
Abstract

General Description The MAX11618-MAX11621/MAX11624/MAX11625 are serial 10-bit analog-to-digital converters (ADCs) with an internal reference. These devices feature on-chip FIFO, scan mode, internal clock mode, internal averaging, and AutoShutdown ${ }^{\text {TM }}$. The maximum sampling rate is 300ksps using an external clock. The MAX11624/ MAX11625 have 16 input channels, the MAX11620/ MAX11621 have 8 input channels, and the MAX11618/ MAX11619 have 4 input channels. These six devices operate from either a +3 V supply or a +5 V supply, and contain a 10 MHz SPI ${ }^{\text {TM }}$-/QSPI ${ }^{\text {TM }}$-/MICROWIRE ${ }^{\text {TM }}$-compatible serial port. The MAX11618-MAX11621 are available in 16-pin QSOP packages. The MAX11624/MAX11625 are available in 24-pin QSOP packages. All six devices are specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
System Supervision
Data-Acquisition Systems
Industrial Control Systems
Patient Monitoring
Data Logging
Instrumentation

Analog Multiplexer with Track/Hold
16 Channels (MAX11624/MAX11625)
8 Channels (MAX11620/MAX11621)
4 Channels (MAX11618/MAX11619)

- Single Supply
2.7V to 3.6V (MAX11619/MAX11621/MAX11625)
4.75V to 5.25 V
(MAX11618/MAX11620/MAX11624)
- Internal Reference
2.5V (MAX11619/MAX11621/MAX11625)
4.096V (MAX11618/MAX11620/MAX11624)
- External Reference: 1V to VDD
- 16-Entry First-In/First-Out (FIFO)
- Scan Mode, Internal Averaging, and Internal Clock
- Accuracy: ± 1 LSB INL, ± 1 LSB DNL, No Missing Codes Over Temperature
- 10MHz 3-Wire SPI-/QSPI-/MICROWIRE-Compatible Interface
- Small Packages

16-Pin QSOP (MAX11618-MAX11621)
24-Pin QSOP (MAX11624/MAX11625)
Ordering Information

PART	NUMBER OF INPUTS	SUPPLY VOLTAGE RANGE (V)	PIN- PACKAGE
MAX11618EEE +T	4	4.75 to 5.25	16 QSOP
MAX11619EEE +T	4	2.7 to 3.6	16 QSOP
MAX11620EEE +T	8	4.75 to 5.25	16 QSOP
MAX11621EEE +T	8	2.7 to 3.6	16 QSOP
MAX11624EEG +T	16	4.75 to 5.25	24 QSOP
MAX11625EEG +T	16	2.7 to 3.6	24 QSOP

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Features

AutoShutdown is a trademark of Maxim Integrated Products, Inc.
SPI/QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

ABSOLUTE MAXIMUM RATINGS
VDD to GND
-0.3 V to +6 V
 AINO-AIN14, $\overline{\text { CNVST/AIN_, }}$ REF to GND
\qquad
-0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Maximum Current into Any Pin.. 50 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 667 mW
24-Pin QSOP (derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 762 mW

Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$\ldots+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) .	$+260^{\circ} \mathrm{C}$

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Soldering Temperature (reflow) $+260^{\circ} \mathrm{O}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

16 QSOP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$).................. $105^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$)................. $37^{\circ} \mathrm{C} / \mathrm{W}$

24 QSOP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)................ $88^{\circ} \mathrm{C} / \mathrm{W}$ Junction-to-Case Thermal Resistance (θ_{Jc})....................... $34^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained usǐng the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

($V_{D D}=2.7 \mathrm{~V}$ to 3.6 V (MAX11619/MAX11621/MAX11625); $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V (MAX11618/MAX11620/MAX11624), fSAMPLE $=300 \mathrm{kHz}$, fSCLK $=4.8 \mathrm{MHz}$ (external clock, 50% duty cycle), $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}($ MAX11619 $/ \mathrm{MAX11621/MAX11625}) ;$ VREF $=4.096 \mathrm{~V}$ (MAX11618/MAX11620/MAX11624), $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DC ACCURACY (Note 3)					
Resolution	RES		10		Bits
Integral Nonlinearity	INL			± 1.0	LSB
Differential Nonlinearity	DNL	No missing codes over temperature		± 1.0	LSB
Offset Error			± 0.5	± 2.0	LSB
Gain Error		(Note 4)	± 0.5	± 2.0	LSB
Offset Error Temperature Coefficient			± 2		$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{FSR} \end{gathered}$
Gain Temperature Coefficient			± 0.8		ppm $/{ }^{\circ} \mathrm{C}$
Channel-to-Channel Offset Matching			± 0.1		LSB
DYNAMIC SPECIFICATIONS (30kHz sine-wave input, 300ksps, fSCLK $=4.8 \mathrm{MHz}$)					
Signal-to-Noise Plus Distortion	SINAD		62		dB
Total Harmonic Distortion	THD	Up to the 5th harmonic	-79		dBc
Spurious-Free Dynamic Range	SFDR		-81		dBc
Intermodulation Distortion	IMD	$\mathrm{f}_{\mathrm{IN} 1}=29.9 \mathrm{kHz}, \mathrm{f} / \mathrm{N} 2=30.1 \mathrm{kHz}$	-74		dBc
Full-Power Bandwidth		-3dB point	1		MHz
Full-Linear Bandwidth		S/(N + D) > 61dB	100		kHz

10-Bit, 300ksps ADCs with FIFO and Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

