Battery Switch with Four Enable Inputs

General Description

The MAX14525 features a low Ron $35 \mathrm{~m} \Omega$ (typ) load switch with four unique enable inputs. The MAX14525 is ideal for disconnecting the lithium-ion (Li+) battery from the loads in portable devices such as cell phones. The MAX14525 operates from a +2.2 V to +5.5 V supply voltage.
The MAX14525 features an extremely low $0.8 \mu \mathrm{~A}$ (typ) quiescent supply current to maximize battery life in portable devices. It is enabled from four possible inputs: external charger connection capable of high voltage up to +28 V , travel adapter (TA), on key (ON_K), factory mode enable (JIG), and switch enable (S_EN) The S_EN input is internally ANDed with the switched battery connection (IN).

The MAX14525 is available in a small 8-pin, $2 \mathrm{~mm} \times$ 2 mm TDFN package and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications
Cell Phones
PDAs
GPS
UMPC Computers
Digital Cameras

- Low 35m Ω (typ) Ron Load Switch
- Ultra Low, 0.8 A (typ) Supply Current
- Four Enable Inputs:

TA: +28V (max) Capable
ON_K: Accurate +3V Trigger Enable
JIG: Factory Mode Enable
S_EN: Logically ANDed with IN

- Space-Saving 8-Pin, 2mm x 2mm TDFN Package
- Controlled Turn-On to Limit dl/dt Pulses Due to Lead Inductance

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX14525ETA +T	8 TDFN-EP*	ACQ

Note: The device is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range
+Denotes a lead-free/RoHS-compliant package.
*EP = Exposed pad.

Pin Configuration

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Battery Switch with Four Enable Inputs

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
IN, BAT, JIG, S_EN, ON_K -0.3V to +6.0V
TA ...-0.3V to +28V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin TDFN (derate $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 954 mW Junction-to-Case Thermal Resistance
($\theta \mathrm{Jc}$) (Note 1) \qquad
\qquad

Junction-to-Ambient Thermal Resistance ($\mathrm{\theta}_{\mathrm{JA}}$) (Note 1)
$84^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature \qquad $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {BAT }}=+2.2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {BAT }}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Input Voltage Range	VBAT, VIN		2.2		5.5	V
On-Resistance	RON	$\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {BAT }}=+3.0 \mathrm{~V}$		35	90	$\mathrm{m} \Omega$
Disable Supply Current	IBAT_DIS	$\begin{aligned} & \mathrm{V}_{\text {BAT }}=+5.5 \mathrm{~V} \\ & \left(\mathrm{~V}_{\text {JIG }}=\mathrm{V}_{\text {S_EN }}=\mathrm{V}_{\text {ON_K }}=\mathrm{V}_{\text {TA }}=\mathrm{V}_{\text {IN }}=0\right) \end{aligned}$			1	$\mu \mathrm{A}$
VBAT Supply Current	IBAT	$\mathrm{V}_{\text {JIG }}=\mathrm{V}_{\text {S_EN }}=\mathrm{V}_{\text {BAT }}, \mathrm{V}_{\text {ON_K }}=\mathrm{V}_{\text {TA }}=0$		0.8	4.5	$\mu \mathrm{A}$
Increase in Supply Current with VJIG/VS_EN Voltage	Δ^{\prime} BAT	$\mathrm{V}_{\text {JIG }}=\mathrm{V}_{\text {S_EN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$			2	$\mu \mathrm{A}$
Increase in Supply Current with Von_K Voltage	$\Delta^{\prime}{ }_{\text {BAT }}$	$\mathrm{V}_{\text {BAT }}=\mathrm{V}_{\text {ON_K }}=+3.6 \mathrm{~V}$			4.5	$\mu \mathrm{A}$
Peak Current	ILIM	$\mathrm{V}_{\text {BAT }}=+3.6 \mathrm{~V}$	5			A
UVLO Undervoltage Lockout		Ramping V ${ }_{\text {BAT }}$			1.9	V
LOGIC INPUT						
TA Threshold Voltage	VTA_TH		1.15	1.7	2.5	V
TA Threshold Hysteresis				1\%		
TA Input Resistance		$\mathrm{V}_{T A}=1 \mathrm{~V}$	50	100	180	k Ω
JIG, S_EN Input Logic-High	V_{IH}		1.4			V
JIG, S_EN Input Logic-Low	VIL				0.4	V
JIG, S_EN Input Leakage Current	IIN	$V_{\text {BAT }}=+5.5 \mathrm{~V}$	-200		+200	nA
IN AND Gate Threshold Voltage	VIN_TH		$\begin{aligned} & 0.3 x \\ & V_{\text {BAT }} \end{aligned}$		$\begin{aligned} & 0.6 x \\ & V_{\text {BAT }} \end{aligned}$	V
ON_K Threshold Voltage	VON_K_TH	Low-to-high transition (Figure 1)	2.94	3.0	3.06	V
ON_K Threshold Hysteresis				1\%		

