Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

General Description

The MAX1377/MAX1379/MAX1383 feature two simulta-neous-sampling, low-power, 12-bit ADCs with serial interface and internal voltage reference. Fast sampling rate, low power dissipation, and excellent dynamic performance make the MAX1377/MAX1379/MAX1383 ideal for industrial process control, motor control, and RF applications
Conversion results are available through a SPITM-/ QSPI ${ }^{\text {TM }}$-/MICROWIRE ${ }^{\text {TM }}$-/DSP-compatible interface with independent serial digital outputs for each channel. The serial outputs allow twice as much data to be transferred at the given clock rate. The conversion results for both ADCs can also be output on a single digital output for microcontrollers ($\mu \mathrm{Cs}$) and DSPs with only a single serial input available.
The MAX1377 operates from a 2.7 V to 3.6 V analog supply and the MAX1379/MAX1383 operate from a 4.75V to 5.25 V analog supply. A separate 1.8 V to AVDD digital supply allows interfacing to low voltage logic without the use of level translators.

Two power-down modes, partial and full, allow the MAX1377/MAX1379 and MAX1383 (full power-down only) to save power between conversions. Partial power-down mode reduces the supply current to 2 mA while leaving the reference enabled for quick power-up. Full powerdown mode reduces the supply current to $1 \mu \mathrm{~A}$.
The MAX1377/MAX1379 inputs accept voltages between zero and the reference voltage or $\pm \mathrm{VREF} / 2$. The MAX1383 offers an input voltage range of $\pm 10 \mathrm{~V}$, which is ideal for industrial and motor-control applications. The input to each of the ADCs supports either a true-differential input or two single-ended inputs.

The MAX1377/MAX1379/MAX1383 are available in a 20-pin TQFN package, and are specified for the automotive $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature range

Applications

Motor Control
Communications
Bill Validation
Portable Instruments
Data Acquisition

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1377ATP +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN-EP*
MAX1379ATP +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN-EP*
MAX1383ATP +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

- Dual, Simultaneous-Sampling, 12-Bit Successive Approximation Register (SAR) ADCs
- 2 x 2 Mux Inputs or Two Differential Inputs
- 1.25Msps Sampling Rate per ADC
- Internal or External Reference
- Excellent Dynamic Performance 70dB SINAD (MAX1377) 71dB SINAD (MAX1379/MAX1383) 84dBc/SFDR
1MHz Full-Linear Bandwidth
- 2.7V to 3.6V Low-Power Operation (MAX1377) 50mW (Normal Operation) 6mW (Partial Power-Down) 3 $\mu \mathrm{W}$ (Full Power-Down)
4.75V to 5.25V Low-Power Operation (MAX1379) 90mW (Normal Operation) 10mW (Partial Power-Down) $5 \mu \mathrm{~W}$ (Full Power-Down)
-4.75V to 5.25V Low-Power Operation (MAX1383) 280mW (Normal Operation) $2.5 \mu \mathrm{~W}$ (Full Power-Down)
- 20MHz, SPI-Compatible, 3-Wire Serial Interface User-Selectable Single (0.625Msps max) or Dual Outputs (1.25Msps max)
- Input Range: $\pm 10 \mathrm{~V}$ (MAX1383), $0-\mathrm{V}_{\text {REF }}$ or $\pm V_{\text {REF }} / 2$ (MAX1377/MAX1379)
- Small 20-Pin TQFN Package

SPI/QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
Functional Diagram

Pin Configuration appears at end of data sheet.

Dual, 12 -Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

ABSOLUTE MAXIMUM RATINGS

```
AVDD to AGND
        -0.3V to +6V
VL to DGND .......................................................-0.3V to +6V
SCLK, \overline{CS}, CNVST, U/B, S/\overline{D}, SEL,
    REFSEL to DGND
                            -0.3V to (VL + 0.3V)
```



```
AIN1A, AIN1B, AIN2A, AIN2B to AGND
    MAX1377/MAX1379 ..........................-0.3V to (AVDD + 0.3V)
    MAX1383.......................................................-12V to +12V
RGND to AGND...............................................-0.3V to +0.3V
```


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX1377

$\left(V_{\text {AVDD }}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}$ L $=1.8 \mathrm{~V}$ to AVDD , fSCLK $=20 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\mathrm{REF}}=2.048 \mathrm{~V}$, REFSEL $=\mathrm{V}$, $\mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}$, CREF $=$ $1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			12			Bits
Relative Accuracy	INL	(Note 1)	-1.25		+1.25	LSB
Differential Nonlinearity	DNL		-1		+1.5	LSB
Offset Error					± 8	LSB
Offset-Error Matching					± 12	LSB
Gain Error		(Note 2)			± 6	LSB
Gain-Error Matching		(Note 2)			± 6	LSB
Gain Temperature Coefficient				± 2		ppm/ ${ }^{\circ} \mathrm{C}$
DC Input Isolation		AIN1A to AIN1B, AIN2A to AIN2B		80		dB
		AIN1A to AIN2A, AIN1B to AIN2B		80		
DYNAMIC SPECIFICATIONS (fin $=500 \mathrm{kHz}, 2 \mathrm{~V}$ P-P sine wave, $1.25 \mathrm{Msps}, 20 \mathrm{MHz}$ fsclk)						
Signal-to-Noise Plus Distortion	SINAD	Unipolar	66	69.5		dB
		Bipolar	67	70		
Signal-to-Noise Ratio	SNR	Unipolar	66	70		dB
		Bipolar	67	70		
Total Harmonic Distortion	THD	Up to the 5th harmonic		-84	-74	dB
Spurious-Free Dynamic Range	SFDR			-86	-76	dB
Intermodulation Distortion	IMD	$\mathrm{f}_{\mathrm{N} 1}=103.5 \mathrm{kHz}, \mathrm{f} / \mathrm{N} 2=113.5 \mathrm{kHz}$		-78		dB
Full-Power Bandwidth		-3dB point		5		MHz
Full-Linear Bandwidth		(S/N + D) > 68dB, 1V input		1		MHz
CONVERSION RATE (Figure 4)						
Minimum Conversion Time	tconv	16 clock cycles per conversion (Note 3)			0.800	$\mu \mathrm{s}$
Maximum Throughput Rate		Dual output mode, S/D = 0	1.25			Msps
		Single output mode, $\mathrm{S} / \overline{\mathrm{D}}=1$	0.625			
Minimum Throughput Rate for Full Bandwidth Signal		(Note 4)	10			ksps

