19-4745; Rev 2; 1/10

USB Host Charger Identification Analog Switch

General Description

Features

MAX14550E

- USB 2.0 Hi-Speed Switching
- Low 4.0pF On-Capacitance
- Low 4.0Ω On-Resistance
- + Ultra-Low 0.1Ω On-Resistance Flatness
- ♦ +2.8V to +5.5V Supply Range
- Ultra-Low 7µA Supply Current
- + Automatic USB Charger Identification Circuit
- Optional External Resistor-Divider with Auto Selection
- ◆ ±15kV High ESD HBM Protection on DP/DM
- 3mm x 3mm, 10-Pin TDFN Package

Applications

Laptops Netbooks Cell Phones

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX14550EETB+	-40°C to +85°C	10 TDFN-EP*	AWG

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

The MAX14550E is a USB Hi-Speed analog switch with a USB host charger (dedicated charger) identification circuit. The MAX14550E supports both the USB Battery Charging Specification Revision 1.0 and a set resistor bias for Apple[®]-compliant devices.

The MAX14550E features a high-performance Hi-Speed USB switch with low 4pF (typ) on-capacitance and low 4Ω (typ) on-resistance. In addition, the MAX14550E features two digital inputs (CB0 and CB1) to switch between pass-through and charger modes. The USB host charger identification circuit allows a host USB port to support USB chargers with shorted D+/D- detection and to provide support for Apple-compliant devices using a resistor bias. When an Apple-compliant device is attached to the port, the MAX14550E provides the voltage from the resistor-divider. The MAX14550E uses the internal or external resistor based on the voltage at RDP. If a USB Revision 1.0-compliant device is attached, the MAX14550E connects a short across DP and DM to allow correct charger detection. The MAX14550E autodetection circuit can be disabled and either a DP/DM short or resistor network is chosen as the default.

The MAX14550E has enhanced high electrostatic discharge (ESD) protection on the DP and DM inputs up to ± 15 kV Human Body Model (HBM).

The MAX14550E is available in a 10-pin (3mm x 3mm) TDFN package and is specified over the -40° C to $+85^{\circ}$ C extended temperature range.

Typical Operating Circuit appears at end of data sheet.

Apple is a registered trademark of Apple, Inc.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Ш	ABSOLUTE MAXIMUM RATINGS
14550	V _{CC} , DP, DM, TDP, TDM, RDP, RDM, CB_ to GND0.3V to +6V Continuous Current Into Any Terminal0.3V to +6V Continuous Power Dissipation (T _A = +70°C) 10-Pin TDFN (derate 24.4mW/°C above +70°C)1951mW Thermal Resistance (Note 1)
XD	Junction-to-Ambient Thermal Resistance (θJA)41°C/W Junction-to-Case Thermal Resistance (θJC)9°C/W
N	Note 1: Package thermal resistances were obtained using the layer board. For detailed information on package therm

Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (Reflow)	

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.8V \text{ to } +5.5V, T_A = T_J = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V, T_A = +25^{\circ}C, \text{ unless otherwise noted.}$ otherwise noted.) (Note 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Voltage	Vcc			2.8		5.5	V
			VCB0 = VCB = VCC		0.7	2	
Supply Current			$V_{CB0} = 0V, V_{CB} = V_{CC}$		6.5	10]
		Vcc = 3.3V	External resistors used, V _{CB0} = V _{CB} = 0V or V _{CB0} = V _{CC} , V _{CB} = 0V		7	12	
	Icc Vc		Internal resistors used, $V_{CB0} = V_{CB} = 0V \text{ or}$ $V_{CB0} = V_{CC}, V_{CB} = 0V$		76	120	- μΑ
			VCB0 = VCB = VCC		2.5	7	
			VCB0 = 0V, VCB = VCC		8.5]
		V _{CC} = 5.5V	External resistors used, $V_{CB0} = V_{CB} = 0V \text{ or}$ $V_{CB0} = V_{CC}, V_{CB} = 0V$		9	16	-
			Internal resistors used, $V_{CB0} = V_{CB} = 0V \text{ or}$ $V_{CB0} = V_{CC}, V_{CB} = 0V$		125	180	
Supply Current Increase	ΔICC	$0V \le VCB_{\le} $	/IL or VIH \leq VCB_ \leq VCC			2	μA
Analog Signal Range	Vdp, Vdm			0		Vcc	V
ANALOG SWITCH							
On-Resistance TDP/TDM Switch	Ront	$0V \le VDP/DM$	\leq VCC, IDP or IDM = 10mA		4	6.5	Ω
On-Resistance Match Between Channels TDP/TDM Switch	ΔR _{ONT}	V _{DP} = V _{DM} =	400mV, I _{DP} or I _{DM} = 10mA		0.1		Ω

