Quad Beyond-the-Rails -15V to +35V Analog Switch

General Description

The MAX14777 quad SPST switch supports analog signals above and below the rails with a single 3.0 V to 5.5 V supply. The device features a selectable $-15 \mathrm{~V} /+35 \mathrm{~V}$ or $-15 \mathrm{~V} /+15 \mathrm{~V}$ analog signal range for all switches. Each switch has a separate control input to allow independent switching, making the device an alternative to opto-relays in applications that do not need galvanic isolation.
The IC features 10Ω (max) on-resistance, and $9 \mathrm{~m} \Omega$ (typ) R_{ON} flatness, along with a low 50 nA (max at $+85^{\circ} \mathrm{C}$) onleakage. For maximum signal integrity, the device keeps this performance over the entire common-mode voltage range. Each switch can carry up to 60 mA (max) of continuous current in either direction.
The MAX14777 is available in a 20 -pin ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) TQFN package and is specified over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range.

Applications

- Industrial Measurement Systems
- Instrumentation Systems
- $4-20 \mathrm{~mA}$ Switching
- ATE Systems

Benefits and Features

- Simple, Flexible Board Design
- $-15 \mathrm{~V} /+35 \mathrm{~V}$ Beyond-the-Rails ${ }^{\text {TM }}$ Signal Range from a Single 3.0 V to 5.5 V Supply
- Selectable $-15 \mathrm{~V} /+15 \mathrm{~V}$ Signal Range for Lower Supply Current
- 60 mA Maximum Current through Each Switch
- 1.62 V to 5.5 V Logic Interface
- High-Performance $10 \Omega \mathrm{R}_{\mathrm{ON}}$ (max)
- $150 \mathrm{~m} \Omega$ (max) R R_{ON} Flatness
- $\pm 50 \mathrm{nA}$ (max) On-Leakage at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$
- Saves Board Space
- Small 20-Pin TQFN Package ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Operating Temperature Range

Beyond-the-Rails is a registered trademark of Maxim Integrated Products, Inc.

Ordering Information appears at end of data sheet.

Functional Diagram

For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX14777 related.

Quad Beyond-the-Rails -15 V to +35 V Analog Switch

Absolute Maximum Ratings (All voltages referenced to GND, unless otherwise noted.)	
$V_{\text {Cc }}$...........-0.3V to +6V
V	-0.3V to +6V
EN1, EN2, EN3, EN4, SEL35, I.C..	-0.3V to +6V
$\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4 \ldots . . .$	$\ldots . . .\left(V_{N}-0.3 \mathrm{~V}\right)$ to the lesser of $\left(V_{P}+0.3 V\right)$ and $\left(V_{N}+70 V\right)$
V_{P}	
SEL35 $=$ High.	.. -0.3 V to +70 V
SEL35 = Low.	-0.3 V to +48 V
V_{P} to V_{N}	-0.3V to +70 V

V_{N} \qquad the greater of -26 V and $\left(\mathrm{V}_{\mathrm{P}}-70 \mathrm{~V}\right)$ to +0.3 V Absolute Difference Between Switch I/Os (| A_{-}- $\mathrm{B}_{-} \mid$)......... 70 V Continuous Current \qquad Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ \qquad TQFN (derate $25.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2051.3 mW Operating Temperature Range.......................... $40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Junction Temperature \qquad $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ Soldering Temperature (reflow)...................................... $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

