

General Description

The MAX11508/MAX11509 integrated 3-channel video filters for high-definition (HD), progressive-scan (PS), standard-definition (SD), and bypass (BP) video include an output buffer with +6dB gain and are ideal for digital video disc (DVD) players, set-top box (STB) receivers, high-definition television (HDTV), digital video recorders (DVRs), and similar devices.
The MAX11508/MAX11509 video inputs feature a transparent clamp compatible with AC- and DC-coupled input signals and allow DAC outputs to be directly coupled, eliminating the need for bulky coupling capacitors. The filter bandwidths are selectable to HD, PS, and SD. A BP mode is provided for 1080p and highbandwidth RGB signals. Selectable input bias circuitry on 2 filter channels offers simple connection to bipolar video signals such as C, Pb, and Pr .
The MAX11508 filters provide -3dB bandwidths of 9 MHz (SD), 16 MHz (PS), 33 MHz (HD), and 60 MHz (BP). The MAX11509 filters provide -3dB bandwidths of 10MHz (SD), $17 \mathrm{MHz}(P S), 34 \mathrm{MHz}(\mathrm{HD})$, and $60 \mathrm{MHz}(\mathrm{BP})$.

Each channel includes an output buffer with +6 dB gain that provides a full 2VP-p video signal into a 150Ω video load. The buffers drive either AC- or DC-coupled loads and assure a blanking level of below 1 V after the backmatch resistor. The shutdown mode provided reduces device current to $1 \mu \mathrm{~A}$ (typ).
The MAX11508 offers a flat passband and the MAX11509 features +0.8 dB peaking to compensate for DAC rolloff. The MAX11508/MAX11509 operate from a 5 V power supply and operate over the upper commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range. The parts are offered in the 14-pin TSSOP package.

Applications

Cable and Satellite STB Receivers
HDTV
DVD Players
Personal Video Recorders
DVRs
Video-On-Demand
HD Recorders

Typical Operating Circuit appears at end of data sheet.

Features

- Three Selectable 6th-Order 9MHz/16MHz/33MHz (SD/PS/HD) Filters
- Bypass Mode for High Bandwidth Signals
- Transparent Input Clamp
- Output Buffers Drive a Standard 150Ω Video Load
- $\pm 12 k V$ HBM ESD Protection on Outputs
- AC- or DC-Coupled Inputs
- AC- or DC-Coupled Outputs
- +0.8dB Peaking Passband Response (MAX11509) in SD, PS, and HD Modes
- Single +5V Power Supply
- Lead-Free, 14-Pin TSSOP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX11508UUD +	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX11509UUD +	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP

+Denotes a lead-free/RoHS-compliant package.

Pin Configuration

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

ABSOLUTE MAXIMUM RATINGS

Vcc to GND All Other Pins to GND
-.3V to the lower of
-0.3 V to the lower of
$(\mathrm{V} C \mathrm{C}+0.3 \mathrm{~V})$ and +6 V
Continuous Power Dissipation ($\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
14-Pin TSSOP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 796.8 mW
Maximum Current into Any Pin Except Vcc and GND $\pm 50 \mathrm{~mA}$

Operating Temperature Range \qquad $.0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range 10s)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ Junction Temperature
$+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+5 \mathrm{~V}\right.$, RLOAD $=150 \Omega$ to $\mathrm{GND}, \mathrm{CIN}=0.1 \mu \mathrm{~F}, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, all frequency responses are relative to 100 kHz , unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Supply Current	IcC	No load		24	35	mA
Supply Voltage Range	VDD		4.75	5.00	5.25	V
Input Voltage Range	VIN	Referenced to GND if DC-coupled		1.4		V
Power-Down Current	IPD	BIAS = high		1		$\mu \mathrm{A}$
		BIAS = low		15		
Digital Input High Voltage	V_{IH}		2.0			V
Digital Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
STANDARD-DEFINITION VIDEO						
-1dB Bandwidth	$\mathrm{f}_{1 \mathrm{~dB}}$	MAX11508, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4.5	7.9		MHz
		MAX11509, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5	8.6		
-3dB Bandwidth	$\mathrm{f}_{3} \mathrm{~dB}$	MAX11508		9.0		MHz
		MAX11509		10		
Stopband Attenuation	ASB	$\mathrm{f}=27 \mathrm{MHz}$	35	48		dB
Low-Frequency Gain	AV	No load	5.6	6.0	6.6	dB
Differential Gain	dG	All channels		0.7		\%
Differential Phase	d ϕ	All channels		0.7		Degrees
Total Harmonic Distortion	THD	VOUT $=1.4 \mathrm{VP-P}, \mathrm{f}=1 \mathrm{MHz}$, all channels		-60		dB
Signal-to-Noise Ratio	SNR	$2 V_{\text {P-P }}$ signal to RMS noise, $\mathrm{f}=100 \mathrm{kHz} \text { to } 4.2 \mathrm{MHz}$		71		dB
Group Delay	tG	$\mathrm{f}=4.5 \mathrm{MHz}$		59		ns
Power-Supply Rejection Ratio	PSRR	DC, all channels		50		dB