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.8V to +5.5V, T_A = T_J = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.3V, T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
On-Resistance Flatness TDP/ TDM Switch	Rflatt			0.1		Ω
On-Resistance RDP/RDM Switch	RONR	$0.4V \le V_{RDP/RDM} \le V_{CC}$, $I_{RDP} = I_{RDM} = 10mA$		4	7.5	Ω
On-Resistance Flatness RDP/ RDM Switch	RFLATR	$V_{RDP} = V_{RDM}$, $0.4V \le V_{RDP} \le V_{CC}$, $I_{RDP} = I_{RDM} = 10mA$		0.1		Ω
On-Resistance of DP/DM Short	RSHORT	$V_{CB0} = 0V, V_{CB} = V_{CC}, V_{DP} = V_{DM},$ $0V \le V_{DP} \le V_{CC}, I_{DP} = I_{DM} = 1mA$		50	70	Ω
TDP/TDM Off-Leakage Current	Itdpoff, Itdmoff	$V_{CC} = 5.5V$, $V_{CB0} = V_{CC}$, $V_{CB} = 0V$, $V_{DP} = V_{DM} = 5.5V$ to 0V, $V_{TDP} = V_{TDM} = 0V$ to 5.5V	-250		+250	nA
DP/DM On-Leakage Current	I _{DPON} , Idmon	$V_{CC} = 5.5V, V_{CB0} = V_{CB} = V_{CC},$ $V_{DP} = V_{DM} = 5.5V \text{ to } 0V$	-250		+250	nA
DYNAMIC PERFORMANCE		·				
Turn-On Time	ton	V_{TDP} or $V_{TDM} = 1.5V$, $R_L = 300\Omega$, $C_L = 35pF$, $V_{IH} = V_{CC}$, $V_{IL} = 0V$, Figure 1		20	100	μs
Turn-Off Time	tOFF	V_{TDP} or $V_{TDM} = 1.5V$, $R_L = 300\Omega$, $C_L = 35pF$, $V_{IH} = V_{CC}$, $V_{IL} = 0V$, Figure 1		2.5	5	μs
TDP/TDM Switch Propagation Delay	tPLH, tPHL	$R_L = R_S = 50\Omega$		60		ps
Output Skew Between Switches	tsk(O)	Skew between DP and DM when connected to TDP and TDM, $R_L = R_S = 50\Omega$, Figure 2		40		ps
TDP/TDM Off-Capacitance	Coff	f = 1MHz, V _{BIAS} = 0V, V _{SIGNAL} = 500mV _{P-P} (Note 3)		2.0		pF
DP/DM On-Capacitance (Connected to TD_)	CON	f = 240MHz, VBIAS = 0V, VSIGNAL = 500mVp ₋ p		4.0	5.5	pF
-3dB Bandwidth	BW	$R_L = R_S = 50\Omega$		1000		MHz
Off-Isolation	VISO	VTDP, VDP = 0dBm, RL = RS = 50Ω , f = 250MHz, Figure 3		-20		dB
Crosstalk	VCT	VTDP, VDP = 0dBm, RL = RS = 50Ω , f = 250MHz, Figure 3		-25		dB
INTERNAL RESISTORS		I	1			1
DP/DM Short Pulldown	R _{PD}		350	500	700	kΩ
RP1/RP2 Ratio	RT _{RP}		1.485	1.5	1.515	Ratio
RP1 + RP2 Resistance	R _{RP}		93.75	125	156.25	kΩ
RM1/RM2 Ratio	RT _{RM}		0.854	0.863	0.872	Ratio
RM1 + RM2 Resistance	RRM		69.75	93	116.25	kΩ