($V_{D D}=2.7 \mathrm{~V}$ to 3.6 V (MAX11619/MAX11621/MAX11625); $V_{D D}=4.75 \mathrm{~V}$ to 5.25 V (MAX11618/MAX11620/MAX11624), fSAMPLE $=300 \mathrm{kHz}$, fSCLK $=4.8 \mathrm{MHz}$ (external clock, 50% duty cycle), $V_{\text {REF }}=2.5 \mathrm{~V}($ MAX11619//MAX11621/MAX11625); VREF $=4.096 \mathrm{~V}$ (MAX11618/MAX11620/MAX11624), $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CONVERSION RATE						
Power-Up Time	tpu	External reference	0.8			$\mu \mathrm{s}$
		Internal reference (Note 5)	65			
Acquisition Time	tACQ		0.6			$\mu \mathrm{s}$
Conversion Time	tconv	Internally clocked	3.5			$\mu \mathrm{s}$
		Externally clocked (Note 6)	2.7			
External Clock Frequency	fsclk	Externally clocked conversion	0.1		4.8	MHz
		Data I/O			10	
Aperture Delay				30		ns
Aperture Jitter				< 50		ps
ANALOG INPUT						
Input Voltage Range		Unipolar	0		VREF	V
Input Leakage Current		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		± 0.01	± 1	$\mu \mathrm{A}$
Input Capacitance		During acquisition time (Note 7)		24		pF
INTERNAL REFERENCE						
REF Output Voltage		MAX11618/MAX11620/MAX11624	4.024	4.096	4.168	V
		MAX11619/MAX11621/MAX11625	2.48	2.50	2.52	
REF Temperature Coefficient	TCref	MAX11618/MAX11620/MAX11624	± 20			ppm $/{ }^{\circ} \mathrm{C}$
		MAX11619/MAX11621/MAX11625				
Output Resistance			6.5			$\mathrm{k} \Omega$
REF Output Noise			200			$\mu \mathrm{V}$ RMS
REF Power-Supply Rejection	PSRR		-70			dB
EXTERNAL REFERENCE						
REF Input Voltage Range	VREF		1.0		+ 50mV	V
REF Input Current	IREF	$\begin{aligned} & \text { VREF }=2.5 \mathrm{~V} \text { (MAX11619/MAX11621/ } \\ & \text { MAX11625); VREF }=4.096 \mathrm{~V} \\ & \text { (MAX11618/MAX11620/MAX11624), } \\ & \text { fSAMPLE }=300 \mathrm{ksps} \end{aligned}$		40	100	$\mu \mathrm{A}$
		$V_{\text {REF }}=2.5 \mathrm{~V}($ MAX11619/MAX11621/ MAX11625); V $_{\text {REF }}=4.096 \mathrm{~V}$ (MAX11618/MAX11620/MAX11624), fSAMPLE $=0$		± 0.1	± 5	

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

ELECTRICAL CHARACTERISTICS (continued)

($V_{D D}=2.7 V$ to $3.6 V(M A X 11619 / M A X 11621 / M A X 11625) ; V_{D D}=4.75 V$ to $5.25 V(M A X 11618 / M A X 11620 / M A X 11624)$, fSAMPLE $=300 \mathrm{kHz}$, fSCLK $=4.8 \mathrm{MHz}$ (external clock, 50% duty cycle), $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}(\mathrm{MAX11619} / \mathrm{MAX11621/MAX11625}) ; \mathrm{V}_{\text {REF }}=4.096 \mathrm{~V}$ (MAX11618/MAX11620/MAX11624), $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
DIGITAL INPUTS (SCLK, DIN, $\overline{\text { CS, }}$, $\overline{\text { CNVST }}$) (Note 8)						
Input-Voltage Low	VIL	MAX11618/MAX11620/MAX11624			0.8	V
		MAX11619/MAX11621/MAX11625		$\mathrm{V}_{\mathrm{DD}} \times 0.3$		
Input-Voltage High	V_{IH}	MAX11618/MAX11620/MAX11624		2.0		V
		MAX11619/MAX11621/MAX11625		VDD $\times 0.7$		
Input Hysteresis	VHYST			200		mV
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}		± 0.01	± 1.0	$\mu \mathrm{A}$
Input Capacitance	CIN			15		pF
DIGITAL OUTPUTS (DOUT, EOC)						
Output-Voltage Low	Vol	ISINK $=2 \mathrm{~mA}$		0.4		V
		ISINK $=4 \mathrm{~mA}$				
Output-Voltage High	VOH	ISOURCE $=1.5 \mathrm{~mA}$		VDD - 0.5		V
Three-State Leakage Current	IL	$\overline{C S}=V_{\text {DD }}$		$\pm 0.05 \quad \pm 1$		$\mu \mathrm{A}$
Three-State Output	Cout	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$		15		pF
POWER REQUIREMENTS						
Supply Voltage	$V_{D D}$	MAX11618/MAX11620/MAX11624		4.752.7	5.25	V
		MAX11619/MAX11621/MAX11625			3.6	
MAX11619/MAX11621/ MAX11625 Supply Current (Note 9)	IDD	Internal reference	fSAMPLE $=300 \mathrm{ksps}$	1750	2000	$\mu \mathrm{A}$
			fSAMPLE $=0$, REF on	1000	1200	
			Shutdown	0.2	5	
		External reference	fSAMPLE $=300 \mathrm{ksps}$	1050	1200	
			Shutdown	0.2	5	
MAX11618/MAX11620/ MAX11624 Supply Current (Note 9)	IDD	Internal reference	fSAMPLE $=300 \mathrm{ksps}$	2300	2550	$\mu \mathrm{A}$
			fSAMPLE $=0$, REF on	1000	1350	
			Shutdown	0.2	5	
		External reference	fSAMPLE $=300 \mathrm{ksps}$	1550	1700	
			Shutdown	0.2	5	
Power-Supply Rejection	PSR	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6V, full-scale input		± 0.2	± 1	mV
		$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V , full-scale input		± 0.2	± 1.4	

