General Description

The MAX14611 evaluation kit (EV kit) is a fully assembled and tested circuit board that demonstrates the functionality of the MAX14611 quad bidirectional lowvoltage logic-level translator in a 14-pin TDFN package. The highly configurable PCB enables direct evaluation of the IC through multiple jumper-selectable methods. Input power to the EV kit is provided by a Micro-USB, type-B connector, or by an external 5 V power supply. On-board LDO regulators provide the appropriate voltage for each component, and potentiometers allow the user to independently adjust the power supply for either side of the level translator.

Quick Start

Required Equipment

- MAX14611 EV kit
- Digital voltmeter (DVM)
- USB power source or another 5V external power supply
- Oscilloscope and at least one scope probe

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify board operation and begin evaluation:

1) If using a USB bus to power the board, connect the included Micro-USB cable between the Micro-USB, type-B connector (J1) and the USB power source, such as a computer or dedicated USB charging port, and install a shunt on jumper JP22 shorting pins 1-2.
2) If using an external power source to power the board, connect the external power supply at the VEXT test point (TP2) and install a shunt on jumper JU22 shorting pins 2-3.

Features and Benefits

- Proven PCB Layout - Decrease Evaluation Time
- Fully Assembled and Tested
- On-Board Adjustable Oscillators
- Evaluate without External Function Generator
- Jumper-Selectable Open-Drain and Push-Pull Buffers Enable Simple Evaluation in Either Operating Mode

Ordering Information appears at end of data sheet.
3) Connect the DVM between GND (TP1) and VCC (TP27). Adjust the 1st potentiometer (POT1) until the desired voltage for VCC appears on the DVM by turning the screw on the potentiometer to the right or to the left.
4) Connect the DVM between GND (TP1) and VL (TP28). Adjust the 2nd potentiometer (POT2) until the desired voltage for VL appears on the DVM by turning the screw on the potentiometer to the right or to the left. Note that VL should be lower than VCC.
5) Connect the jumpers in the desired configuration based on the descriptions listed in Table 1.
6) After implementing the desired configuration, connect the oscilloscope probe to the output evaluated to observe the translated voltage of the input signal.

Table 1. Jumper Configurations (JP3-JP15, JP17, JP19-JP22)

JUMPER	SHUNT POSITION	DESCRIPTION
JP3	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VL and I/OVL2
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VL and I/OVL2
JP4	1-2	Connects open-drain buffer to driving signal bus for channel I/OVL1. The open-drain buffer is driven by the output of DS1090-16 (U5). Adjust the frequency of the signal using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVL1
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVL1. The push-pull buffer is driven by the output of DS1090-1 (U4). Adjust the frequency of the signal using POT4.
JP5	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVL3
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVL3
JP6	1-2	Connects open-drain buffer to driving signal bus for channel I/OVL2. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVL2.
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVL2. The push-pull buffer is driven by the output of DS1090-1 (U4). The frequency of the signal is adjustable using POT4.
JP7	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC4
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC4
JP8	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVL4
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVL4
JP9	1-2	Connects open-drain buffer to driving signal bus for channel I/OVL3. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVL3
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVL3. The push-pull buffer is driven by the output of DS1090-1 (U4 The frequency of the signal is adjustable using POT4.
JP10	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC3
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC3
JP11	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVL1
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVL1
JP12	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC1
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC1
JP13	1-2	Connects open-drain buffer to driving signal bus for channel I/OVL4. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVL4
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVL4. The push-pull buffer is driven by the output of DS1090-1 (U4). The frequency of the signal is adjustable using POT4.
JP14	1-2	Connects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC2
	Not installed	Disconnects $1 \mathrm{k} \Omega$ pullup resistor between VCC and I/OVCC2

Table 1. Jumper Configurations (JP3-JP15, JP17, JP19-JP22) (continued)