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX1377 (continued)

$\left(V_{\text {AVDD }}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$ to $\mathrm{AVDD}, \mathrm{fSCLK}=20 \mathrm{MHz}(50 \%$ duty cycle $), \mathrm{V}_{\text {REF }}=2.048 \mathrm{~V}$, REFSEL $=\mathrm{V}_{\mathrm{L}}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=$ $1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
Mrack-and-Hold Acquisition Time	tACQ		125	UNITS
Aperture Delay			2	ns
Aperture-Delay Matching			2	ns
Aperture Jitter		(Note 5)	30	ns
External Clock Frequency	fSCLK		ps	
ANAL		20	MHz	

ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B)

Input Range	$\bar{U} / \mathrm{B}=0, \mathrm{~V}_{\text {AIN_A }}-\mathrm{RGND}$	0	$V_{\text {REF }}$	V
Differential Input Range	$\bar{U} / B=1, V_{\text {AIN_A }}-V_{\text {AIN_B }}$	- $\mathrm{V}_{\text {REF } / 2}$	$+\mathrm{V}_{\text {REF/2 }}$	V
Absolute Voltage Range		0	AVDD	V
DC Leakage Current			± 1	$\mu \mathrm{A}$
Input Impedance				k Ω
Input Capacitance	At each analog input			pF

EXTERNAL REFERENCE (REFSEL = 1)

Absolute Input Voltage Range	VREF		1.0		$\begin{aligned} & \text { AVDD } \\ & +0.05 \end{aligned}$	V
Input Capacitance				50		pF
DC Leakage Current					± 1	$\mu \mathrm{A}$
Input Current		Time averaged at maximum throughput rate		800		$\mu \mathrm{A}$
INTERNAL REFERENCE (REFSEL = 0)						
Reference Voltage Level			2.028	2.048	2.068	V
Load Regulation		ISOURCE $=0$ to 1 mA		1		$\mathrm{mV} / \mathrm{mA}$
		ISINK $=0$ to $50 \mu \mathrm{~A}$		1		
Voltage Temperature Coefficient				± 50.0		ppm/ ${ }^{\circ} \mathrm{C}$

DIGITAL INPUTS (SCLK, CNVST, $\overline{\mathbf{U}} / \mathrm{B}, \mathrm{S} / \overline{\mathrm{D}}, \mathrm{SEL}$, REFSEL)

Input-Voltage Low	VIL				$\begin{gathered} 0.3 x \\ V_{L} \end{gathered}$	V
Input-Voltage High	V_{IH}		$\begin{gathered} 0.7 x \\ V_{L} \end{gathered}$			V
Input Leakage Current	IIL				± 10	$\mu \mathrm{A}$
DIGITAL OUTPUT (DOUT1, DOUT2)						
Output Load Capacitance	CDOUT	For stated timing performance			30	pF
Output-Voltage Low	VOL	ISINK $=5 \mathrm{~mA}$			0.4	V
Output-Voltage High	VOH	ISOURCE $=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}} \geq 2.7 \mathrm{~V}$	$\begin{gathered} V_{L} \\ -0.5 \mathrm{~V} \end{gathered}$			V
Output Leakage Current	IOL	High-impedance mode (Figure 9)		± 0.2		$\mu \mathrm{A}$
POWER REQUIREMENTS						
Analog Supply Voltage	AVDD		2.7	3.0	3.6	V
Digital Supply Voltage	VL		1.8		AVDD	V

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX1377 (continued)

$\left(V_{\text {AVDD }}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$ to AVDD, fSCLK $=20 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\mathrm{REF}}=2.048 \mathrm{~V}$, REFSEL $=\mathrm{V}_{\mathrm{L}}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=$ $1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Analog Supply Current	IAVDD	Normal operation	13	15	mA
		Partial power-down mode (Note 5)	2		
		Full power-down mode (Note 5)	1	5	$\mu \mathrm{A}$
Average Static Supply Current			8	10	mA
Digital Supply Current	IVL	$\mathrm{f}_{\text {SCLK }}=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	1	1.5	mA
Power-Supply Rejection	PSR	$\mathrm{V}_{\text {AVDD }}=3 \mathrm{~V} \pm 10 \%$, full-scale input	± 0.2	± 3	mV

ELECTRICAL CHARACTERISTICS—MAX1379

$\left(V_{\text {AVDD }}=4.75 \mathrm{~V}\right.$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}$, fSCLK $=20 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\text {REF }}=4.096 \mathrm{~V}$, REFSEL $=\mathrm{V}_{\mathrm{L}}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=1 \mu F ; \mathrm{T}_{\mathrm{A}}=$ $T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			12			Bits
Relative Accuracy	INL	(Note 1)	-1.25		+1.25	LSB
Differential Nonlinearity	DNL		-1		+1	LSB
Offset Error					± 8	LSB
Offset-Error Matching					± 9	LSB
Gain Error		(Note 2)			± 6	LSB
Gain-Error Matching		(Note 2)			± 9	LSB
Gain Temperature Coefficient				± 2		ppm/ ${ }^{\circ} \mathrm{C}$
DC Input Isolation		AIN1A to AIN1B, AIN2A to AIN2B		80		dB
		AIN1A to AIN2A, AIN1B to AIN2B		80		
DYNAMIC SPECIFICATIONS (fin $=500 \mathrm{kHz}, 4 \mathrm{~V}_{\text {P-P }}$ sine wave, $1.25 \mathrm{Msps}, 20 \mathrm{MHz}$ fSCLK)						
Signal-to-Noise Plus Distortion	SINAD	Unipolar	69	70		dB
		Bipolar	70	71		
Signal-to-Noise Ratio	SNR	Unipolar	70	71		dB
		Bipolar	70	72		
Total Harmonic Distortion	THD	Up to the 5th harmonic		-84	-76	dB
Spurious-Free Dynamic Range	SFDR			-84	-76	dB
Intermodulation Distortion	IMD	$\mathrm{f}\|\mathrm{N} 1=103.5 \mathrm{kHz}, \mathrm{f}\| \mathrm{N} 2=113.5 \mathrm{kHz}$		-78		dB
Full-Power Bandwidth		-3dB point		5		MHz
Full-Linear Bandwidth		(S/N + D) > 68dB, 1V input		1		MHz
CONVERSION RATE (Figure 6)						
Minimum Conversion Time	tconv	16 clock cycles per conversion (Note 3)			0.8	$\mu \mathrm{s}$
Maximum Throughput Rate		Dual-output mode, S/D = 0	1.25			Msps
		Single-output mode, $\mathrm{S} / \overline{\mathrm{D}}=1$	0.625			
Minimum Throughput Rate for Full Bandwidth Signal		(Note 4)	10			ksps