Note 2: Limits at $T_{A}=-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 3: MAX11619/MAX11621/MAX11625 tested at $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$. MAX11618/MAX11620/MAX11624 tested at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.
Note 4: Offset nulled.
Note 5: Time for reference to power up and settle to within 1 LSB.
Note 6: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.
Note 7: See Figure 3 (Equivalent Input Circuit) and the Sampling Error vs. Source Impedance curve in the Typical Operating Characteristics section.
Note 8: When $\overline{\text { CNVST }}$ is configured as a digital input, do not apply a voltage between $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {IH }}$.
Note 9: Supply current is specified depending on whether an internal or external reference is used for voltage conversions.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

TIMING CHARACTERISTICS (Figure 1)

$\left(V_{D D}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}(\mathrm{MAX11619} / \mathrm{MAX} 11621 / \mathrm{MAX} 11625) ; \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}(\mathrm{MAX} 11618 / \mathrm{MAX} 11620 / \mathrm{MAX} 11624)$, $f_{S A M P L E}=300 \mathrm{kHz}$, fsclk $^{2}=4.8 \mathrm{MHz}(50 \%$ duty cycle $), V_{\text {REF }}=2.5 \mathrm{~V}(\mathrm{MAX} 11619 / \mathrm{MAX} 11621 / \mathrm{MAX} 11625) ; \mathrm{V}_{\text {REF }}=4.096 \mathrm{~V}$ (MAX11618/MAX11620/MAX11624), $T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
SCLK Clock Period	tcP	Externally clocked conversion	208		ns
		Data I/O	100		
SCLK Pulse-Width High	tch		40		ns
SCLK Pulse-Width Low	tcL		40		ns
SCLK Fall to DOUT Transition	tDOT	CLOAD $=30 \mathrm{pF}$		40	ns
$\overline{\overline{C S}}$ Rise to DOUT Disable	tDOD	CLOAD $=30 \mathrm{pF}$		40	ns
$\overline{\text { CS Fall to DOUT Enable }}$	tooe	CLOAD $=30 \mathrm{pF}$		40	ns
DIN to SCLK Rise Setup	tDS		40		ns
SCLK Rise to DIN Hold	tDH		0		ns
$\overline{\mathrm{CS}}$ Low to SCLK Setup	tCsso		40		ns
$\overline{\text { CS }}$ High to SCLK Setup	tcss1		40		ns
$\overline{\text { CS }}$ High After SCLK Hold	tCSH1		0		ns
$\overline{\mathrm{CS}}$ Low After SCLK Hold	tCSHO		0	4	$\mu \mathrm{s}$
CNVST Pulse Width Low	tcspw	CKSEL $=00$	40		ns
		CKSEL = 01	1.4		$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ or $\overline{\mathrm{CNVST}}$ Rise to $\overline{\mathrm{EOC}}$ Low (Note 10)		Voltage conversion		7	$\mu \mathrm{s}$
		Reference power-up		65	

Note 10: This time is defined as the number of clock cycles needed for conversion multiplied by the clock period. If the internal reference needs to be powered up, the total time is additive.

Typical Operating Characteristics
(VDD $=3 V(M A X 11619 / M A X 11621 / M A X 11625) ; V_{D D}=5 V(M A X 11618 / M A X 11620 / M A X 11624)$, fSCLK $=4.8 M H z, C L O A D=30 p F$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

Typical Operating Characteristics (continued)
$\left(V_{D D}=3 V(M A X 11619 / M A X 11621 / M A X 11625) ; V_{D D}=5 V(M A X 11618 / M A X 11620 / M A X 11624), f_{S C L K}=4.8 M H z, C_{L O A D}=30 \mathrm{pF}\right.$, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DIFFERENTIAL NONLINEARITY
vs. OUTPUT CODE

SFDR vs. FREQUENCY

SINAD vs. FREQUENCY

SUPPLY CURRENT vs. SAMPLING RATE

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Typical Operating Characteristics (continued)
$\left(V_{D D}=3 V(M A X 11619 / M A X 11621 / M A X 11625) ; V_{D D}=5 V(M A X 11618 / M A X 11620 / M A X 11624)\right.$, $\mathrm{f}_{\mathrm{SCLK}}=4.8 \mathrm{MHz}, \mathrm{CLOAD}=30 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

Typical Operating Characteristics (continued)
$\left(V_{D D}=3 V(M A X 11619 / M A X 11621 / M A X 11625) ; V_{D D}=5 V(M A X 11618 / M A X 11620 / M A X 11624), \mathrm{f}^{\prime} C L K=4.8 M H z, C_{L O A D}=30 p F\right.$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE

INTERNAL REFERENCE VOLTAGE
vs. SUPPLY VOLTAGE

INTERNAL REFERENCE VOLTAGE vs. TEMPERATURE

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Typical Operating Characteristics (continued)
(VDD = 3V (MAX11619/MAX11621/MAX11625); VDD $=5 \mathrm{~V}$ (MAX11618/MAX11620/MAX11624), fscLK $=4.8 \mathrm{MHz}, \mathrm{CLOAD}=30 \mathrm{pF}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