Battery Switch with Four Enable Inputs

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {BAT }}=+2.2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {BAT }}=+3.6 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ON_K Input Leakage Current	lon_K	$\mathrm{V}_{\text {BAT }}=\mathrm{V}_{\text {ON_K }}=+3.6 \mathrm{~V}$			3	$\mu \mathrm{A}$
SWITCH DYNAMICS ($\left.\mathrm{R}_{\mathrm{L}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}\right)$ (Figure 2)						
Turn-On Delay Time	tondiy	From any enable high to $\mathrm{V}^{\prime} \mathrm{N}=10 \%$ of $\mathrm{V}_{\text {BAT }}$		600	2600	$\mu \mathrm{s}$
Turn-On Rise Time	tonRISE	$V_{\text {IN }} 10 \%$ to 90% of $\mathrm{V}_{\text {BAT }}$	500	1800	5000	$\mu \mathrm{S}$
Turn-Off Delay Time	toFFDLY	From any enable low to $\mathrm{V}^{\prime} \mathrm{N}=90 \%$ of $\mathrm{V}_{\text {BAT }}$		130	300	$\mu \mathrm{s}$
Turn-Off Fall Time	toffrall	$V_{\text {IN }} 90 \%$ to 10% of V ${ }_{\text {BAT }}$		60	150	$\mu \mathrm{s}$

Note 2: Devices are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Battery Switch with Four Enable Inputs

Battery Switch with Four Enable Inputs

Figure 1. ON_K Input Operation Diagram

Figure 2. Turn-On Delay Time, Turn-On Rise Time, Turn-Off Delay Time, and Turn-Off Fall Time

Battery Switch with Four Enable Inputs

PIN	NAME	FUNCTION
1	BAT	Lithium-lon (Li+) Battery Connection
2	JIG	Enable Input with Standard Logic Threshold
3	ON_K	Enable Input with Accurate Threshold (+3.0V)
4	S_EN	Enable Input with Standard Logic Threshold Logically ANDed with IN
5	GND	Ground
6	TA	Enable Input with High Threshold
7,8	IN	Power Switch Input. The power switch input voltage range is from +2.2V to +5.5V. Connect a 0.1 capacitor from IN to GND. Connect pins 7 and 8 together for proper operation.
-	EP	Exposed Pad. Connect EP to ground. Do not use EP as the only ground connection.

Detailed Description

The MAX14525 features a low $35 \mathrm{~m} \Omega$ (typ) Ron load switch with four unique enable inputs. The MAX14525 can be used to disconnect the lithium-ion battery from the loads in portable devices such as cell phones. It operates from a +2.2 V to +5.5 V supply voltage.
The MAX14525 features an ultra-low 0.8 4 A (typ) quiescent supply current to maximize battery life in portable devices. The device is enabled from four possible inputs: external charge connection travel adapter (TA), on key (ON_K), factory mode enable (JIG), and switch enable (S_EN). The S_EN input is internally ANDed with the switched battery connection (IN).

TA Input

The TA input on the MAX14525 can be connected directly to the external charger source. The TA input is high-voltage capable (+28V max) and features a high threshold voltage to limit false voltage trips, and an input resistance of $100 \mathrm{k} \Omega$ (typ) to ground.

ON_K Input

The ON_K line is active high and is pulled up to the lithium-ion battery through a momentary push button switch. This input features an accurate voltage detector threshold which does not enable the load switch
until the battery threshold is above $+3.0 \mathrm{~V} \pm 2 \%$. When the battery has a very low charge and the on key is pressed, the accurate threshold does not allow the phone to boot up.

JIG Input

The JIG input on the MAX14525 is a logic-level input (+1.8 V compatible) from an external source to indicate the device has been connected to a factory cable. This signal requires a standard logic-input threshold voltage (+1.4V high).

S_EN Input

The S_EN input on the MAX14525 is a logic-level input (+1.8 V compatible) from an external source used to hold the switch on when the triggering condition (TA, ON_K, or JIG) is removed. The standard logic threshold voltage comes from the host microprocessor that pulls S_EN high once the code has begun running on the microprocessor. The S_EN input is internally ANDed with the voltage on IN. The IN connection to the AND gate thresholds are standard CMOS values of $1 / 3$ and $2 / 3$ of V $V_{\text {bat }}$.

Chip Information
PROCESS: CMOS

Battery Switch with Four Enable Inputs

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 TDFN-EP	T822+2	$\underline{\mathbf{2 1 - 0 1 6 8}}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Battery Management category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MP26121DQ-LF-P NCP1855FCCT1G FAN54063UCX LC05132C01NMTTTG SN2040DSQR ME4075AM5G AP5054HTCER XPD977B
XPD977B18 4056H DW01 DW06 CM1002-UD CM1002-W CM1002-X CM1002-Y CM1006-B CM1006-Q CM1006-WB CM1006-LCD CM1006-LBD CM1006-WF CM1006-LF CM1006-WG CM1006-WH CM1006-LG CM1003-S02BD CM1003-S09EA CM1003-S10ED CM1003-S11ED CM1003-S12BC CM1003-S13CC CM1003-S24BC CM1003-S26BC CM1003-WAD CM1003-BBD CM1003-BFD CM1003-BND CM1003-BLD CM1003-DAD CM1003-BMD CM1003-BPD CM1003-BKD CM1003-BAE CM1003-BHE CM1102B-FF CM1102B-FD CM1102B-GD CM1112-DAE CM1112-DBE