Junction-to-Ambient Thermal Resistance ($\theta_{J A}$)
\qquad
Junction-to-Case Thermal Resistance (θ_{JC})
TQFN. \qquad $.6^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC CHARACTERISTICS							
Supply Voltage Range	V_{CC}			3.0		5.5	V
V_{L} Supply Voltage Range	V_{L}			1.62		5.5	V
$\mathrm{V}_{\text {CC }}$ Supply Current	$I_{C C}$	$V_{C C}=3.3 \mathrm{~V}$,	SEL35 = low		1.8	3.4	mA
		$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{L}}$	SEL35 = high		2.2	4.3	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{L}} \end{aligned}$	SEL35 = low		0.6	1.2	
			SEL35 = high		0.8	1.65	
V S Supply Current	I_{L}	SEL35, EN_ = low or high		-1		+1	$\mu \mathrm{A}$
Analog Signal Range	$\mathrm{V}_{\mathrm{A}_{-}}, \mathrm{V}_{\mathrm{B}_{-}}$	SEL35 = low		-15		+15	V
		SEL35 = high		-15		+35	
Positive High-Voltage ChargePump Output (Note 3)	V_{P}	SEL35 = low		22.5		27.1	V
		SEL35 = high		41.7		49.8	
Negative High-Voltage ChargePump Output	V_{N}	(Note 3)		-18.2		-14.9	V
Continuous Current Through Switch	IA_{-}	EN_ = high		-60		+60	mA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
On-Resistance, Figure 1	R_{ON}	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+35 \mathrm{~V}, \text { SEL } 35=\text { high, } \\ & \mathrm{I}_{\mathrm{N}}= \pm 60 \mathrm{~mA} \text {, Figure } 1 \end{aligned}$			4.4	10	Ω
		$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+15 \mathrm{~V}, \text { SEL } 35=\text { low, } \\ & \mathrm{I}_{\mathrm{IN}}= \pm 60 \mathrm{~mA} \text {, Figure } 1 \end{aligned}$			4.4	10	
On-Resistance Flatness	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+35 \mathrm{~V}, \mathrm{SEL} 35=\text { high, } \\ & \mathrm{I}_{\mathrm{IN}}= \pm 60 \mathrm{~mA} \end{aligned}$			9	150	$m \Omega$
		$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+15 \mathrm{~V}, \mathrm{SEL} 35=\text { low, } \\ & \mathrm{I}_{\mathrm{IN}}= \pm 60 \mathrm{~mA} \end{aligned}$			8	150	
On-Resistance Matching Between Channels	$\Delta \mathrm{R}_{\text {ON_M }}$	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+35 \mathrm{~V}, \mathrm{SEL} 35=\text { high, } \\ & \mathrm{I}_{\mathrm{IN}}= \pm 60 \mathrm{~mA},(\text { Note } 4) \end{aligned}$				200	$m \Omega$
		$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+15 \mathrm{~V}, \mathrm{SEL} 35=\text { low }, \\ & \mathrm{I}_{\mathrm{IN}}= \pm 60 \mathrm{~mA},(\text { Note } 4) \end{aligned}$				200	
A_Off-Leakage Current	IL_OFF_A	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}_{-}} \leq+35 \mathrm{~V}, \text { SEL35 }=\text { high, } \\ & \mathrm{V}_{\mathrm{B}_{-}}=0 \mathrm{~V},+40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \end{aligned}$ Figure 2		-20		+20	nA
		$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+35 \mathrm{~V}, \text { SELS } 35=\text { high, } \\ & \mathrm{V}_{\mathrm{B}_{-}}=0 \mathrm{~V},+40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}, \end{aligned}$ Figure 2		-80		+80	
B_Off-Leakage Current	IL_OFF_B	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{B}_{-}} \leq+35 \mathrm{~V}, \text { SEL35 }=\text { high, } \\ & \mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V},+40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \end{aligned}$ Figure 2		-20		+20	nA
		$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{B}} \leq+35 \mathrm{~V}, \mathrm{SEL} 35=\text { high, } \\ & \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V},+40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}, \\ & \text { Figure } 2 \end{aligned}$		-80		+80	
On-Leakage Current	IL_ON	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}_{-}} \leq+35 \mathrm{~V}, \mathrm{SEL} 35=\text { high },$ B_ unconnected, $+40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+85^{\circ} \mathrm{C}$, Figure 2		-50		+50	nA
		$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+35 \mathrm{~V}$, SEL35 $=$ high, B_unconnected, $+40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+105^{\circ} \mathrm{C}$, Figure 2		-200		+200	
A_Power-Off Leakage Current	IL_PWROFF_A	$\mathrm{V}_{\mathrm{CC}_{-}}=0 \mathrm{~V} \text { or }$ unconnected, $\left\|V_{A_{-}}-V_{B_{-}}\right\|>3 V$, current measured at A	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \\ & \leq+35 \mathrm{~V} \end{aligned}$	-5		+5	$\mu \mathrm{A}$
B_Power-Off Leakage Current	IL_PWROFF_B	$\mathrm{V}_{\mathrm{CC}_{-}}=0 \mathrm{~V} \text { or }$ unconnected, $\left\|\mathrm{V}_{\mathrm{A}_{-}}-\mathrm{V}_{\mathrm{B}_{-}}\right\|>3 \mathrm{~V},$ current measured at B	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \\ & \leq+35 \mathrm{~V} \end{aligned}$	-5		+5	$\mu \mathrm{A}$
DIGITAL LOGIC (EN1, EN2, EN3, EN4, SEL35)							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					$\begin{gathered} 0.3 \mathrm{x} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$	V
Input Voltage High	V_{IH}			$\begin{gathered} 0.7 \mathrm{x} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$			V
Input Leakage Current	IDLKG	$\mathrm{V}_{\text {EN_ }}=$ low or high		-1		+1	$\mu \mathrm{A}$