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+5 \mathrm{~V}\right.$, RLOAD $=150 \Omega$ to $\mathrm{GND}, \mathrm{CIN}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, all frequency responses are relative to 100 kHz , unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PROGRESSIVE-SCAN VIDEO						
-1dB Bandwidth	$\mathrm{f}_{1 \mathrm{~dB}}$	MAX11508, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	9	13.5		MHz
		MAX11509, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10	14		
-3dB Bandwidth	$f_{3} \mathrm{~dB}$	MAX11508		16		MHz
		MAX11509		17		
Stopband Attenuation	ASB	$\mathrm{f}=54 \mathrm{MHz}$		44		dB
Low-Frequency Gain	Av		5.6	6.0	6.6	dB
Total Harmonic Distortion	THD	VOUT $=1.4 \mathrm{VPP}_{\text {P }}$, f $=7 \mathrm{MHz}$		-55		dB
Signal-to-Noise Ratio	SNR	2Vp-p signal to RMS noise, $\mathrm{f}=100 \mathrm{kHz}$ to 15 MHz		66		dB
Group Delay	tG	$\mathrm{f}=10 \mathrm{MHz}$		47		ns
HIGH-DEFINITION VIDEO						
-1dB Bandwidth	$\mathrm{f}_{1 \mathrm{~dB}}$	MAX11508, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	21	30		MHz
		MAX11509, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	22	31		
-3dB Bandwidth	$\mathrm{f}_{3 \mathrm{~dB}}$	MAX11508		33		MHz
		MAX11509		34		
Stopband Attenuation	AsB	$\mathrm{f}=37.125 \mathrm{MHz}$		6.5		dB
		$\mathrm{f}=44.25 \mathrm{MHz}$		14.5		
		$f=74.25 \mathrm{MHz}$		45		
Low-Frequency Gain	AV		5.4	6.0	6.6	dB
Total Harmonic Distortion	THD	VOUT $=1.4 V_{\text {P-P, }} \mathrm{f}=10 \mathrm{MHz}$		-55		dB
		$V_{\text {OUT }}=1.4 \mathrm{~V}_{\text {P-P, }} \mathrm{f}=15 \mathrm{MHz}$		-50		
		$V_{\text {OUT }}=1.4 \mathrm{~V}_{\text {P-P, }} \mathrm{f}=22 \mathrm{MHz}$		-40		
Signal-to-Noise Ratio	SNR	2VP-p signal to RMS noise, $f=100 \mathrm{kHz}$ to 30 MHz		65		dB
Group Delay	tG	$\mathrm{f}=20 \mathrm{MHz}$		25		ns
BYPASS VIDEO (Note 2)						
-3dB Bandwidth	f3dB			60		MHz
Low-Frequency Gain	AV		5.4	6.0	6.6	dB
Total Harmonic Distortion	THD	$\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}_{\text {P-P, }} \mathrm{f}=22 \mathrm{MHz}$		-40		dB
Signal-to-Noise Ratio	SNR	2VP-P signal to RMS noise, $\mathrm{f}=100 \mathrm{kHz}$ to 30 MHz		65		dB

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 2: Output AC-coupled with $220 \mu \mathrm{~F}$ into 150Ω to GND.

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

($V_{C C}=5 V, R L=150 \Omega$ to GND, output DC-coupled, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND, output DC-coupled, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

\qquad Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND, output DC-coupled, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX11508
SD DIFFERENTIAL GAIN, NTSC

MAX11509 SD DIFFERENTIAL GAIN, NTSC

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND, output DC-coupled, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	VCC	Power-Supply Input
2	FSELO	Frequency-Select Input. LSB for bandwidth selection.
3	Y/G_IN	Video Input Channel 1
4	Pb/B_IN	Video Input Channel 2
5	Pr/R_IN	Video Input Channel 3
6	BIAS	Bias Control Digital Input. Enables voltage bias for the Pb/B and Pr/R channels. Force BIAS low to enable voltage bias and disable the input clamps. Force BIAS high to disable voltage bias and enable the input clamps.
7,14	N.C.	No Connection. Not internally connected.
8	GND	Ground
9	SHDN	Shutdown Digital Input. SHDN places the device into a powered-down state. Force SHDN low to enable shutdown. Force SHDN high for normal operation.
10	Pr/R_OUT	Video Output Channel 3
11	Pb/B_OUT	Video Output Channel 2
12	Y/G_OUT	Video Output Channel 1
13	FSEL1	Frequency Select Input. MSB for bandwidth selection.