() MAX11618/MAX11619 ONLY

Pin Description

PIN			NAME	FUNCTION
$\begin{gathered} \text { MAX11618 } \\ \text { MAX11619 } \\ \text { (4 CHANNELS) } \\ \hline \end{gathered}$	$\begin{gathered} \text { MAX11620 } \\ \text { MAX11621 } \\ \text { (8 CHANNELS) } \end{gathered}$	MAX11624 MAX11625 (16 CHANNELS)		
1-4	-	-	AlNO-AIN3	Analog Inputs
5, 6, 7	-	-	N.C.	No Connection. Not internally connected.
-	-	1-15	AINO-AIN14	Analog Inputs
-	1-7	-	AlNO-AIN6	Analog Inputs
-	-	16	$\overline{\text { CNVST/AIN15 }}$	Active-Low Conversion Start Input/Analog Input 15. See Table 3 for details on programming the setup register.
-	8	-	$\overline{\text { CNVST/AIN7 }}$	Active-Low Conversion Start Input/Analog Input 7. See Table 3 for details on programming the setup register.
8	-	-	CNVST	Active-Low Conversion Start Input. See Table 3 for details on programming the setup register.
9	9	17	REF	Reference Input. Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
10	10	18	GND	Ground
11	11	19	$V_{D D}$	Power Input. Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
12	12	20	$\overline{\mathrm{CS}}$	Active-Low Chip-Select Input. When $\overline{\mathrm{CS}}$ is low, the serial interface is enabled. When $\overline{\mathrm{CS}}$ is high, DOUT is high impedance.
13	13	21	SCLK	Serial Clock Input. Clocks data in and out of the serial interface (duty cycle must be 40% to 60%). See Table 3 for details on programming the clock mode.
14	14	22	DIN	Serial Data Input. DIN data is latched into the serial interface on the rising edge of SCLK.
15	15	23	DOUT	Serial Data Output. Data is clocked out on the falling edge of SCLK. High impedance when $\overline{\mathrm{CS}}$ is connected to $V_{D D}$.
16	16	24	EOC	End of Conversion Output. Data is valid after $\overline{\mathrm{EOC}}$ pulls low.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Figure 1. Detailed Serial-Interface Timing Diagram

Figure 2. Functional Diagram

Detailed Description

The MAX11618-MAX11621/MAX11624/MAX11625 are low-power, serial-output, multichannel ADCs with FIFO capability for system monitoring, process-control, and instrumentation applications. These 10-bit ADCs have internal track and hold (T/H) circuitry supporting singleended inputs. Data is converted from analog voltage sources in a variety of channel and data-acquisition configurations. Microprocessor ($\mu \mathrm{P}$) control is made easy
through a 3-wire SPI-/QSPI-/MICROWIRE-compatible serial interface.
Figure 2 shows a simplified functional diagram of the MAX11618-MAX11621/MAX11624/MAX11625 internal architecture. The MAX11624/MAX11625 have 16 sin-gle-ended analog input channels. The MAX11620/ MAX11621 have 8 single-ended analog input channels. The MAX11618/MAX11619 have 4 single-ended analog input channels.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Converter Operation

The MAX11618-MAX11621/MAX11624/MAX11625 ADCs use a successive-approximation register (SAR) conversion technique and an on-chip T/H block to convert voltage signals into a 10-bit digital result. This singleended configuration supports unipolar signal ranges.

Input Bandwidth

The ADC's input-tracking circuitry has a 1 MHz smallsignal bandwidth, so it is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. Anti-alias prefiltering of the input signals is necessary to avoid high-frequency signals aliasing into the frequency band of interest.

Analog Input Protection

 Internal ESD protection diodes clamp all pins to VDD and GND, allowing the inputs to swing from (GND 0.3 V) to (VDD +0.3 V) without damage. However, for accurate conversions near full scale, the inputs must not exceed VDD by more than 50 mV or be lower than GND by 50 mV . If an off-channel analog input voltage exceeds the supplies, limit the input current to 2 mA .
3-Wire Serial Interface

The MAX11618-MAX11621/MAX11624/MAX11625 feature a serial interface compatible with SPI/QSPI and MICROWIRE devices. For SPI/QSPI, ensure the CPU serial interface runs in master mode so it generates the serial clock signal. Select the SCLK frequency of 10 MHz or less, and set clock polarity (CPOL) and phase (CPHA) in the $\mu \mathrm{P}$ control registers to the same value. The MAX11618-MAX11621/MAX11624/MAX11625 operate with SCLK idling high or low, and thus operate with $\mathrm{CPOL}=\mathrm{CPHA}=0$ or $\mathrm{CPOL}=\mathrm{CPHA}=1$. Set $\overline{\mathrm{CS}}$ low to latch input data at DIN on the rising edge of SCLK. Output data at DOUT is updated on the falling edge of SCLK. Results are output in binary format.
Serial communication always begins with an 8-bit input data byte (MSB first) loaded from DIN. A high-to-low transition on $\overline{C S}$ initiates the data input operation. The input data byte and the subsequent data bytes are clocked from DIN into the serial interface on the rising edge of SCLK. Tables 1-5 detail the register descriptions. Bits 5 and 4, CKSEL1 and CKSELO, respectively, control the clock modes in the setup register (see Table 3). Choose between four different clock modes for various ways to start a conversion and determine whether the acquisitions are internally or externally timed. Select clock mode 00 to configure $\overline{\text { CNVST/AIN_ to act as a }}$ conversion start and use it to request the programmed, internally timed conversions without tying up the serial bus. In clock mode 01, use CNVST to request
conversions one channel at a time, controlling the sampling speed without tying up the serial bus. Request and start internally timed conversions through the serial interface by writing to the conversion register in the default clock mode 10. Use clock mode 11 with SCLK up to 4.8 MHz for externally timed acquisitions to achieve sampling rates up to 300 ksps . Clock mode 11 disables scanning and averaging. See Figures 4-7 for timing specifications and how to begin a conversion.
These devices feature an active-low, end-of-conversion output. EOC goes low when the ADC completes the last requested operation and is waiting for the next input data byte (for clock modes 00 and 10). In clock mode 01, EOC goes low after the ADC completes each requested operation. $\overline{\mathrm{EOC}}$ goes high when $\overline{\mathrm{CS}}$ or CNVST goes low. $\overline{\mathrm{EOC}}$ is always high in clock mode 11 .

