_{+} \leq$VDD. Internally hardwired to IN8 (Table 1). $_{\text {I }}$
15	17	$\overline{\text { WR/RDY }}$	Write-Control Input/Ready-Status Output (see Digital Interface section)
16	18	$\overline{\overline{C S}}$	Chip-Select Input. $\overline{\mathrm{CS}}$ must be low for the device to recognize $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ inputs.
17, 18, 19	19, 20, 21	D4, D5, D6	Three-State Data Outputs
20	22	D7	Three-State Data Output (MSB)
-	23	A2	Multiplexer Channel Address Input (MSB)
21	24	A1	Multiplexer Channel Address Input
22	25	A0	Multiplexer Channel Address Input (LSB)
23	26	PWRDN	Power-Down Input. $\overline{\text { PWRDN }}$ reduces supply current when low.
24	27	VDD	Positive Supply, +3.0V to +3.6V
-	28	IN7	Analog Input Channel 7

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 μ A Power-Down

Figure 1. Load Circuits for Data-Access Time Test

Detailed Description

Converter Operation

The MAX113/MAX117 use a half-flash conversion technique (see Functional Diagram) in which two 4-bit flash ADC sections achieve an 8-bit result. Using 15 comparators, the flash ADC compares the unknown input voltage to the reference ladder and provides the upper four data bits. An internal digital-to-analog converter (DAC) uses the four most significant bits (MSBs) to generate both the analog result from the first flash conversion and a residue voltage that is the difference between the unknown input and the DAC voltage. The residue is then compared again with the flash comparators to obtain the lower four data bits (LSBs).
An internal analog multiplexer enables the devices to read four (MAX113) or eight (MAX117) different analog voltages under microprocessor ($\mu \mathrm{P}$) control. One of the MAX117's analog channels, IN8, is internally hardwired and always reads $\mathrm{V}_{\text {REF }}$ when selected.

Power-Down Mode

In burst-mode or low-sample-rate applications, the MAX113/MAX117 can be shut down between conversions, reducing supply current to microamp levels (see Typical Operating Characteristics). A logic low on the $\overline{\text { PWRDN }}$ pin shuts the devices down, reducing supply current typically to $1 \mu \mathrm{~A}$ when powered from a single +3 V supply. A logic high on PWRDN wakes up the MAX113/MAX117, and the selected analog input enters the track mode. The signal is fully acquired after 900ns (this includes both the power-up delay and the track/hold acquisition time), and a new conversion can

Figure 2. Load Circuits for Data-Hold Time Test
be started. If the power-down feature is not required, connect $\overline{\text { PWRDN }}$ to VDD. For minimum current consumption, keep digital inputs at the supply rails in power-down mode. Refer to the Reference section for information on reducing the reference current during power-down.

Digital Interface

The MAX113/MAX117 have two basic interface modes, which are set by the MODE pin. When MODE is low, the converters are in read mode; when MODE is high, the converters are set up for write-read mode. The A0, A1, and A2 inputs control channel selection, as shown in Table 1. The address must be valid for a minimum time, $\mathrm{t}_{\mathrm{ACQ}}$, before the next conversion starts.

Table 1. Truth Table for Input Channel Selection

MAX113			MAX117		
SELECTED CHANNEL					
	A0	A2	A1	A0	
0	0	0	0	0	IN1
0	1	0	0	1	IN2
1	0	0	1	0	IN3
1	1	0	1	1	IN4
-	-	1	0	0	IN5
-	-	1	0	1	IN6
-	-	1	1	0	IN7
-	-	1	1	1	IN8
(reads $V_{\text {REF+ }}$ if selected)					

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

Read Mode (MODE $=0$)

In read mode, conversions and data access are controlled by the $\overline{R D}$ input (Figure 3). The comparator inputs track the analog input voltage for the duration of tACQ. A conversion is initiated by driving $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low. With μ Ps that can be forced into a wait state, hold $\overline{R D}$ low until output data appears. The $\mu \mathrm{P}$ starts the conversion, waits, and then reads data with a single read instruction.
In read mode, $\overline{W R} / R D Y$ is configured as a status output (RDY), so it can drive the ready or wait input of a $\mu \mathrm{P}$. RDY is an open-collector output (no internal pull-up) that goes low after the falling edge of $\overline{\mathrm{CS}}$ and goes high at the end of the conversion. If not used, the WR/RDY pin can be left unconnected. The INT output goes low at the end of the conversion and returns high on the rising edge of $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$.

Write-Read Mode (MODE = 1)

Figures 4 and 5 show the operating sequence for writeread mode. The comparator inputs track the analog input voltage for the duration of $t_{A C Q}$. The conversion is initiated by a falling edge of WR. When WR returns high, the result of the four-MSBs flash is latched into the output buffers and the conversion of the four-LSBs flash starts. INT goes low, indicating conversion end, and the lower four data bits are latched into the output buffers. The data is then accessible after $\overline{R D}$ goes low (see Timing Characteristics).
A minimum acquisition time (tACQ) is required from $\overline{\mathrm{INT}}$ going low to the start of another conversion ($\overline{\mathrm{WR}}$ going low).
Options for reading data from the converter include using internal delay, reading before delay, and pipelined operation (discussed in the following sections).