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX1379 (continued)

$\left(V_{\text {AVDD }}=4.75 \mathrm{~V}\right.$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}$, fSCLK $=20 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\text {REF }}=4.096 \mathrm{~V}$, REFSEL $=\mathrm{V} \mathrm{L}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=1 \mu F ; \mathrm{T}_{\mathrm{A}}=$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
Mrack-and-Hold Acquisition Time	tACQ		125	UNITS
Aperture Delay			2	ns
Aperture-Delay Matching			2	ns
Aperture Jitter		(Note 5)	30	ns
External Clock Frequency	fSCLK		ps	
ANH		20	MHz	

ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B)

Input Range	$\bar{U} / B=0, V_{\text {AIN_A }}-R G N D$	0	VREF	V
Differential Input Range	$\overline{\mathrm{U}} / \mathrm{B}=1, \mathrm{~V}_{\text {AIN_A }}-V_{\text {AIN_B }}$	- $\mathrm{V}_{\text {REF/2 }}$	+ $\mathrm{V}_{\text {REF/2 }}$	
Absolute Voltage Range		0	AVDD	V
DC Leakage Current			± 1	$\mu \mathrm{A}$
Input Impedance				$\mathrm{k} \Omega$
Input Capcitance	At each analog input			pF

EXTERNAL REFERENCE (REFSEL = 1)
$\left.\begin{array}{|l|l|l|l|l|c|}\hline \text { Absolute Input Voltage Range } & \text { V } & & & \begin{array}{r}\text { AVDD } \\ +0.05\end{array} & \mathrm{~V}\end{array}\right]$

DIGITAL INPUTS (SCLK, CNVST, $\overline{\mathrm{U}} / \mathrm{B}, \mathrm{S} / \overline{\mathrm{D}}, \mathrm{SEL}$, REFSEL)

Input-Voltage Low	VIL				$\begin{gathered} 0.3 x \\ V_{L} \end{gathered}$	V
Input-Voltage High	V_{IH}		$\begin{gathered} 0.7 \times \\ V_{\mathrm{L}} \\ \hline \end{gathered}$			V
Input Leakage Current	I/L				± 10	$\mu \mathrm{A}$
DIGITAL OUTPUT (DOUT1, DOUT2)						
Output Load Capacitance	CDOUT	For stated timing performance			30	pF
Output-Voltage Low	VOL	ISINK $=5 \mathrm{~mA}$			0.4	V
Output-Voltage High	VOH	ISOURCE $=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}} \geq 2.7 \mathrm{~V}$	$\begin{aligned} & V_{L}- \\ & 0.5 \mathrm{~V} \end{aligned}$			V
Output Leakage Current	IOL	High-impedance mode (Figure 9)		± 0.2		$\mu \mathrm{A}$
POWER REQUIREMENTS						
Analog Supply Voltage	AVDD		4.25	5.0	5.25	V
Digital Supply Voltage	VL		1.8		AVDD	V

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX1379 (continued)

$\left(V_{\text {AVDD }}=4.75 \mathrm{~V}\right.$ to 5.25 V , $\mathrm{V}_{\mathrm{L}}=3 \mathrm{~V}$, fSCLK $=20 \mathrm{MHz}$ (50% duty cycle $)$, $\mathrm{V}_{\mathrm{REF}}=4.096 \mathrm{~V}$, REFSEL $=\mathrm{V}_{\mathrm{L}}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Analog Supply Current	IAVDD	Normal operation	16	18	mA
		Partial power-down mode (Note 5)	2		
		Full power-down mode (Note 5)		5	$\mu \mathrm{A}$
Average Static Supply Current			9	10	mA
Digital Supply Current	IVL	fSCLK $=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{CLL}=30 \mathrm{pF}$	2	3	mA
		$\mathrm{f}_{\text {SCLK }}=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	1		
Power-Supply Rejection	PSR	$V_{\text {AVDD }}=5 \mathrm{~V} \pm 10 \%$, full-scale input	± 0.2	± 3	mV

ELECTRICAL CHARACTERISTICS—MAX1383

$\left(V_{\text {AVDD }}=4.75 \mathrm{~V}\right.$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$ to AVDD , fSCLK $=20 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}$, REFSEL $=\mathrm{V}_{\mathrm{L}}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=$ $1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			12			Bits
Relative Accuracy	INL	(Note 1)	-1.5		+1.5	LSB
Differential Nonlinearity	DNL		-1		+1.5	LSB
Offset Error		Unipolar			± 12	LSB
		Bipolar			± 16	
Offset-Error Matching					± 10	LSB
Gain Error		(Note 2)			± 8	LSB
Gain-Error Matching		(Note 2)			± 6	LSB
Gain Temperature Coefficient				± 2		ppm/ ${ }^{\circ} \mathrm{C}$
DC Input Isolation		AlN1A to AIN1B, AIN2A to AIN2B		74		dB
		AIN1A to AIN2A, AIN1B to AIN2B		80		
Signal-to-Noise Plus Distortion	SINAD	Unipolar	67	71		dB
		Bipolar	69	72		
Signal-to-Noise Ratio	SNR	Unipolar	67	71		dB
		Bipolar	69	72		
Total Harmonic Distortion	THD	Up to the 5th harmonic		-84	-72	dB
Spurious-Free Dynamic Range	SFDR			-86	-72	dB
Intermodulation Distortion	IMD	$\mathrm{f} \mid \mathrm{N} 1=103.5 \mathrm{kHz}, \mathrm{f} / \mathrm{N} 2=113.5 \mathrm{kHz}$		-78		dB
Full-Power Bandwidth		-3dB point		10		MHz
Full-Linear Bandwidth		(S/N + D) > 68dB, 1V input		1		MHz
CONVERSION RATE (Figure 4)						
Minimum Conversion Time	tconv	16 clock cycles per conversion (Note 3)			0.800	$\mu \mathrm{s}$
Maximum Throughput Rate		Dual output mode, S/D = 0	1.25			Msps
		Single output mode, $\mathrm{S} / \overline{\mathrm{D}}=1$	0.625			