Single-Ended Inputs

The single-ended analog input conversion modes can be configured by writing to the setup register (see Table 3). Single-ended conversions are internally referenced to GND (see Figure 3).
AINO-AIN3 are available on the MAX11618-MAX11621/ MAX11624/MAX11625. AIN4-AIN7 are only available on the MAX11620-MAX11625. AIN8-AIN15 are only available on the MAX11624/MAX11625. See Tables 2-5 for more details on configuring the inputs. For the inputs that can be configured as CNVST or an analog input, only one can be used at a time.

Unipolar

The MAX11618-MAX11621/MAX11624/MAX11625 always operate in unipolar mode. The analog inputs are internally referenced to GND with a full-scale input range from 0 to Vref.

Figure 3. Equivalent Input Circuit

10－Bit，300ksps ADCs with FIFO and Internal Reference

True Differential Analog Input T／H

The equivalent circuit of Figure 3 shows the MAX11618－MAX11621／MAX11624／MAX11625s＇input architecture．In track mode，a positive input capacitor is connected to AIN0－AIN15．A negative input capacitor is connected to GND．For external T／H timing，use clock mode 01．After the T／H enters hold mode，the difference between the sampled positive and negative input voltages is converted．The time required for the T／H to acquire an input signal is determined by how quickly its input capaci－ tance is charged．If the input signal＇s source impedance is high，the required acquisition time lengthens．The acquisi－ tion time， $\mathrm{t}_{\mathrm{ACQ}}$ ，is the maximum time needed for a signal to be acquired，plus the power－up time．It is calculated by the following equation：

$$
t_{A C Q}=9 \times(R S+R I N) \times 24 p F+t P W R
$$

where $\operatorname{RIN}=1.5 \mathrm{k} \Omega, \mathrm{RS}$ is the source impedance of the input signal，and tPWR $=1 \mu \mathrm{~s}$ ，the power－up time of the device．The varying power－up times are detailed in the explanation of the clock mode conversions．When the conversion is internally timed，tACQ is never less than $1.4 \mu \mathrm{~s}$ ，and any source impedance below 300Ω does not significantly affect the ADC＇s AC performance．A high－ impedance source can be accommodated either by lengthening tACQ or by placing a $1 \mu \mathrm{~F}$ capacitor between the positive and negative analog inputs．

Internal FIFO
The MAX11618－MAX11621／MAX11624／MAX11625 con－ tain a FIFO buffer that can hold up to 16 ADC results．This allows the ADC to handle multiple internally clocked con－ versions，without tying up the serial bus．If the FIFO is filled and further conversions are requested without reading from the FIFO，the oldest ADC results are overwritten by the new ADC results．Each result contains 2 bytes，with the MSB preceded by four leading zeros．After each falling edge of $\overline{\mathrm{CS}}$ ，the oldest available byte of data is available at DOUT，MSB first．When the FIFO is empty，DOUT is zero．

Internal Clock

The MAX11618－MAX11621／MAX11624／MAX11625 operate from an internal oscillator，which is accurate within 10% of the 4.4 MHz nominal clock rate．The inter－ nal oscillator is active in clock modes 00，01，and 10.

Read out the data at clock speeds up to 10 MHz ．See Figures $4-7$ for details on timing specifications and starting a conversion．

Applications Information

Register Descriptions
The MAX11618－MAX11621／MAX11624／MAX11625 communicate between the internal registers and the external circuitry through the SPI－／QSPI－compatible ser－ ial interface．Table 1 details the registers and the bit names．Tables $2-5$ show the various functions within the conversion register，setup register，averaging regis－ ter，and reset register．

Conversion Time Calculations
The conversion time for each scan is based on a num－ ber of different factors：conversion time per sample， samples per result，results per scan，and if the external reference is in use．
Use the following formula to calculate the total conver－ sion time for an internally timed conversion in clock modes 00 and 10 （see the Electrical Characteristics section as applicable）：
Total Conversion Time $=$ tCNV \times nAVG \times nRESULT + tRP where：

$$
\mathrm{tCNV}=\operatorname{taCQ}(\max)+\operatorname{tCONV}(\max)
$$

nAVG＝samples per result（amount of averaging）．
nRESULT＝number of FIFO results requested； determined by the number of channels being scanned or by NSCAN1，NSCANO．
tRP＝internal reference wake－up；set to zero if inter－ nal reference is already powered up or external ref－ erence is being used
In clock mode 01，the total conversion time depends on how long CNVST is held low or high，including any time required to turn on the internal reference．Conversion time in externally clocked mode（CKSEL1，CKSELO＝11） depends on the SCLK period and how long $\overline{\mathrm{CS}}$ is held high between each set of eight SCLK cycles．In clock mode 01，the total conversion time does not include the time required to turn on the internal reference．