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Detailed Description

The MAX11508/MAX11509 integrated filters offer 3 channels of SD, PS, or HD video, and include a bypass mode useful for high-bandwidth 1080p and RGB video signals. The MAX11508 6th-order lowpass filters provide -3 dB bandwidths of 9 MHz (SD), 16 MHz (PS), 33 MHz (HD), and 60MHz (BP). The MAX11509 6th-order lowpass filters provide -3 dB bandwidths of 10 MHz (SD), $17 \mathrm{MHz}(P S), 34 \mathrm{MHz}(H D)$, and $60 \mathrm{MHz}(B P)$.
Two control inputs, FSELO and FSEL1, select the filter mode for all filters (Table 1). Input bias circuitry on 2 filter channels can be enabled through the BIAS input to offer simple connection to bipolar video signals such as C, Pb, and Pr. Shutdown mode reduces device current to $1 \mu \mathrm{~A}$ (typ) and is enabled by forcing SHDN Iow. Figure 1 shows a simplified block diagram of the MAX11508/MAX11509.
The MAX11508 provides a flat passband response and the MAX11509 provides a +0.8 dB high-frequency boost at $5 \mathrm{MHz}(\mathrm{SD}), 8.5 \mathrm{MHz}(\mathrm{PS})$, and $20 \mathrm{MHz}(\mathrm{HD})$ to help with system rolloff. No frequency boost is included in bypass mode. Typical voltage waveforms are shown in Figures 2 and 3.

Inputs

Transparent Clamps All inputs feature transparent clamps to allow either ACor DC-coupling of the inputs. The clamp remains inactive while the input signal is above ground, offering true DC input coupling. When the signal goes below ground, as is the case when it is AC-coupled, the clamp sets the sync tip close to the ground level.

Input Coupling

The choice of AC- or DC-coupling the input depends on the video source. Many DACs have a current output and are terminated to ground with a resistor; such signals are conveniently DC-coupled. Use AC-coupling when the DC level of the video signal is unknown or outside the specified input range of the MAX11508/ MAX11509, such as SCART or VCc-terminated DAC outputs. A bias network within 2 channels of the MAX11508/MAX11509, for use with bipolar signals,
connects to the input node when BIAS is forced low. Figures 4 and 5 show how the bias network operates.

DC-Coupled Inputs

When the input is DC-coupled, the voltage must remain above zero, but not to exceed 1.4V (typ).

AC-Coupling and BIAS

When the input is AC-coupled, the transparent clamps are active and set the lowest point of the signal at ground. This is appropriate for unipolar signals such as CVBS, Y, R, G, or B, with sync pulses (Figure 4). Force BIAS high when coupling unipolar signals.
For bipolar signals, such as Pb and Pr , a bias network is provided within the MAX11508/MAX11509 for inputs $\mathrm{Pb} / \mathrm{B} _I N$ and $\operatorname{Pr} / R _I N$. Force BIAS low to connect the bias network to these inputs (Figure 5). The internal network biases AC-coupled inputs to a fixed DC voltage, typically 0.59 V , to ensure that the transparent clamp remains off.

Figure 1. Block Diagram

Table 1. Frequency-Selection Truth Table

CONTROL INPUTS		FILTER -3dB FREQUENCY (MHz)		OPERATING MODE
FSEL1	FSEL0	MAX11508	MAX11509	
0	0	9	10	Standard definition
0	1	16	17	Progressive scan
1	0	33	34	High definition
1	1	60	60	Bypass

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Figure 2. Typical AC-Coupled Signal

Figure 3. Typical DC-Coupled Signal

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Figure 4. Simple AC-Coupling and BIAS Control for Unipolar Signals (CVBS, Y, R, G, B)

Figure 5. AC-Coupling and BIAS Control for Bipolar Signals (C, Pb, Pr)

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Filters

The MAX11508 filter characteristic provides excellent time-domain response with low overshoot and guarantees minimal attenuation in the passband. The MAX11509 filters offer a small gain peaking response to counter system rolloff.
Select filter frequency with inputs FSELO and FSEL1, as shown in Table 1.