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.8V to +5.5V, $T_A = T_J = -40^{\circ}$ C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.3V, $T_A = +25^{\circ}$ C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
COMPARATORS	COMPARATORS						
DM Comparator Threshold		VRDP > 0.4V, DM falling	1.9	2.1	2.3	V	
Divicomparator Threshold	VDMF	V _{RDP} < 0.3V, DM falling	44	45	46	%Vcc	
DP and RDP Comparator Threshold	VDPR	DP or RDP falling	0.3	0.35	0.4	V	
DM Comparator Hysteresis				1		%VDMF	
DP and RDP Comparator Hysteresis				1		%Vdpr	
DM Comparator Debounce Time	tDM	V _{DM} from 2.8V to 1.5V	30	100	200	μs	
DP Comparator Debounce Time	tDP	V _{DP} from 0.7V to 0V	30	100	200	μs	
DIGITAL I/O (CB0, CB1)							
Input Logic Voltage High	VIH		1.4			V	
Input Logic Voltage Low	VIL			-	0.4	V	
Input Logic Hysteresis	VHYST			100		mV	
Input Leakage Current	lin	$\label{eq:VCC} \begin{array}{l} V_{CC} = 5.5 \text{V}, \ 0 \text{V} \leq \text{V}_{CB} \leq \text{V}_{IL} \ \text{or} \\ \text{V}_{IH} \leq \text{V}_{CB} \leq \text{V}_{CC} \end{array}$	-250		+250	nA	
ESD PROTECTION							
All Pins		Human Body Model		±2		kV	
ESD Protection Level (DP and DM Only)		Human Body Model		±15		kV	

Note 2: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature are guaranteed by design. **Note 3:** Guaranteed by design.

Figure 1. Switching Time

Test Circuits/Timing Diagrams

_Test Circuits/Timing Diagrams (continued)

Figure 2. Output Signal Skew

Test Circuits/Timing Diagrams (continued)

Figure 3. Off-Isolation and Crosstalk

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

Typical Operating Characteristics (continued) MAX14550E

SUPPLY CURRENT TDP/DP LEAKAGE CURRENT RDP/RDM ON-RESISTANCE vs. VRDP/RDM vs. SUPPLY VOLTAGE vs. TEMPERATURE 6 100 10 9 90 TA = +85°C 5 80 8 ON-LEAKAGE T_A = +85°C (PA) 70 7 4 EAKAGE CURRENT (60 6 $T_A = +25^{\circ}C$ Γ_A = +25°C Icc (µA) Ron (Ω) 3 50 5 $T_A = -40^{\circ}C$ $T_A = -40^{\circ}C$ 40 4 2 3 30 20 2 VCB0 = VCC 1 VCB1 = 0V OFF-I FAKAGE 10 1 V_{CC} = 3.3V $V_{RDP} = V_{CC}$ 0 0 0 -45 -30 -15 0 15 30 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 45 60 75 90 VRDP/RDM (V) TEMPERATURE (°C) V_{CC} (V) **TURN-ON/TURN-OFF TIME** LOGIC-INPUT THRESHOLD SUPPLY CURRENT vs. SUPPLY VOLTAGE vs. LOGIC LEVEL vs. SUPPLY VOLTAGE 1.2 250 16 14 1.1 CB_ RISING 200 INTERNAL RESISTOR TURN-ON/TURN-OFF TIME (µs) -OGIC-INPUT THRESHOLD (V) 12 1.0 DIVIDER 0.9 10 ton 150 Icc (µA) 0.8 8 CB FALLING 100 0.7 6 EXTERNAL RESISTOR-DIVIDER toff 0.6 4 50 2 0.5 0 0 0.4 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 LOGIC LEVEL (V) V_{CC} (V) Vcc (V) **FREQUENCY RESPONSE EYE DIAGRAM** MAX14550E toc11 0 0.5 -10 0.4 ON-LOSS 0.3 -20 DIFFERENTIAL SIGNAL (V) 0.2 MAGNITUDE (dB) -30 0.1 OFF-ISOLATION -40 0.0 CROSSTALK -0.1 -50 -0.2 -60 -0.3 -0.4 -70

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

*CONNECT EP TO GND.