Table 1．Input Data Byte（MSB First）

REGISTER NAME	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Conversion	1	CHSEL3	CHSEL2	CHSEL1	CHSELO	SCAN1	SCAN0	X
Setup	0	1	CKSEL1	CKSELO	REFSEL1	REFSELO	X	X
Averaging	0	0	1	AVGON	NAVG1	NAVG0	NSCAN1	NSCAN0
Reset	0	0	0	1	$\overline{R E S E T}$	X	X	X

$X=$ Don＇t care ．

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Conversion Register

Select active analog input channels per scan and scan modes by writing to the conversion register. Table 2 details channel selection and the four scan modes. Request a scan by writing to the conversion register when in clock mode 10 or 11, or by applying a low pulse to the CNVST pin when in clock mode 00 or 01.
A conversion is not performed if it is requested on a channel that has been configured as CNVST. Do not request conversions on channels 8-15 on the MAX11618-MAX11621. Set CHSEL3:CHSELO to the lower channel's binary values.
Select scan mode 00 or 01 to return one result per sin-gle-ended channel within the requested range. Select scan mode 10 to scan a single input channel numerous times, depending on NSCAN1 and NSCANO in the averaging register (Table 4). Select scan mode 11 to return only one result from a single channel.

Setup Register
Write a byte to the setup register to configure the clock, reference, and power-down modes. Table 3 details the bits in the setup register. Bits 5 and 4 (CKSEL1 and CKSELO) control the clock mode, acquisition and sampling, and the conversion start. Bits 3 and 2 (REFSEL1 and REFSELO) control internal or external reference use.

Averaging Register Write to the averaging register to configure the ADC to average up to 32 samples for each requested result, and to independently control the number of results requested for single-channel scans.
Table 2 details the four scan modes available in the conversion register. All four scan modes allow averaging as long as the AVGON bit, bit 4 in the averaging register, is set to 1 . Select scan mode 10 to scan the same channel multiple times. Clock mode 11 disables averaging.

Reset Register Write to the reset register (as shown in Table 5) to clear the FIFO or to reset all registers to their default states. Set the RESET bit to 1 to reset the FIFO. Set the reset bit to zero to return the MAX11618-MAX11621/ MAX11624/MAX11625 to the default power-up state.

Table 2. Conversion Register*

BIT NAME	BIT	FUNCTION
-	7 (MSB)	Set to 1 to select conversion register.
CHSEL3	6	Analog input channel select.
CHSEL2	5	Analog input channel select.
CHSEL1	4	Analog input channel select.
CHSEL0	3	Analog input channel select.
SCAN1	2	Scan mode select.
SCANO	1	Scan mode select.
-	0 (LSB)	Don't care.

*See below for bit details.

CHSEL3	CHSEL2	CHSEL1	CHSELO	SELECTED CHANNEL (N)
0	0	0	0	AIN0
0	0	0	1	AIN1
0	0	1	0	AIN2
0	0	1	1	AIN3
0	1	0	0	AIN4
0	1	0	1	AIN5
0	1	1	0	AIN6
0	1	1	1	AIN7
1	0	0	0	AIN8
1	0	0	1	AIN9
1	0	1	0	AIN10
1	0	1	1	AIN11
1	1	0	0	AIN12
1	1	0	1	AIN13
1	1	1	0	AIN14
1	1	1	1	AIN15

| SCAN1 | SCANO | SCAN MODE (CHANNEL N IS
 SELECTED BY BITS CHSEL3-CHSEL0)
 0$c 0$ |
| :---: | :---: | :--- | Scans channels 0 through N.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Table 3. Setup Register*

BIT NAME	BIT	
-	$7(\mathrm{MSB})$	Set to zero to select setup register.
-	6	Set to 1 to select setup register.
CKSEL1	5	Clock mode and $\overline{\text { CNVST configuration. Resets to 1 at power-up. }}$
CKSEL0	4	Clock mode and $\overline{\text { CNVST configuration. }}$
REFSEL1	3	Reference mode configuration.
REFSELO	2	Reference mode configuration.
-	1	Don't care.
-	$0(L S B)$	Don't care.

*See below for bit details.

CKSEL1	CKSELO	CONVERSION CLOCK	ACQUISITION/SAMPLING	$\overline{\text { CNVST }}$ CONFIGURATION
0	0	Internal	Internally timed	$\overline{\text { CNVST }}$
0	1	Internal	Externally timed through $\overline{\text { CNVST }}$	$\overline{\text { CNVST }}$
1	0	Internal	Internally timed	$\overline{\text { AIN15/AIN11/AIN7** }}$
1	1	External (4.8MHz max)	Externally timed through SCLK	AIN15/AIN11/AIN7**

**For the MAX11618/MAX11619, CNVST has its own dedicated pin.

REFSEL1	REFSEL0	VOLTAGE REFERENCE	AutoShutdown
0	0	Internal	Reference off after scan; need wake-up delay.
0	1	External single ended	Reference off; no wake-up delay.
1	0	Internal	Reference always on; no wake-up delay.
1	1	Reserved	Reserved. Do not use.