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX1383 (continued)

$\left(V_{\text {AVDD }}=4.75 \mathrm{~V}\right.$ to 5.25 V , $\mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$ to AVDD , fSCLK $=20 \mathrm{MHz}\left(50 \%\right.$ duty cycle), $\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}$, REFSEL $=\mathrm{V}_{\mathrm{L}}, \mathrm{S} / \overline{\mathrm{D}}=\mathrm{DGND}, \mathrm{C}_{\text {REF }}=$ $1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Throughput Rate for Full Bandwidth Signal		(Note 4)	10			ksps
Track-and-Hold Acquisition Time	tACQ			125		ns
Aperture Delay				2		ns
Aperture-Delay Matching				2		ns
Aperture Jitter		(Note 5)		30		ps
External Clock Frequency	fSCLK				20	MHz
ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B)						
Input Range		$\bar{U} / \mathrm{B}=0, V_{\text {AIN_A }}-\mathrm{RGND}$	-10		+10	V
Differential Input Range		$\overline{\mathrm{U}} \mathrm{B}=1, \mathrm{~V}_{\text {AIN_A }}-\mathrm{V}_{\text {AIN_B }}$	-10		+10	V
Absolute Voltage Range			-10		+10	V
Input Impedance				10		$\mathrm{k} \Omega$
Input Capacitance		At each analog input		10		pF
EXTERNAL REFERENCE (REFSEL = 1)						
Absolute Input Voltage Range	$V_{\text {REF }}$		1.25		2.5	V
Input Capacitance				50		pF
Input Current		Time averaged at maximum throughput rate		1600		$\mu \mathrm{A}$
INTERNAL REFERENCE (REFSEL = 0)						
Reference Voltage Level			2.48	2.50	2.52	V
Load Regulation		ISOURCE $=0$ to 1 mA		1		$\mathrm{mV} / \mathrm{mA}$
		ISINK $=0$ to $50 \mu \mathrm{~A}$		1		
Voltage Temperature Coefficient				± 50.0		ppm/ ${ }^{\circ} \mathrm{C}$
DIGITAL INPUTS (SCLK, CNVST, $\overline{\mathbf{U} / \mathrm{B}, \mathrm{S} / \overline{\mathrm{D}}, \mathrm{SEL}, \mathrm{REFSEL})}$						
Input-Voltage Low	VIL				$0.3 \times \mathrm{V}$ L	V
Input-Voltage High	V_{IH}		$0.7 \times \mathrm{V}_{\mathrm{L}}$			V
Input Leakage Current	IIL				± 10	$\mu \mathrm{A}$
DIGITAL OUTPUTS (DOUT1, DOUT2)						
Output Load Capacitance	CDOUT	For stated timing performance			30	pF
Output-Voltage Low	VOL	ISINK $=5 \mathrm{~mA}$			0.4	V
Output-Voltage High	V OH	ISOURCE $=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}} \geq 2.7 \mathrm{~V}$	VL-0.5V			V
Output Leakage Current	lOL	High-impedance mode (Figure 9)		± 0.2		$\mu \mathrm{A}$
POWER REQUIREMENTS						
Analog Supply Voltage	AVDD		4.75	5.0	5.25	V
Digital Supply Voltage	VL		1.8		AVDD	V
Analog Supply Current	IAVDD	Normal operation		55	65	mA
		Full power-down mode (Note 5)		0.5	10	$\mu \mathrm{A}$
Average Static Supply Current				44	58	mA
Digital Supply Current	IVL	fSCLK $=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		2	3.0	mA
Power-Supply Rejection	PSR	$\mathrm{V}_{\text {AVDD }}=5 \mathrm{~V} \pm 10 \%$, full-scale input		± 5	± 30	mV

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

TIMING CHARACTERISTICS (Figures 6, 10)

$\mathrm{V}_{\text {AVDD }}=4.25 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$ to $\mathrm{AVDD}, \mathrm{V}_{\text {REF }}=4.096 \mathrm{~V}$, fSCLK $=20 \mathrm{MHz}$ for MAX1379, 50% duty cycle, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Clock Period	tcP		50			ns
SCLK Duty Cycle	$\mathrm{t}_{\mathrm{CH} / \mathrm{t}} \mathrm{CL}$		45		55	\%
SCLK Pulse-Width High	tch		22.5			ns
SCLK Pulse-Width Low	tCL		22.5			ns
SCLK Rise to DOUT_ Transition	tDOUT	$C_{L}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}$			14	ns
		$C_{L}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{L}}=3 \mathrm{~V}$			17	
		$C_{L}=30 \mathrm{pF}, \mathrm{V}_{L}=1.8 \mathrm{~V}$			24	
DOUT_ Remains Valid After SCLK	tDHOLD		4			ns
CNVST Fall to SCLK Fall	tSETUP	$C_{L}=30 \mathrm{pF}$	10			ns
CNVST Pulse Width	tcsw		20			ns
Power-Up Time; Full Power-Down	tpWR-UP	External load on REF < 3 μ F		2		ms
SEL to CNVST Fall	tSEL_SETUP		100	120		ns
SEL Hold to CNVST Fall			10			ns
$\overline{\overline{C S}}$ Fall To CNVST Fall	tCST	External load on REF < 3 $\mu \mathrm{F}$		2		ms
Restart Time; Partial Power-Down	trcV	No external load		16		Cycles

Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and the offset error have been nulled.
Note 2: Offset nulled.
Note 3: Conversion time is defined as the number of clock cycles (16) multiplied by the clock period. Clock has 50% duty cycle. Note 4: At sample rates below 10ksps, the input full linear bandwidth is reduced to 5 kHz .
Note 5: SCLK and CNVST not switching during measurement.

