Low Power, 312 Digit A/D Converter with Display Hold

General Description

The MAX136 is a monolithic analog-to-digital converter (ADC) with very high input impedance. It differs from the Maxim ICL7136 in that the MAX136 provides a Hold pin, which makes it possible to hold or "freeze" a reading. The MAX136 directly drives a nonmultiplexed liquid crystal (LCD) display, requiring no external drive circuitry. With minor external component changes, it is pin compatible with the ICL7116 but with significantly reduced power consumption, making the MAX136 a superior device for portable systems.
Versatility and accuracy are inherent features of this ADC. The dual-slope conversion technique automatically rejects interference signals common in industrial environments. True differential inputs allow direct measurements of bridge transducer outputs or load cells. The zero-integrator phase eliminates overrange hangover and hysteresis effects. The MAX136 offers high accuracy by lowering rollover error to less than one count and zero reading drift to less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

Applications
These devices can be used in a wide range of digital panel meter applications. Most applications, however, involve the measurement and display of analog data:

Pressure	Conductance
Voltage	Current
Resistance	Speed
Temperature	Material Thickness

Typical Operating Circuit

Features

- Power Dissipation Guaranteed Less than 1mW-9V Battery Life 3000 Hours Typical
- Hold Pin Allows Indefinite Display Hold
- Guaranteed First Reading Recovery from Overrange
- On-Board Display Drive Capability—No External Circuitry Required
- High-Impedance CMOS Differential Inputs
- Low Noise(< $15 \mu \mathrm{~V}$ - -) Without Hysteresis or Overrange Hangover
- Clock and Reference On-Chip
- Zero Input Gives Zero Reading
- True Polarity Indication for Precision Null Applications
- Key Parameters Guaranteed Over Temperature

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX136CPL+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 PDIP
MAX136CMH +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 MQFP
MAX136CQH +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 PLCC
MAX136C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice

+Denotes a lead(Pb)-free/RoHS-compliant package.
Pin Configurations

Pin Configurations continued at end of data sheet

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

MAX136

Low Power, 31² Digit A/D Converter with Display Hold

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 2) PDIP \qquad
Operating Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 60s) \qquad
\qquad

Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to $\pm 1 \mathrm{~mA}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}^{+}=9 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; $\mathrm{f}_{\text {CLOCK }}=48 \mathrm{kHz}$; test circuit - Figure 1 unless noted.)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\begin{aligned} & V_{I N}=0.0 \mathrm{~V} . \text { Full Scale }=200.0 \mathrm{mV} \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \left.0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \text { (Note } 6\right) \end{aligned}$	$\begin{aligned} & -000.0 \\ & -000.0 \end{aligned}$	$\begin{aligned} & \pm 000.0 \\ & \pm 000.0 \end{aligned}$	$\begin{aligned} & +000.0 \\ & +000.0 \end{aligned}$	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }}, V_{\text {REF }}=100 \mathrm{mV} \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Note 3) } \\ & 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \text { (Note 6) } \end{aligned}$	$\begin{aligned} & 999 \\ & 998 \end{aligned}$	$\begin{aligned} & 999 / 1000 \\ & 999 / 1000 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1001 \end{aligned}$	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$\begin{aligned} & -V_{I N}=+V_{I N} \cong 200.0 \mathrm{mV} \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \left.0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \text { (Note } 6\right) \end{aligned}$	-1	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \end{aligned}$	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full Scale $=200.0 \mathrm{mV}$ or full scale $=2.000 \mathrm{~V}$	-1	± 0.2	+1	Counts
Common Mode Rejection Ratio (Note 7)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, V_{1 N}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		5		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95% of time)	$\begin{aligned} & V_{\text {IV }}=O V \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		10		$\mu \mathrm{V}$
Input Leakage Current	$\begin{aligned} & V_{I N}=0, T_{A}=25^{\circ} \mathrm{C} \text { (Note 3) } \\ & 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} 10 \\ 200 \end{gathered}$	pA
Zero Reading Drift	$V_{I N}=0,0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ (Note 6)		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & V_{\text {IN }}=199.0 \mathrm{mV} \\ & 0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. Oppm} /{ }^{\circ} \mathrm{C} \text {) (Note 6) } \end{aligned}$		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
V^{+}Supply Current	$\begin{aligned} & V_{1 N}=0 \\ & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		80	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$
Analog Common Voltage (with respect to Pos. supply)	$250 \mathrm{k} \Omega$ between Common \& Pos. Supply	2.6	2.8	3.2	V
Temp. Coeff. of Analog Common (with respect to Pos. Supply	250k Ω between Common \& Pos. Supply		75		ppm $/{ }^{\circ} \mathrm{C}$
Input Resistance, Pin 1			1000		MS!
$V_{\text {IL }}, \operatorname{Pin} 1$				TEST +1.5	V
$V_{1 H}$, Pin 1		$V^{+}-1.5$			V
Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$ (Note 8)	4	5	6	V
Test Pin Voltage	With Respect to V^{+}	4	5	6	V
Overload Recovery Time (Note 5)	$V_{1 N}$ changing from $\pm 10 \mathrm{~V}$ to 0 V		0	1	Measurement Cycles