Using Internal Delay
The $\mu \mathrm{P}$ waits for the $\overline{\mathrm{INT}}$ output to go low before reading the data (Figure 4). INT goes low after the rising edge of $\overline{W R}$, indicating that the conversion is complete and the result is available in the output latch. With $\overline{\mathrm{CS}}$ low, data outputs D0-D7 can be accessed by pulling $\overline{R D}$ low. INT is then reset by the rising edge of $\overline{C S}$ or $\overline{\mathrm{RD}}$.

Fastest Conversion:
 Reading Before Delay

An external method of controlling the conversion time is shown in Figure 5. The internally generated delay (tINTL) varies slightly with temperature and supply voltage, and can be overridden with $\overline{\mathrm{RD}}$ to achieve the fastest conversion time. $\overline{\mathrm{RD}}$ is brought low after the rising edge of $\overline{W R}$, but before $\overline{\text { INT }}$ goes low. This completes the conversion and enables the output buffers

Figure 3. Read Mode Timing $(M o d e=0)$

Figure 4. Write-Read Mode Timing $\left(t_{R D}>t_{I N T L}\right)(M o d e=1)$

Figure 5. Write-Read Mode Timing $\left(t_{R D}<t_{I N T L}\right)(M o d e=1)$

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1川A Power-Down

Figure 6. Pipelined Mode Timing $(\overline{W R}=\overline{R D})($ Mode $=1)$
that contain the conversion result (D0-D7). $\overline{\mathrm{NT}}$ also goes low after the falling edge of RD and is reset on the rising edge of $\overline{\mathrm{RD}}$ or CS . The total conversion time is therefore: $\mathrm{twR}+\mathrm{tRD}+\mathrm{taCC} 1=1800 \mathrm{~ns}$.

Pipelined Operation

Besides the two standard write-read-mode options, "pipelined" operation can be achieved by connecting $\overline{W R}$ and $\overline{R D}$ together (Figure 6). With $\overline{C S}$ low, driving $\overline{W R}$ and $\overline{\mathrm{RD}}$ low initiates a conversion and concurrently reads the result of the previous conversion.

Analog Considerations

Reference
Figures 7a, 7b, and 7c show typical reference connections. The voltages at REF+ and REF- set the ADC's analog input range (Figure 10). The voltage at REFdefines the input that produces an output code of all zeros, and the voltage at REF+ defines the input that produces an output code of all ones.
The internal resistance from REF+ to REF- can be as low as $1 \mathrm{k} \Omega$, and current will flow through it even when the MAX113/MAX117 are shut down. Figure 7d shows how an N-channel MOSFET can be connected to REFto break this current path during power-down. The FET should have an on-resistance of less than 2Ω with a 3 V gate drive. When REF- is switched, as in Figure 7d, a new conversion can be initiated after waiting a time equal to the power-up delay (tUP) plus the N-channel FET's turn-on time.
Although REF+ is frequently connected to V_{DD}, the circuit of Figure 7d uses a low-current, low-dropout, 2.5 V voltage reference: the MAX872. Since the MAX872 cannot continuously furnish enough current for the ref-

Figure 7a. Power Supply as Reference

Figure 7b. External Reference, 2.5V Full Scale

Figure 7c. Input Not Referenced to GND
erence resistance, this circuit is intended for applications where the MAX113/MAX117 are normally in standby and are turned on in order to make measurements at intervals greater than $100 \mu \mathrm{~s}$. C1 (the capacitor connected to REF+) is slowly charged by the MAX872 during the standby period, and furnishes the reference current during the short measurement period.
The $4.7 \mu \mathrm{~F}$ value of C 1 ensures a voltage drop of less than $1 / 2$ LSB when performing four to eight successive conversions. Larger capacitors reduce the error still further. Use ceramic or tantalum capacitors for C1.

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

Figure 7d. An N-channel MOSFET switches off the reference load during power-down

Initial Power-Up

When power is first applied, perform a conversion to initialize the MAX113/MAX117. Disregard the output data.

Bypassing
Use a $4.7 \mu \mathrm{~F}$ electrolytic in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to bypass VDD to GND. Minimize capacitor lead lengths.
Bypass the reference inputs with $0.1 \mu \mathrm{~F}$ capacitors, as shown in Figures 7a, 7b, and 7c.