Typical Operating Characteristics

$\left(V_{\text {AVDD }}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

$\left(V_{\text {AVDD }}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{I}} \mathrm{L} \mathrm{K}=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

$\left(\mathrm{V}_{\text {AVDD }}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}\right.$, fscLK $=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX1379 BIPOLAR DNL vs. DIGITAL OUTPUT CODE

MAX1379 FFT PLOT

MAX1379 FFT PLOT

MAX1379 OFFSET ERROR vs. TEMPERATURE

MAX1379 FFT PLOT

MAX1379 TOTAL HARMONIC DISTORTION vs. SOURCE IMPEDENCE

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {AVDD }}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}\right.$, fSCLK $=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX1379 FULL-SCALE AMPLITUDE
vs. FREQUENCY

MAX1379 AVDD SUPPLY CURRENT
vs. CONVERSION RATE

MAX1379 INTERNAL REFERENCE VOLTAGE
vs. ANALOG SUPPLY VOLTAGE

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

$\left(V_{\text {AVDD }}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}\right.$, fscLK $=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

$\left(V_{\text {AVDD }}=5 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}\right.$, fscLK $=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX1383 AVDD SUPPLY CURRENT
vs. SUPPLY VOLTAGE

MAX1383 INTERNAL REFERENCE VOLTAGE vs. TEMPERATURE

MAX1383 AVDD SUPPLY CURRENT vs. CONVERSION RATE

MAX1383 AVDD SUPPLY CURRENT
vs. SUPPLY VOLTAGE

MAX1383 EXTERNAL REFERENCE SUPPLY CURRENT vs. TEMPERATURE

MAX1383 FULL-SCALE AMPLITUDE vs. FREQUENCY

MAX1383 INTERNAL REFERENCE VOLTAGE vs. ANALOG SUPPLY VOLTAGE

MAX1383 DIGITAL SUPPLY CURRENT vs. TEMPERATURE

Dual, 12 -Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Pin Description

PIN	NAME	FUNCTION
1	REFSEL	Reference-Select Input. Drive REFSEL high to select external reference mode and power down the internal reference. Drive REFSEL low to select internal reference mode.
2	REF	Internal Reference Output/External Reference Input. For internal reference mode, bypass REF to RGND with $a \geq 1 \mu \mathrm{~F}$ capacitor. For external reference mode, apply a reference voltage at REF.
3	RGND	Reference Ground/Common Negative Input. In bipolar mode, RGND is the reference ground. In unipolar mode, RGND is the common negative input for all four analog inputs (see Figure 3).
4, 18	AGND	Analog Ground
5	AVDD	Analog-Supply Input. Bypass AVDD with a 10رF II 10nF capacitor to ground.
6	AIN2A	Primary/Positive Analog Input Channel 2. AIN2A is the primary channel 2 input (AIN2A) if using single-ended inputs (\bar{U} / B is low) and the positive channel 2 input (AIN2+) if using differential inputs (\bar{U} / B is high) (see Figure 3).
7	AIN2B	Secondary/Negative Analog Input Channel 2. AIN2B is the secondary channel 2 input (AIN2B) if using single-ended inputs ($\overline{\mathrm{U}} / \mathrm{B}$ is low) and the negative channel 2 input (AIN2-) if using differential inputs ($\overline{\mathrm{U}} / \mathrm{B}$ is high) (see Figure 3).
8	$\overline{\text { U/B }}$	Unipolar/Bipolar Input. Drive $\overline{\mathrm{U}} / \mathrm{B}$ low to select unipolar mode. Drive $\overline{\mathrm{U}} / \mathrm{B}$ high to select bipolar mode. In bipolar mode, the analog inputs are differential.
9	DGND	Digital Supply Ground
10	VL	Digital Supply Input. Bypass VL with a 10رF II 10nF capacitor to ground.
11	DOUT2	Serial-Data Output 2. Data is clocked out on the rising edge of SCLK.
12	DOUT1	Serial-Data Output 1. Data is clocked out on the rising edge of SCLK.
13	SCLK	Serial-Clock Input. Clocks data out of the serial interface. SCLK also sets the conversion time.
14	CNVST	Conversion-Start Input. Forcing CNVST high prepares the device for a conversion. Conversion begins on the falling edge of CNVST.
15	$\overline{\mathrm{CS}}$	Active-Low, Chip-Select Input. Drive $\overline{\mathrm{CS}}$ low to enable the serial interface. When $\overline{\mathrm{CS}}$ is high, DOUT1 and DOUT2 are high impedance, the serial interface resets, and the device powers down.
16	S/D	Single-Output/Dual-Output Selection Input. Drive S/D high to route ADC2 data through DOUT1 after ADC1 data. Drive S/D low for dual outputs with ADC1 data going to DOUT1 and ADC2 data going to DOUT2. See the Single-/Dual-Output Modes (S/D) section.
17	SEL	Analog-Input Selection Input. If $\overline{\mathrm{U}} / \mathrm{B}$ is low (unipolar mode), drive SEL low to select the primary inputs, AIN1A and AIN2A. Drive SEL high to select the secondary inputs, AIN1B and AIN2B. In bipolar mode, SEL is ignored.
19	AIN1B	Secondary/Negative Analog Input Channel 1. AIN1B is the secondary channel 1 input (AIN1B) if using single-ended inputs ($\overline{\mathrm{U}} / \mathrm{B}$ is low) and the negative channel 1 input (AIN1-) if using differential inputs ($\overline{\mathrm{U}} / \mathrm{B}$ is high) (see Figure 3).
20	AIN1A	Primary/Positive Analog Input Channel 1. AIN1A is the primary channel 1 input (AIN1A) if using single-ended inputs ($\overline{/} / \mathrm{B}$ is low) and the positive channel 1 input (AIN1+) if using differential inputs (\bar{U} / B is high) (see Figure 3).
-	EP	Exposed Pad. EP is internally connected to AGND.

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Detailed Description

The MAX1377/MAX1379/MAX1383 use an input track and hold (T/H) and SAR circuitry to convert an analog input signal to a digital 12-bit output. The dual serial interface requires a minimum of three digital lines (SCLK, CNVST, and DOUT) and provides easy interfacing to microprocessors ($\mu \mathrm{Ps}$) and DSPs. Four digital lines are required for dual-output mode.