Note 3: Test condition is $V_{I N}$ applied between pins $I N-H I$ and $I N-L O$, i.e., $1 \mathrm{M} \Omega$ resistor in Figures 1 and 2.
Note 4: All pins are designed to withstand electrostatic discharge (ESD) levels in excess of 2000V. (Test circuit per Mil. Std. 883C, Method 3015 .2)
Note 5: Number of measurement cycles for display to give accurate reading
Note 6: $\quad 1 \mathrm{M} \Omega$ resistor is removed in Figures 1 and 2.
Note 7: Refer to "Differential Input" discussion (See Maxim's ICL7136 data sheet)
Note 8: Back plane drive is in phase with segment drive for 'off' segment. 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .

Low Power, 31⁄2 Digit A/D Converter with Display Hold

Detailed Description

The MAX136 $31 / 2$ digit ADC is similar to the Maxim ICL7136 except for the addition of a Hold pin. For a detailed product description, and applications information (other than the operation of the Hold pin described below), refer to Maxim's ICL7136 data sheet.

Hold Input

The Hold input is a digital input with a logic threshold approximately midway between V_{+}and Test. The MAX136 continuously performs conversions, independent of the Hold input. When the Hold input is at $V+$ the display latch pulse is inhibited, and the display latches

Figure 1. MAX136 Typical Operating Circuit, 200mV Full Scale
are not updated; when the Hold input is low or at the Test voltage, the display is updated at the end of each conversion. The MAX136 maintains low-power dissipation even during display hold by eliminating the pulldown resistor between Hold and Test present on the ICL7116. The Hold input is CMOS compatible, and can also be driven by a switch connected between Test and V+ (Figure 1).

Reference Input
Unlike the ICL7136, the MAX136 does not have a reference low input. Apply the reference voltage between Reference High (REF HI) and

Figure 2. MAX136 Typical Operating Circuit, 2.0V Full Scale

MAX136

Low Power, 31/2 Digit A/D Converter with Display Hold

Pin Configurations (continued)

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PART TYPE	PACKAGE CODE	DOCUMENT NO.	LAND PATTERN No.
40 PDIP	$\mathrm{P} 40+1$	$\underline{21-0044}$	-
44 PLCC	$\mathrm{Q} 44+1$	$\underline{21-0049}$	$90-0236$
44 MQFP	$\mathrm{M} 44+5$	$\underline{21-0826}$	$90-0169$

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$2 / 87$	Initial release	-
1	$11 / 12$	Add MQFP package to Ordering Information and Package Information.	1,4

maxim
integrated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884WE LC75814VS-TLM-E BU9795AFV-E2 BU9799KV-E2 PCF8566T/1.118 TPS65132A0YFFR BU9795AKV-E2 34801000 BU97510CKVME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI+ MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX16929CGUI/V+ MAX8570EUT+T MAX138CPL+ AY0438-I/L AY0438/L AY0438/P HV66PG-G HV881K7-G TC7106CKW TC7106CPL TC7116CKW TC7116CPL TC7126CLW TC7126CPL TC7129CKW $\underline{T C 7129 C L W}$ PCF8576CT/1.518 PCF2112CT/1,118 PCF8566T/1,118 PCF8577CT/3,118 LC75806PT-H LC75832WH-E