Analog Inputs
Figure 8 shows the equivalent circuit of the MAX113/ MAX117 input. When a conversion starts and $\overline{W R}$ is low, Vin is connected to sixteen 0.6 pF capacitors. During this acquisition phase, the input capacitors charge to the input voltage through the resistance of the internal analog switches. In addition, about 22 pF of stray capacitance must be charged. The input can be modeled as an equivalent RC network (Figure 9). As source impedance increases, the capacitors take longer to charge.
The typical $32 p F$ input capacitance allows source resistance as high as $1.5 \mathrm{k} \Omega$ without setup problems. For larger resistances, the acquisition time (tACQ) must be increased.
Internal protection diodes, which clamp the analog input to VDD and GND, allow the channel input pins to swing from GND - 0.3V to VDD + 0.3V without damage. However, for accurate conversions near full scale and zero scale the inputs must not exceed VDD by more than 50 mV or be lower than GND by 50 mV .

Figure 8. Equivalent Input Circuit

Figure 9. RC Network Equivalent Input Model

Figure 10. Transfer Function

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

If the analog input exceeds 50 mV beyond the supplies, limit the input current to no more than two milliamperes, as excessive current will degrade the conversion accuracy of the on channel.

Track/Hold
The track/hold enters hold mode when a conversion starts ($\overline{R D}$ low or $\overline{W R}$ low). INT goes low at the end of the conversion, at which point the track/hold enters track mode. The next conversion can start after the minimum acquisition time, tACQ.

Transfer Function
Figure 10 shows the MAX113/MAX117's nominal transfer function. Code transitions occur halfway between successive-integer LSB values. Output coding is binary with 1LSB $=\left(\mathrm{V}_{\text {REF }}+-\mathrm{VREF}_{-}\right) / 256$.

Conversion Rate

The maximum sampling rate (fmAX) for the MAX113/ MAX117 is achieved in write-read mode (tRD < tINTL) and is calculated as follows:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{MAX}}=\frac{1}{\mathrm{t}_{\mathrm{WR}}+\mathrm{t}_{\mathrm{RD}}+\mathrm{t}_{\mathrm{RI}}+\mathrm{t}_{\mathrm{ACQ}}} \\
& \mathrm{f}_{\mathrm{MAX}}=\frac{1}{600 \mathrm{~ns}+800 \mathrm{~ns}+300 \mathrm{~ns}+450 \mathrm{~ns}} \\
& \mathrm{f}_{\mathrm{MAX}}=465 \mathrm{kHz}
\end{aligned}
$$

where $\mathrm{tWR}=$ the write pulse width, tRD $=$ the delay between write and read pulses, tRI $=\overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$ delay, and $t_{A C Q}=$ minimum acquisition time .

Signal-to-Noise Ratio and Effective Number of Bits

Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to all other ADC output signals. The output spectrum is limited to frequencies above DC and below one-half the ADC sample rate.

The theoretical minimum analog-to-digital noise is caused by quantization error, and results directly from the ADC's resolution: $S N R=(6.02 N+1.76) d B$, where N is the number of bits of resolution. Therefore, a perfect 8-bit ADC can do no better than 50dB.

The FFT Plot (see Typical Operating Characteristics) shows the result of sampling a pure 30.27 kHz sinusoid at a 400 kHz rate. This FFT plot of the output shows the output level in various spectral bands.
The effective resolution (or "effective number of bits") the ADC provides can be measured by transposing the equation that converts resolution to SNR: $\mathrm{N}=(\mathrm{SINAD}$ 1.76) / 6.02 (see Typical Operating Characteristics).

Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the RMS sum of all harmonics of the input signal (in the frequency band above DC and below one-half the sample rate) to the fundamental itself. This is expressed as:

$$
T H D=20 \log \left[\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+\ldots V_{N}^{2}}}{V_{1}}\right]
$$

where V_{1} is the fundamental RMS amplitude, and V_{2} through V_{N} are the amplitudes of the 2nd through Nth harmonics.

Spurious-Free Dynamic Range Spurious-free dynamic range (SFDR) is the ratio of the fundamental RMS amplitude to the amplitude of the next largest spectral component (in the frequency band above DC and below one-half the sample rate). Usually the next largest spectral component occurs at some harmonic of the input frequency. However, if the ADC is exceptionally linear, it may occur only at a random peak in the ADC's noise floor. See the Signal-to-Noise Ratio graph in Typical Operating Characteristics.

+3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1 1 A Power-Down

_Ordering Information (continued) \qquad
Chip Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX117CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide Plastic DIP
MAX117CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX117C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX117EPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide Plastic DIP
MAX117EAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX117MJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Wide CERDIP**

*Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}, D C$ parameters only.
${ }^{* *}$ Contact factory for availability.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP3202T-CI/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN LTC1605IG LTC2238IUH LTC1418AIG LTC1605ACG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW MCP3422A0-E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1 ADS7955QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3422A0-E/MC AD9220AR MAX11212AEUB+ MAX11135ATI $+\underline{\text { TLV1570CDW TLC3574IDWR TLC0838CDWR AD7914BRUZ-REEL7 AD977ABRZ ADC101S021CIMFX/NOPB }}$ $\underline{\text { ADC12130CIWM/NOPB MAX11626EEE }+~ M A X 11136 A T I+~ M C P 3426 A 1-E M C ~}$