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

Table 4. Averaging Register*

BIT NAME	BIT	
-	7 (MSB)	Set to 0 to select averaging register.
-	6	Set to 0 to select averaging register.
-	5	Set to 1 to select averaging register.
AVGON	4	Set to 1 to turn averaging on. Set to zero to turn averaging off.
NAVG1	3	Configures the number of conversions for single-channel scans.
NAVG0	2	Configures the number of conversions for single-channel scans.
NSCAN1	1	Single-channel scan count. (Scan mode 10 only.)
NSCAN0	0 (LSB)	Single-channel scan count. (Scan mode 10 only.)

*See below for bit details.

AVGON	NAVG1	NAVG0	FUNCTION
0	X	X	Performs 1 conversion for each requested result.
1	0	0	Performs 4 conversions and returns the average for each requested result.
1	0	1	Performs 8 conversions and returns the average for each requested result.
1	1	0	Performs 16 conversions and returns the average for each requested result.
1	1	1	Performs 32 conversions and returns the average for each requested result.

$X=$ Don't care .

NSCAN1	NSCANO	FUNCTION (APPLIES ONLY IF SCAN MODE 10 IS SELECTED)
0	0	Scans channel N and returns 4 results.
0	1	Scans channel N and returns 8 results.
1	0	Scans channel N and returns 12 results.
1	1	Scans channel N and returns 16 results.

Table 5. Reset Register

BIT NAME	BIT	FUNCTION
-	$7(\mathrm{MSB})$	Set to 0 to select reset register.
-	6	Set to 0 to select reset register.
-	5	Set to 0 to select reset register.
-	4	Set to 1 to select reset register.
$\overline{\text { RESET }}$	3	Set to zero to reset all registers. Set to 1 to clear the FIFO only.
X	2	Don't care.
X	1	Don't care.
X	$0(\mathrm{LSB})$	Don't care.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Power-Up Default State

The MAX11618-MAX11621/MAX11624/MAX11625 power up with all blocks in shutdown, including the reference. All registers power up in state 00000000 , except for the setup register, which powers up in clock mode $10($ CKSEL1 $=1)$.

Output Data Format

Figures 4-7 illustrate the conversion timing for the MAX11618-MAX11621/MAX11624/MAX11625. The 10bit conversion result is output in MSB-first format with four leading zeros followed by 10-bit data and two trailing zeros. DIN data is latched into the serial interface on the rising edge of SCLK. Data on DOUT transitions on the falling edge of SCLK. Conversions in clock modes 00 and 01 are initiated by CNVST. Conversions in clock modes 10 and 11 are initiated by writing an input data byte to the conversion register. Data output is binary.

Internally Timed Acquisitions and Conversions Using CNVST

Performing Conversions in Clock Mode 00

In clock mode 00, the wake-up, acquisition, conversion, and shutdown sequences are initiated through CNVST and performed automatically using the internal oscillator. Results are added to the internal FIFO to be read out later. See Figure 4 for clock mode 00 timing.
Initiate a scan by setting CNVST low for at least 40ns before pulling it high again. The MAX11618MAX11621/MAX11624/MAX11625 then wake up, scan all requested channels, store the results in the FIFO, and shut down. After the scan is complete, $\overline{E O C}$ is
pulled low and the results are available in the FIFO. Wait until $\overline{E O C}$ goes low before pulling $\overline{\mathrm{CS}}$ low to communicate with the serial interface. EOC stays low until $\overline{\mathrm{CS}}$ or $\overline{\mathrm{CNVST}}$ is pulled low again.
Do not initiate a second $\overline{\text { CNVST }}$ before $\overline{\text { EOC }}$ goes low; otherwise, the FIFO can become corrupted.

Externally Timed Acquisitions and Internally Timed Conversions with CNVST

Performing Conversions in Clock Mode 01 In clock mode 01, conversions are requested one at a time using CNVST and performed automatically using the internal oscillator. See Figure 5 for clock mode 01 timing.
Setting CNVST low begins an acquisition, wakes up the ADC, and places it in track mode. Hold CNVST low for at least $1.4 \mu \mathrm{~s}$ to complete the acquisition. If the internal reference needs to wake up, an additional $65 \mu \mathrm{~s}$ is required for the internal reference to power up.
Set CNVST high to begin a conversion. After the conversion is complete, the ADC shuts down and pulls $\overline{E O C}$ low. $\overline{\text { EOC }}$ stays low until $\overline{\mathrm{CS}}$ or $\overline{\text { CNVST }}$ is pulled low again. Wait until $\overline{\text { EOC }}$ goes low before pulling $\overline{\mathrm{CS}}$ or CNVST low.
If averaging is turned on, multiple CNVST pulses need to be performed before a result is written to the FIFO. Once the proper number of conversions has been performed to generate an averaged FIFO result, as specified by the averaging register, the scan logic automatically switches the analog input multiplexer to the next-requested channel. The result is available on DOUT once EOC has been pulled low.

Figure 4. Clock Mode 00

10-Bit, 300ksps ADCs
 with FIFO and Internal Reference

Figure 5. Clock Mode 01

Figure 6. Clock Mode 10

Internally Timed Acquisitions and Conversions Using the Serial Interface

 Performing Conversions in Clock Mode 10 In clock mode 10, the wake-up, acquisition, conversion, and shutdown sequences are initiated by writing an input data byte to the conversion register, and are performed automatically using the internal oscillator. This is the default clock mode upon power-up. See Figure 6 for clock mode 10 timing.Initiate a scan by writing a byte to the conversion register. The MAX11618-MAX11621/MAX11624/MAX11625 then power up, scan all requested channels, store the results in the FIFO, and shut down. After the scan is
complete, $\overline{\mathrm{EOC}}$ is pulled low and the results are available in the FIFO. $\overline{\mathrm{EOC}}$ stays low until $\overline{\mathrm{CS}}$ is pulled low again.