JUMPER	SHUNT POSITION	DESCRIPTION
JP15	1-2	Connects open-drain buffer to driving signal bus for channel I/OVCC1. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVCC1
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVCC1. The push-pull buffer is driven by the output of DS1090-1 (U4). The frequency of the signal is adjustable using POT4.
JP17	1-2	Connects the $\overline{T S}$ pin of U1 to VL placing the device's I/O pins in normal operating mode.
	2-3	Connects the $\overline{\mathrm{TS}}$ pin of U1 to GND placing the device's I/O pins in high-impedance three-state mode.
JP19	1-2	Connects open-drain buffer to driving signal bus for channel I/OVCC2. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVCC2
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVCC2. The push-pull buffer is driven by the output of DS1090-1 (U4). The frequency of the signal is adjustable using POT4.
JP20	1-2	Connects open-drain buffer to driving signal bus for channel I/OVCC3. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVCC3
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVCC3. The push-pull buffer is driven by the output of DS1090-1 (U4). The frequency of the signal is adjustable using POT4.
JP21	1-2	Connects open-drain buffer to driving signal bus for channel I/OVCC4. The open-drain buffer is driven by the output of DS1090-16 (U5). The frequency of the signal is adjustable using POT3.
	1-3	Connects external source connected at TP5 to driving signal bus for channel I/OVCC4
	1-4	Connects push-pull buffer to driving signal bus for channel I/OVCC4. The push-pull buffer is driven by the output of DS1090-1 (U4). The frequency of the signal is adjustable using POT4.
JP22	1-2	Power to board supplied at Micro-USB connector (J1)
	2-3	Power to board supplied at external VEXT test point (TP2)

Note: The following pairs are mutually exclusive; do not install a shunt on both the jumpers in the following pairs at the same time: JP4 and JP15, JP6 and JP19, JP9 and JP20, and JP13 and JP21.

Detailed Description of Hardware

The MAX14611 EV kit is a fully assembled and tested circuit board that demonstrates the functionality of the MAX14611 quad bidirectional low-voltage logiclevel translator in a 14-pin TDFN package. The highly configurable PCB enables direct evaluation of the IC through multiple jumper-selectable methods. Input power to the EV kit is provided by a Micro-USB, type-B connector, or by an external 5V power supply. On-board LDO regulators provide the appropriate voltage for each component, and potentiometers allow the user to independently adjust the power supply for either side of the level translator. The EV kit's PCB is designed with $10 z$ copper.

Power Supply

The EV kit is powered by a user-supplied 5 V external DC power supply connected between the VEXT test point (TP2) and GND, or the USB bus provided at the MicroUSB connector (J1). The power supply is then converted into three independent voltages. The pin-selectable output voltage of the MAX8902A (U12) provides a 4.6 V supply for peripherals such as the NC7WZ07 open-drain buffer, as well as the DS1090 oscillators. Two separate MAX8902B ICs are used to generate the power for the

VCC and VL supplies on the U1 IC. The VCC supply is generated by U2, which also provides power to the pushpull buffers for the VCC channels (U10, U13). The VL supply is generated by U3, which also provides power to the push-pull buffers for the VL channels (U6, U8).

On-Board Oscillators

The EV kit features two on-board oscillators to generate input signals to the device. The DS1090-1 (U4) is used to generate a potentiometer-adjustable clock from 4 MHz to 8 MHz , while the DS1090-16 (U5) generates a potentiometer-adjustable clock from 250 kHz to 500 kHz . These clock signals can be connected to individual channels using 4-way jumpers JP4, JP6, JP9, JP13, JP15, and JP19-JP21 (see Table 1).

Push-Pull and Open-Drain Evaluation

Each channel can be driven in either push-pull or opendrain mode. For evaluation of push-pull operation or lowspeed open-drain operation, use the on-board oscillators. Simply connect the open-drain buffer or push-pull buffer through one of the 4 -way jumpers to the channel to be driven to begin evaluation (see Table 1 for jumper configurations). For high-speed open-drain operation, an external function generator is required.