Standard-Definition (SD) Filters

The MAX11508 SD filters have a 9MHz (typ) -3dB frequency, while the MAX11509 SD filters offer a 10 MHz (typ) -3 dB frequency and a +0.8 dB high-frequency boost at 5 MHz (typ). Both devices have a stopband attenuation of $+48 \mathrm{~dB}(\mathrm{typ})$ at 27 MHz .

Progressive-Scan (PS) Filters

 The MAX11508 PS filters have a 16 MHz (typ) -3 dB frequency, while the MAX11509 PS filters offer a 17 MHz (typ) -3 dB frequency and a +0.8 dB high-frequency boost at 8.5 MHz (typ). Both devices have a stopband attenuation of $+44 \mathrm{~dB}(\mathrm{typ})$ at 54 MHz .
High-Definition (HD) Filters

The MAX11508 HD filters have a 33 MHz (typ) -3 dB frequency, while the MAX11509 HD filters offer a 34 MHz (typ) -3 dB frequency and a +0.8 dB high-frequency boost at 20 MHz (typ). Both devices have a stopband attenuation of +45 dB (typ) at 74.25 MHz .

Bypassing the Filters

The MAX11508/MAX11509 filter bypass circuitry offers a 60 MHz (typ) -3dB frequency. Bypassed filters offer no gain peaking.

Output Buffer

The MAX11508/MAX11509 feature output buffers with +6 dB gain that drive a standard 150Ω video load at $2 V$ P-p. A typical load consists of a 75Ω backmatch resistor, an optional $220 \mu \mathrm{~F}$ or larger coupling capacitor, and a 75Ω termination resistor.
An offset of 550 mV is added at the output. The offset ensures that the blanking level on the output is less than 1 V after the backmatch resistor, thus meeting digital TV specifications allowing the devices to drive video loads directly without using costly AC-coupling capacitors. The basic output voltage equation of all filters is:

$$
\text { VOUT }=(2 \times \text { VIN })+0.55 \mathrm{~V}
$$

Typical voltage waveforms are shown in Figures 2 and 3 .

Shutdown

Forcing digital input SHDN low places the MAX11508/ MAX11509 into low-power shutdown mode. In shutdown, the device consumes only $1 \mu \mathrm{~A}$ (typ), and the outputs are internally connected to GND through $1.58 \mathrm{k} \Omega$ resistors. In shutdown, the input clamps are disabled and the inputs are internally connected to GND through $350 \mathrm{k} \Omega$ resistors. When shutdown is forced low while BIAS is low, the bias network remains active, but the bias voltage changes from its nominal 0.59 V to 0.475 V (typ).

Applications Information

Output Considerations

DC- or AC-couple the MAX11508/MAX11509 outputs. These devices, with +6 dB gain, are typically connected to a 75Ω series backmatch resistor followed by a video cable. Choose an AC-coupling capacitor value that ensures that the lowest frequency content in the video signal is passed and the field-time distortion is kept within desired limits when using an AC connection. The selection of this value is a function of the input impedance, and more importantly, the input leakage of the circuit being driven. Common industry practice is to use a $220 \mu \mathrm{~F}$ or larger capacitor.
The MAX11508/MAX11509 outputs are fully protected against short circuits to ground. The short-circuit protection circuitry limits the output current to 75 mA (typ) per output. Shorting more than one output to ground simultaneously may exceed the maximum package power dissipation.

PCB Layout Recommendations

Connect the power and ground traces to large copper areas to enhance power dissipation. Bypass VCC to GND with $0.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ capacitors. Place the $0.1 \mu \mathrm{~F}$ capacitor closest to Vcc. Use surface-mount capacitors for their low inductance. Place traces carrying video signals appropriately to avoid mutual coupling. When inputs are AC-coupled, place the capacitors as close as possible to the device and keep traces short to minimize parasitic capacitance and inductance. Refer to the MAX11508/MAX11509 evaluation kit data sheet for PCB layout.

Chip Information
PROCESS: BiCMOS

Low-Cost, 3-Channel, HD/PS/SD/BP Video Filters with Buffer

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
14 TSSOP	$U 14+1$	$\underline{\mathbf{2 1 - 0 0 6 6}}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 LMH1208RTVT BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7180BCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7 ADA4424-6ARUZ ADA4431-1YCPZ-R7