Externally Clocked Acquisitions and Conversions Using the Serial Interface

Performing Conversions in Clock Mode 11 In clock mode 11, acquisitions and conversions are initiated by writing to the conversion register and are performed one at a time using the SCLK as the conversion clock. Scanning and averaging are disabled, and the conversion result is available at DOUT during the conversion. See Figure 7 for clock mode 11 timing.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Figure 7. Clock Mode 11

Initiate a conversion by writing a byte to the conversion register followed by 16 SCLK cycles. If $\overline{\mathrm{CS}}$ is pulsed high between the eight and ninth cycles, the pulse width must be less than 100μ s. To continuously convert at 16 cycles per conversion, alternate 1 byte of zeros between each conversion byte.
If reference mode 00 is requested, wait 65μ s with $\overline{\mathrm{CS}}$ high after writing the conversion byte to extend the acquisition and allow the internal reference to power up.

Partial Reads and Partial Writes If the first byte of an entry in the FIFO is partially read ($\overline{\mathrm{CS}}$ is pulled high after fewer than eight SCLK cycles), the second byte of data that is read out contains the next 8 bits (not b7-b0). The remaining bits are lost for that entry. If the first byte of an entry in the FIFO is read out fully, but the second byte is read out partially, the rest of the entry is lost. The remaining data in the FIFO is uncorrupted and can be read out normally after taking $\overline{\mathrm{CS}}$ low again, as long as the 4 leading bits (normally zeros) are ignored. Internal registers that are written partially through the SPI contain new values, starting at the MSB up to the point that the partial write is stopped. The part of the register that is not written contains previously written values. If $\overline{\mathrm{CS}}$ is pulled low before $\overline{\mathrm{EOC}}$ goes low, a conversion cannot be completed and the FIFO is corrupted.

Transfer Function
Figure 8 shows the unipolar transfer function for singleended inputs. Code transitions occur halfway between successive-integer LSB values. Output coding is binary, with $1 \mathrm{LSB}=\mathrm{V}_{\mathrm{REF}} / 1024$ for unipolar operation.

Figure 8. Unipolar Transfer Function, Full Scale (FS) $=V_{\text {REF }}$
Layout, Grounding, and Bypassing
For best performance, use PCBs. Do not use wire wrap boards. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) signals parallel to one another or run digital lines underneath the package. High-frequency noise in the VDD power supply can affect performance. Bypass the VDD supply with a $0.1 \mu \mathrm{~F}$ capacitor to GND, close to the VDD pin. Minimize capacitor lead lengths for best supply-noise rejection. If the power supply is very noisy, connect a 10Ω resistor in series with the supply to improve powersupply filtering.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Definitions

Integral Nonlinearity

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. INL for the MAX11618-MAX11621/MAX11624/MAX11625 is measured using the end-point method.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of less than 1 LSB guarantees no missing codes and a monotonic transfer function.

Aperture Jitter

Aperture jitter (tAJ) is the sample-to-sample variation in the time between the samples.

Aperture Delay
Aperture delay (taD) is the time between the rising edge of the sampling clock and the instant when an actual sample is taken.

Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

In reality, there are other noise sources besides quantization noise, including thermal noise, reference noise, clock jitter, etc. Therefore, SNR is calculated by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion
Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all other ADC output signals:

SINAD $(d B)=20 \times \log ($ SignalRMS/NoisermS)

Effective Number of Bits

Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC error consists of quantization noise only. With an input range equal to the fullscale range of the ADC, calculate the effective number of bits as follows:
ENOB = (SINAD - 1.76)/6.02

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left(\sqrt{\left(V 2^{2}+V 3^{2}+V 4^{2}+V 5^{2}\right)} / \mathrm{V} 1\right)
$$

where V 1 is the fundamental amplitude, and $\mathrm{V} 2-\mathrm{V} 5$ are the amplitudes of the 2nd through 5th-order harmonics.

Spurious-Free Dynamic Range

Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest distortion component.

Chip Information

PROCESS: BiCMOS
Package Information

For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
"+", "\#", or "-" in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 16 QSOP E16+5 $\underline{\mathbf{2 1 - 0 0 5 5}}$ $\underline{\mathbf{9 0 - 0 1 6 7}}$ 24 QSOP E $24+3$ $\underline{\mathbf{2 1 - 0 0 5 5}}$ $\underline{\mathbf{9 0 - 0 1 7 2}}$

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

10-Bit, 300ksps ADCs with FIFO and Internal Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 11$	Initial release	-
1	$9 / 11$	Released MAX11618-MAX11621. Updated Absolute Maximum Ratings, Transfer Function section, and Package Information.	$1,2,19,20$

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP3202T-CI/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN
LTC1605IG LTC2238IUH LTC1418AIG LTC1605ACG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW
MCP3422A0-E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW
NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1
ADS7955QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3422A0-E/MC AD9220AR MAX11212AEUB+
TLV1570CDW TLC3574IDWR TLC1542IDWR TLC0838CDWR AD7914BRUZ-REEL7 AD977ABRZ ADC12130CIWM/NOPB
MCP3426A1-EMC MCP3426A0-EMC AD7192BRUZ-REEL AD7193BRUZ-REEL

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