Input T/H Circuit

Upon power-up, the input T/H circuit enters its tracking mode immediately. Following a conversion, the T/H enters the tracking mode on the 14th SCLK rising edge of the previous conversion (Figure 6). The T/H enters the hold mode on the falling edge of CNVST. The time required for the T/H to acquire an input signal is determined by how quickly the input capacitance is charged If the input signal's source impedance is high, the acquisition time lengthens. For the MAX1377/MAX1379, the acquisition time, tACQ, is the minimum time needed for the signal to be acquired (see the Definitions section). $t_{A C Q}$ is calculated by the following equation:
$t_{A C Q} \geq 9 \times(R S+R I N) \times$ CIN (MAX1377/MAX1379)
where RIN $=450 \Omega$, CIN $=16 \mathrm{pF}$, and RS is the source impedance of the input signal.
Figure 1 shows the acquisition time as tested using the circuit of Figure 2. The acquisition time is the time between the rising edge of a 1 V to 3 V step input and the falling edge of CONVST which produced a stable sample. Rs represents the source impedance of the function generator (50) and Rx represents the variable filter resistance.

Figure 1. MAX1377/MAX1379 Acquisition Time vs. Source Impedance

For the MAX1383, tACQ has a typical constant value of 125 ns . Also, it has a typical constant input impedance of $11 \mathrm{k} \Omega$. Since the input voltage seen at the pin is a function of a resistive voltage divider i.e., Vin \times Rin/(Rin $+R X)=V I N \times 11 k \Omega /(11 k \Omega+R x)$, it is very important to select an $R x \ll 11 \mathrm{k} \Omega$ to avoid large gain error.

MAX1377/MAX1379 Unipolar Mode The MAX1377/MAX1379 support two simultaneously sampled, single-ended conversions in unipolar mode. Drive \bar{U} / B low for unipolar mode. In unipolar mode, switches A-D in Figure 3a close according to the position of SEL. Drive SEL low to close switches A and D and designate AIN1A and AIN2A as the active, singleended inputs referenced to RGND. Drive SEL high to close switches B and D and select AIN1B and AIN2B as the active, single-ended inputs referenced to RGND. The output code in unipolar mode is straight binary. See Figure 4a for the unipolar transfer function.

MAX1377/MAX1379 Bipolar Mode
Drive \bar{U} / B high to configure the inputs for bipolar/differential mode. Switches A and C in Figure 3a are closed, designating AIN1A (AIN2A) and AIN1B (AIN2B) as the active, differential inputs. In bipolar mode, SEL is ignored. The output code is in two's complement. Figure 5 shows the transfer function for bipolar mode.

MAX1383 Input Mode
A $\pm 10 \mathrm{~V}$ input mode is available on the MAX1383. It is accomplished by utilizing a resistive divider on the input followed by a low distortion amplifier to drive the track and hold circuit. Special high voltage ESD structures are also utilized on these channels. When using

Figure 2. Test Circuit

Figure 3a. MAX1377/MAX1379 Equivalent Input Circuit

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

the MAX1383, the signal bandwidth is limited to 100 kHz by specification. Since $\pm 10 \mathrm{~V}$ signals are divided down to a 2.5 V range, this version should only be used with signals greater than 5 V . For those applications with signals 5 V or less, use the MAX1377/MAX1379 for best SNR performance. The configuration is shown on Figure 3b.

Input Bandwidth

The ADC's input-tracking circuitry has a 5 MHz smallsignal bandwidth, allowing the ADC to digitize highspeed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended.

Analog Input Protection Internal protection diodes that clamp the analog input to AVDD and AGND allow the analog inputs to swing from AGND - 0.3 V to AVDD +0.3 V without damage to the MAX1377 and MAX1379. The MAX1383 can handle

Figure 3b. MAX1383 Equivalent Input Circuit

Figure 4a. MAX1377/MAX1379 Unipolar Transfer Function (U/B = Low)
$\pm 10 \mathrm{~V}$ input swings. All inputs must not exceed the stated ranges for accurate conversions.

Internal Reference Mode Drive REFSEL low to select internal reference mode. The MAX1377 includes an on-chip 2.048 V reference; the MAX1379 has a 4.096V reference; and the MAX1383 includes a 2.5 V internal reference. The reference output at REF can be used as a reference voltage source for other components. REF can source up to 2 mA . Bypass REF with a 10 nF capacitor and a $4.7 \mu \mathrm{~F}$ capacitor to RGND. It is important to select a low ESR capacitor and keep the trace resistance as low as possible.

Figure 4b. MAX1383 Single-Ended Input

Figure 5. Bipolar Transfer Function ($\bar{U} / B=$ High $)$

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

The internal reference is continuously powered-up during both normal and partial power-down modes. In full power-down mode, the internal reference is disabled. Allow at least 2 ms recovery time after a power-on reset or exiting full power-down mode for the reference to settle to its intended value.

Input Voltage Range (MAX1383)
The input range on the MAX1383 has an 8x relationship with the reference voltage. For example, when the reference voltage (internal or external) is 2.5 V , the input range is $\pm 10 \mathrm{~V}$ (20VP-p).

External Reference Mode

Drive REFSEL high to select external reference mode. Apply a reference voltage at REF. Bypass REF with a 10 nF capacitor and a $4.7 \mu \mathrm{~F}$ capacitor to RGND. As with the internal reference, it is important to select a low ESR capacitor and keep the trace resistance as low as possible.

Serial Interface
Initialization After Power-Up

Upon initial power-up, the MAX1377/MAX1379/ MAX1383 require a complete conversion cycle to initialize the internal calibration. Following this initialization, the ADC is ready for normal operation. This initialization is only required after a hardware power-on reset and is not required after exiting partial or full power-down mode.

Starting a Conversion and Reading the Output

With SCLK idling high or low, a falling edge on CNVST begins a conversion (see Figure 6). This causes the analog input stage to transition from track to hold mode. SCLK provides the timing for the conversion process, and data is shifted out as each bit of the result is determined. A rising edge in CNVST forces the device into one of three modes. The mode is determined by the clock cycle in which the transition occurs and whether the device is set for single or dual outputs. Figures 7 and 8 show each mode that is activated with a rising CNVST edge for single and dual outputs.