Pin Description

PIN	NAME	FUNCTION
1	CB0	Switch Control Bit 0. See the Switch Control section.
2	DP	USB Connector D+ Connection
3	DM	USB Connector D- Connection
4	GND	Ground
5	RDP	External Resistor Bias Input for D+ and Selection for External Resistors in RDP and RDM
6	RDM	External Resistor Bias Input for D-
7	Vcc	Power Supply. Bypass V _{CC} to GND through a 0.1µF capacitor. Place the capacitor as close as possible to the device.
8	TDM	USB Transceiver D- Connection
9	TDP	USB Transceiver D+ Connection
10	CB1	Switch Control Bit 1. See the Switch Control section.
	EP	Exposed Pad. Connect EP to GND. Do not use EP as the main ground connection.

TDFN (3mm × 3mm)

Functional Diagram

MAX14550E

Detailed Description

The MAX14550E is a combination of a Hi-Speed USB analog switch and a charger host identification detection analog switch, which allows USB hosts to identify the USB port as a charger port when the USB host is in a low-power mode and cannot enumerate USB devices. The MAX14550E features a high-performance, Hi-Speed USB switch with low 4pF on-capacitance and low 4 Ω on-resistance. DP and DM can survive signals between 0V and 6V with any supply voltage.

Resistor-Dividers

The MAX14550E features an internal resistor-divider for biasing or can operate with external resistors. Connect RDP to ground to use the internal resistor-divider (see the *Typical Operating Circuit*). The user must provide 5V supply voltage to V_{CC} when the internal resistor-divider is used. When the MAX14550E is not operated with the internal resistor-dividers, the device disconnects the internal resistor-dividers' pullup voltage (V_{CC_SW}) to minimize supply current requirements.

Connect RDP to a voltage above 0.4V (max) to use external resistors (Figure 4). Internal resistor-dividers are always disconnected from the supply voltage when external resistor-dividers are detected at RDP (VRDP > 0.4V).

Switch Control

The MAX14550E features two digital inputs, CB0 and CB1, for mode selection (Table 1). Connect CB0 and CB1 to a logic-level low voltage for autodetection mode (see the *Autodetection* section).

Connect CB0 and CB1 to a logic-level high voltage for normal Hi-Speed USB bypass functionality.

Connect CB0 to a logic-level low and CB1 to a logic-level high voltage to select charger mode. Optionally, CB0 and CB1 can be forced to set the detection to a particular state. The USB Implementers Forum (USB-IF) has defined that dedicated chargers have D+ and D- shorted together. In USB charger mode, DP and DM are shorted together for dedicated charging functionality. Connect CB0 to a logic-level high and CB1 to a logic-level low voltage to force the resistor network to be connected to DP and DM.

Figure 4. Operation with External Resistors

Autodetection

The MAX14550E features autodetection mode for dedicated chargers and USB masters. CB0 and CB1 must both be set low to activate autodetection mode.

In autodetection mode, the MAX14550E initially connects the resistor network to DP and DM. The MAX14550E monitors the voltage at DM to determine the type of device attached. If the voltage at DM is 2.1V (typ) or higher, the voltage stays as is.

If the voltage at DM is below the 2.1V (typ) threshold, the internal switch disconnects DP from the resistor network and DM. DP and DM are shorted together. The MAX14550E then monitors the voltage at DM to determine when to reconnect the resistor network. If the volt-

age at DM > 0.35V (typ), the short remains connected. If the voltage at DM drops below 0.35V (typ), the short is removed and the resistor network is reconnected to DP and DM.

DP and DM feature a 100 μs (typ) debounce time to reject transients.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

The Air-Gap test involves approaching the device with a charged probe. The Contact-Discharge method connects the probe to the device before the probe is energized.