DESIGNATION	QTY	DESCRIPTION
POT1, POT2	2	$500 \mathrm{k} \Omega \pm 10 \%, 0.25 \mathrm{~W}$ potentiometers Murata PV37W504C01B00
POT3, POT4	2	$50 \mathrm{k} \Omega \pm 10 \%, 0.25 \mathrm{~W}$ potentiometers Murata PV37W503C01B00
R1	1	$1.5 \mathrm{k} \Omega \pm 1 \%$ resistor (0805)
R2	1	$120 \mathrm{k} \Omega \pm 1 \%$ resistor (0805)
R3	1	$80.6 \mathrm{k} \Omega \pm 1 \%$ resistor (0805)
R4	1	$470 \Omega \pm 5 \%$ resistor (0805)
R5	1	$68 \mathrm{k} \Omega \pm 1 \%$ resistor (0805)
R6, R7	2	$43 \mathrm{k} \Omega \pm 5 \%$ resistors (0805)
R8-R11, R14-R17	8	$1 \mathrm{k} \Omega \pm 1 \%$ resistors (0805)
R12, R13	2	$100 \mathrm{k} \Omega \pm 5 \%$ resistors (0805)
TP1, TP22-TP25	5	Black test points

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
TP2, TP26-TP28	4	Red test points
TP5-TP9, TP14, TP15, TP19, TP21	9	White test points
TP10-TP13, TP16-TP18, TP20	8	Yellow test points
U1	1	Quad bidirectional low-voltage logic-level translator $(14$ TDFN-EP*) Maxim MAX14611ETD+
U2, U3	2	Low-noise LDO regulators with resistor-selectable output voltage (8 TDFN-EP*) Maxim MAX8902BATA+
U4	1	Low-frequency, spread- spectrum EconOscillator ${ }^{\text {TM }}$ $(8 ~ \mu S O P)$
Maxim DS1090U-1+		

DESIGNATION	QTY	DESCRIPTION
U5	1	Low-frequency, spread- spectrum EconOscillator $(8 \mu$ SOP $)$
Maxim DS1090U-16+		

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Hirose Electric Co., Ltd.	-	www.hirose-connectors.com
Murata Americas	$800-241-6574$	www.murataamericas.com
Stanley Electric Co., Ltd.	-	www.stanley-components.com

Note: Indicate that you are using the MAX14611 when contacting these component suppliers.

Figure 1. MAX14611 EV Kit Schematic

Figure 2. MAX14611 EV Kit Component Placement Guide

Figure 3. MAX14611 EV Kit PCB Layout-Component Side

Figure 4. MAX14611 EV Kit PCB Layout-Layer 2

Figure 5. MAX14611 EV Kit PCB Layout-Layer 3

Figure 6. MAX14611 EV Kit PCB Layout—Solder Side

Ordering Information

PART	TYPE
MAX14611EVKIT\#	EV Kit

\#Denotes RoHS compliant.

MAX14611 Evaluation Kit

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES |
| :---: | :---: | :---: | :---: | :---: |
| CHANGED | | | |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Development Tools category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
BK0004 BK0012 MAX9684EVKIT\# EVAL01-HMC749LC3C 410-320 TPD6F002-Q1EVM TS9002DB 118777-HMC722LC3C 118777HMC723LC3C DC1765A-A 125614-HMC851LC3C DC2062A-A LMH6321MR-EVAL/NOPB EVAL01-HMC747LC3C 4537 DK-M3F-1.8-TRK-1.5-S DK-M3-FS-1.8-1.5-M12/16 DK-M3-LS-1.8-6 ADALP2000 EVAL-CN0202-SDPZ EVAL-CN0203-SDPZ EVAL-CN0204SDPZ EVAL-CN0209-SDPZ EVAL-CN0229-SDPZ EVAL-CN0251-SDPZ EVAL-CN0272-SDPZ EVAL-CN0301-SDPZ EVAL-CN0355PMDZ EVAL-CN0364-SDPZ EVAL-SDP-CB1Z MAX4951AEEVKIT+ MAXREFDES60\# BK0010 EFIELDEV PD70224EVB MIKROE3319 MIKROE-3357 MIKROE-4048 MIKROE-1370 MIKROE-1899 MIKROE-1901 MIKROE-1910 MIKROE-1917 MIKROE-1993 MIKROE-3116 MIKROE-957 BB-GEVK NCS2200AGEVB $27115 \underline{64019}$