Figure 6. Detailed Serial-Interface Timing Diagram

Figure 7. Single-Output CNVST Transition Modes

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Figure 8. Dual-Output CNVST Transition Modes

Figure 9. Dual-Output Mode, Single and Continuous Conversions

DOUT1 (and DOUT2, if $S / \bar{D}=$ low) transitions from high impedance to being actively driven low once the ADC enters hold mode. DOUT_ remains low for the first three SCLK pulses and begins outputting the conversion result after the 4th rising edge of SCLK, MSB first. DOUT_ transitions complete tDOUT after each SCLK rising edge and the DOUT_ values remain valid for thold after the next rising edge of SCLK. A total of 16 SCLK pulses are required to complete a normal conversion in dual-output mode and 28 SCLK pulses in single-output mode. DOUT_ goes low after the 16th rising edge of SCLK and goes high-impedance when CNVST goes high.

For continuous operation in single-output mode, pull CNVST high after the 14th rising and before the 28th rising edge of SCLK. In dual-output mode, if CNVST returns high after the 14th rising and before the 16th falling edge of SCLK, DOUT_ remains active so continuous conversions can be sustained. If CNVST is low during the 16th edge of SCLK (dual-conversion mode) and the 28th falling edge of SCLK (single-output mode), DOUT_ returns to its high-impedance state on the next rising edge of CNVST or SCLK, enabling the serial interface to be shared by multiple devices. See Figures 9 and 10 for single and continuous conversion timing diagrams.

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Single-/Dual-Output Modes (S/ \bar{D})
In dual-output mode, conversion results from the two channels appear on separate outputs. DOUT1 outputs the result from channel 1 and DOUT2 outputs the result from channel 2. Drive S / \bar{D} low to operate in dual-output mode. For DSPs with two-buffer and two-input-stream capability, use the dual-output mode to allow for easier DSP software for dual streams. Two buffer locations can be used so the streams do not need to be separated.
In single-output mode, the results from both channels appear on DOUT1. The channel 2 conversion result follows the channel 1 conversion result (see Figure 10). The MSB (D11) of the channel 2 conversion result appears on DOUT1 after the 16th rising edge of SCLK. The LSB (DO) of the channel 2 conversion result appears on DOUT1 after the 27th rising edge of SCLK and is ready to be clocked in on the 28th rising edge of SCLK. DOUT2 is high-impedance when S / \bar{D} is high.
If CNVST goes high after the 28th rising edge of SCLK, DOUT1 goes high impedance until the next conversion is initiated (single-conversion mode). If CNVST goes high after the 14th rising edge and before the 28th rising edge of SCLK, DOUT1 is actively driven low until the next conversion results are ready (continuous- conversion mode).
Note: In single-output mode, the conversion speed is limited to 0.625 Msps by the maximum SCLK.

Power-Down Modes
 Partial Power-Down (PPD)

Reduce power consumption by placing the MAX1377/ MAX1379 in partial power-down mode. Partial powerdown mode is ideal for infrequent data sampling and applications requiring fast wake-up times. Pull CNVST high after the 3rd and before the 14th rising edge of SCLK to place the device in partial power-down mode. This reduces the analog supply current to 2 mA . While in partial power-down mode, the internal reference remains enabled (if REFSEL = GND). Figure 11 shows the timing sequence to enter partial power-down mode.

Full Power-Down Mode (FPD)
Full power-down mode is ideal for infrequent data sampling and very low-supply current applications. To enter full power-down mode, place the MAX1377/MAX1379/ MAX1383 first in partial power-down mode. Perform the CNVST/SCLK sequence necessary to enter partial power-down mode. Repeat the same sequence to enter full power-down mode. In full power-down mode, the internal reference is disabled to minimize power consumption. Figure 12 shows the timing sequence to enter full power-down mode.
Another way to enter the full power-down mode is to drive $\overline{\mathrm{CS}}$ high. If $\overline{\mathrm{CS}}$ is high, the MAX1377/MAX1379/ MAX1383 act as if the full power-down sequence were issued. To exit the $\overline{\mathrm{CS}}$-initiated power-down mode, drive $\overline{\mathrm{CS}}$ low. Allow 2 ms for the reference to wake up and settle before performing a conversion.

Figure 10. Single-Output Mode, Single and Continuous Conversions

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Figure 11. Partial Power-Down Timing Sequence

Figure 12. Full Power-Down Mode Timing Sequence

Exiting Partial and Full Power-Down Modes

Drive CNVST low and allow at least 14 SCLK cycles to elapse before driving CNVST high to exit partial or full power-down mode. When exiting partial power-down mode, conversions can begin immediately without having to wait for the reference to wake-up. When exiting full power-down mode, allow at least 2 ms recovery time after exiting to ensure that the internal reference has settled.
In partial or full power-down mode, maintain idle SCLK low or high to minimize power.

Applications Information

SPI and MICROWIRE

The MAX1377/MAX1379/MAX1383 are compatible with all four modes programmed with the CPHA and CPOL bits in the SPI or MICROWIRE control register. Conversion begins with a CNVST falling edge. DOUT_ goes low, indicating a conversion is in progress. Two consecutive 8-bit reads are required to get the full 12 bits from the ADC. DOUT_ transitions on the rising edge of SCLK. DOUT_ is guaranteed to be valid tDOUT after the rising edge of SCLK and remains valid until tDHOLD after the next SCLK rising edge (see Figure 13).

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

For CPOL = 0 and $\mathrm{CPHA}=0$ or $\mathrm{CPOL}=1$ and $\mathrm{CPHA}=$ 1 , the data is clocked into the $\mu \mathrm{C}$ on the rising edge of SCLK. For $\mathrm{CPOL}=0$ and $\mathrm{CPHA}=1$ or $\mathrm{CPOL}=1$ and $\mathrm{CPHA}=0$, the data is clocked into the $\mu \mathrm{C}$ on the falling edge of SCLK. The MAX1377/MAX1379/MAX1383 are compatible with all CPOL/CPHA configurations since the data is valid on the falling and rising edge of SCLK.