Table 1. Digital Input States

Vcc (V)	RDP < 0.4V = INTERNAL RESISTOR > 0.4V = EXTERNAL RESISTOR	CB0	CB1	DP/DM POSITION	INTERNAL OR EXTERNAL RESISTOR CONNECTED TO DP/DM	COMMENT
3.3	RDP < 0.4V	Х	Х	—	—	Not recommended
		0	0	Autodetection circuit active	External resistor	Auto mode
		0	1	Shorted	Not connected	Auto mode disabled
3.5	3 HDF > 0.4V	1	0	Connected to resistor-divider	External resistor	Auto mode disabled
		1	1	Connected to TDP/TDM	Not connected	USB traffic active
		0	0	Autodetection circuit active	Internal resistor	Auto mode
		0	1	Shorted	Not connected	Auto mode disabled
	RDP < 0.4V	1	0	Connected to resistor-divider	Internal resistor	Auto mode disabled
5.0		1	1	Connected to TDP/TDM	Not connected	USB traffic active
5.0	5.0 RDP > 0.4V	0	0	Autodetection circuit active	External resistor	Auto mode
		0	1	Shorted	Not connected	Auto mode disabled
		1	0	Connected to resistor-divider	External resistor	Auto mode disabled
		1	1	Connected to TDP/TDM	Not connected	USB traffic active

Extended ESD Protection (Human Body Model)

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2kV$ (Human Body Model) encountered during handling and assembly. DP and DM are further protected against ESD

up to ± 15 kV (Human Body Model) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the device continues to function without latchup (Figures 5a and 5b).

MANUFACTURER/ SPECIFICATION	DEVICE	IDENTIFICATION	DETECTION METHOD/COMMENTS	MAX14550E SUPPORT
Apple	iPod® and some iPhones®	None	Immediately draws 500mA when 5V is attached to V_{BUS}	iPhone 2G, 3G, and 3GS; iPod classic®; iPod video; iPod touch (1st and 2nd generations);
	iPod touch® and iPhone 3G	Resistor-divider on D+ and D-	USB FS/HS configuration: draws < 500mA D+/D- voltage detection: <1A	iPod nano® (3rd, 4th, 5th generation); and iPod mini
Motorola	All phones with mini-USB	Resistor to GND on ID line	USB FS/HS configuration: draws < 500mA. Follows CEA-936-A specification, which is the only known company to use this specification.	Depends on model
RIM	BlackBerry®	Some models look for shorted D+/D-	USB FS/HS configuration: draws < 500mA. Some models look for shorted D+/D- with a pullup to 2.7V for dedicated charger.	Depends on model
HTC	QUALCOMM®- based phones	None	Immediately draws 500mA when 5V is attached to VBUS	Full support
USB-IF Standard		Shorted D+/D-	Device uses a specific method (voltages and timing well defined)	2009 and newer LG and Samsung models with micro- USB connector
China Standard	_	Shorted D+/D-	Method not defined	Depends on model

Table 2. Tested Portable Device

MAX14550E

iPod, iPhone, iPod touch, iPod classic, and iPod nano are registered trademarks of Apple, Inc. BlackBerry is a registered trademark/servicemark of Research In Motion Limited. QUALCOMM is a registered trademark of QUALCOMM Incorporated.

Figure 5a. Human Body ESD Test Model

Figure 5b. Human Body Current Waveform

_Timing Charts

Timing Charts (continued)

_Timing Charts (continued)

Typical Operating Circuit

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 TDFN-EP	T1033+1	<u>21-0137</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/09	Initial release.	
1	11/09	 Replaced the Lead Temperature with Soldering Temperature in the Absolute Maximum Ratings section. Changed the "DP/DM On-Capacitance" specification in the Electrical Characteristics table conditions from f = 1MHz to f = 240MHz and 6.0pF (max) to 5.5pF (max). Replaced TOC11 (Eye Diagram) in the Typical Operating Characteristics section. Replaced Table 1 and added Table 2. Added the Timing Chart. 	2, 3, 7, 11, 12, 13
2	1/10	Replaced the timing diagrams in Timing Charts.	13, 14,15

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim is a registered trademark of Maxim Integrated Products, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for USB Switch ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX BQ24298RTWR TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FT234XD-R PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4906EFELB+T MAX4906FELB+T MAX4983EEVB+T MAX4899AEETE+T MAX14651ETA+T PI3USB20LE HD3SS460IRHRT UCS2114-1-V/LX UCS2113-1-V/G4 UCS2112-1-V/G4 UCS2113-1C-V/G4