QSPI
Unlike SPI, which requires two 8-bit reads to acquire the 12 bits of data from the ADC, QSPI allows the minimum number of clock cycles necessary to clock in the data. The MAX1377/MAX1379/MAX1383 require 16

Figure 13. Data Valid and Hold Times

Figure 14. Power-Supply Grounding and Bypassing
clock cycles from the $\mu \mathrm{C}$ to clock out the 12 bits of data. The conversion result contains three zeros followed by the 12 data bits, and a trailing zero with the data in the MSB-first format.

Three-Phase Motor Controller
The MAX1377/MAX1379/MAX1383 are ideally suited for motor-control systems (Figure 16). The devices' simultaneously sampled inputs eliminate the need for complicated DSP algorithms that realign sequentially sampled data into a simultaneous sample set. The $\pm 10 \mathrm{~V}$ (MAX1383) input allows for standard industrial inputs, eliminating the need for voltage-scaling amplifiers.

Figure 15. Common Serial-Interface Connections to the MAX1377/MAX1379/MAX1383

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Figure 16. Three-Phase Motor Control

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

Abstract

Wireless Communication Use the MAX1377/MAX1379/MAX1383 in a variety of wireless communication systems. These devices allow precise, simultaneous sampling of the I and Q signals of quadrature RF receiver systems. Figure 17 shows the MAX1377 in a simplified quadrature system. The device has a differential input option that allows either full differential or psuedo-differential signals. The $2: 1$ input mux allows measurement of RSSI and other systemmonitoring functions with this device.

Layout, Grounding, and Bypassing

 For best performance, use PCBs with ground planes. Ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another or digital lines underneath the ADC package.Establish a single-point analog ground (star ground point) at AGND, separate from the digital ground, DGND. Connect all other analog grounds and DGND to this star ground point for further noise reduction. The ground return to the power supply for this ground should be low impedance and as short as possible for noise-free operation. See Figure 14.
High-frequency noise in the AVDD power supply affects the ADC's high-speed comparator. Bypass the supply to the single-point analog ground with $0.01 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ bypass capacitors. Minimize capacitor lead lengths for best supply-noise rejection.

Definitions

Integral Nonlinearity

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the end points of the transfer function, once offset and gain errors have been nulled. The static linearity parameters for the MAX1377/MAX1379/ MAX1383 are measured using the end-points method.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of 1 LSB or less guarantees no missing codes and a monotonic transfer function.

Aperture Jitter

Aperture jitter (tAJ) is the sample-to-sample variation in the time between the samples.

Figure 17. Quadrature Wireless-Communication System

Aperture Delay

Aperture delay (tAD) is the time defined between the falling edge of CNVST and the instant when an actual sample is taken.

Signal-to-Noise Ratio For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of fullscale analog input (RMS value) to the RMS quantization error (residual error). The theoretical minimum analog-to-digital noise is caused by quantization error, and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

In reality, there are other noise sources besides quantization noise, including thermal noise, reference noise, clock jitter, etc. Therefore, SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all other ADC output signals:

$$
\operatorname{SINAD}(\mathrm{dB})=20 \times \log (\text { SignalRMS/NoiseRMS })
$$

Effective Number of Bits
Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quanti-

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

zation noise only. With an input range equal to the fullscale range of the ADC, calculate the ENOB as follows:

$$
\mathrm{ENOB}=\left(\frac{\mathrm{SINAD}-1.76}{6.02}\right)
$$

Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
T H D=20 \times \log \left(\frac{\sqrt{V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2}+V_{5}^{2}}}{V_{1}}\right)
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{5} are the amplitudes of the 2nd-through 5th-order harmonics.

Spurious-Free Dynamic Range Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest distortion component.

Full-Power Bandwidth
Full-power bandwidth is the frequency at which the input signal amplitude attenuates by 3dB for a full-scale input.

Full-Linear Bandwidth
Full-linear bandwidth is the frequency at which the sig-nal-to-noise plus distortion (SINAD) is equal to 56 dB .

Intermodulation Distortion
Any device with nonlinearities creates distortion products when two sine waves at two different frequencies (f1 and f2) are input into the device. Intermodulation distortion (IMD) is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to the total input power of the two input tones, f 1 and f2. The individual input tone levels are at -6dBFS.

Pin Configuration

Selector Guide

PART	SUPPLY VOLTAGE (V)	INTERNAL REFERENCE VOLTAGE (V)	INPUT VOLTAGE RANGE	SAMPLING RATE (Msps)
$M A X 1377$	2.7 to 3.6	2.048	0 to $V_{R E F,} \pm V_{R E F} / 2$	1.25
MAX1379	4.75 to 5.25	4.096	0 to $V_{R E F, ~} \pm V_{R E F} / 2$	1.25
$M A X 1383$	4.75 to 5.25	2.5	$\pm 10 \mathrm{~V}$	1.25

Chip Information
PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 TQFN-EP	T2055-4	$\underline{\mathbf{2 1 - 0 1 4 0}}$

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

REVISION NUMBER	REVISION DATE	PAGESIPTION CHANGED	
0	$7 / 08$	Initial release of the MAX1377/MAX1379	-
1	$2 / 09$	Initial release of the MAX1383	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ADC0804LCD ADC0808 MCP37211-200I/TE MAX15511TGTL+ MCP3202T-CI/MS ADE1201ACCZ ADE1202ACCZ LTC1090CN
LTC1605IG LTC2238IUH LTC1418AIG LTC1605ACG LTC1605AIG LTC2208IUP ADS1282HPW LTC1297DCN8 LTC1741CFW
MCP3422A0-E/MS MCP3426A2-E/MC MCP3426A3-E/MC MCP3427-E/MF TLC0820ACN TLC2543IN TLV2543IDW
NCD9830DBR2G ADS5231IPAG ADS7807U ADS7891IPFBT ADS8328IBPW AMC1204BDWR ADS7959QDBTRQ1
ADS7955QDBTRQ1 ADS7807UB ADS7805UB ADS1220IPWR MCP3426A0-E/MS MCP3422A0-E/MC AD9220AR MAX11212AEUB+
TLV1570CDW TLC3574IDWR TLC1542IDWR TLC0838CDWR AD7914BRUZ-REEL7 AD977ABRZ ADC12130CIWM/NOPB
MCP3426A1-EMC MCP3426A0-EMC AD7192BRUZ-REEL AD7193BRUZ-REEL