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
AC CHARACTERISTICS							
Power-Up Time	tpWRON	$\mathrm{C}_{\mathrm{VP}}=\mathrm{C}_{\mathrm{VN}}=10 \mathrm{nF}$ (Note 6)			5		ms
Enable Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}= \pm 10 \mathrm{~V}, \mathrm{SEL} 35=\text { low, } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \text { Figure } 3 \end{aligned}$			40		$\mu \mathrm{s}$
		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{A}}= \pm 10 \mathrm{~V}, \text { SEL } 35=\text { high } \\ R_{\mathrm{L}}=10 \mathrm{k} \Omega, \text { Figure } 3 \end{array}$			40		
Enable Turn-Off Time	toff	$\mathrm{V}_{\mathrm{A}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Figure 3 (Note 5)				100	$\mu \mathrm{s}$
Off-Isolation	VISO	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{A}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { Figure } 4 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=3 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$		-88		dB
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or }$ unconnected		-66		
Crosstalk	V_{CT}	$\begin{aligned} & V_{A}=1 V_{R M S}, \\ & f=\overline{100 k H z}, \\ & R_{S}=R_{L}=50 \Omega, \end{aligned}$ Figure 5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$		-101		dB
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or unconnected		-93		
-3dB Bandwidth	BW	$\mathrm{V}_{\mathrm{A}_{-}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, \mathrm{R}_{\mathrm{S}}}=\mathrm{R}_{\mathrm{L}}=50 \Omega,$ Figure 6			380		MHz
Total Harmonic Distortion	THD+N	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz			0.038		\%
Charge Injection	Q	$\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Figure 7			225		pC
Input Capacitance	$\mathrm{CON}^{\text {O }}$	A_, B_pins, $\mathrm{f}=1 \mathrm{MHz}$			16		pF
	$\mathrm{C}_{\text {OFF }}$	At A_{-}when $\mathrm{B}_{-}=\mathrm{GND}$, or at B_{-} when $A_{-}=G N D, f=1 \mathrm{MHz}$			12		pF
THERMAL SHUTDOWN							
Thermal Shutdown Threshold	TSHDN	Temperature rising			160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {HYST }}$				32		${ }^{\circ} \mathrm{C}$
ESD PROTECTION							
All Pins		Human Body Model			± 2		kV

Note 2: All units are 100% production tested at $+85^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 3: Do not use V_{P} or V_{N} to power external circuitry.
Note 4: Tested at -1 V , guaranteed by design for $-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+35 \mathrm{~V}$.
Note 5: This parameter does not depend on the status of SEL35.
Note 6: Power-up time is the time needed of V_{P} and V_{N} to reach steady-state values. Analog Switch

Test Circuits/Timing Diagrams

Figure 1. On-Resistance Measurement

Figure 2. Leakage Current Measurements

Test Circuits/Timing Diagrams (continued)

Figure 3. Enable Switching Time

Figure 4. Off-Isolation

Test Circuits/Timing Diagrams (continued)

Figure 5. Crosstalk

Figure 6. Frequency Response

Test Circuits/Timing Diagrams (continued)

Vout IS THE MEASURED VOLTAGE DUE TO CHARGE
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
$Q=C_{L} \times V_{\text {OUT }}$

Figure 7. Charge Injection

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Beyond-the-Rails -15 V to +35 V Analog Switch

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Configuration

PIN	NAME	FUNCTION
1	V_{P}	Positive Charge-Pump Output. Bypass V_{P} to GND with a 10nF, 50V capacitor for applications with an input range of $\pm 15 \mathrm{~V}$ (SEL35 = low) or a 100V capacitor for applications with an input range of $-15 \mathrm{~V} /+35 \mathrm{~V}$ (SEL 35 = high). Place the capacitor as close as possible to the device.
2	GND	Ground
3	V_{N}	Negative Charge-Pump Output. Bypass V_{N} to GND with a 50V, 10nF ceramic capacitor placed as close as possible to the device.
4	$V_{C C}$	Power-Supply Input. Bypass $V_{C C}$ to GND with a 1 $\mu \mathrm{F}$ ceramic capacitor placed as close as possible to the device.
5	I.C.	Internally Connected. Connect to GND.
6	A1	Analog Switch 1 Terminal A. Switch 1 is open when EN1 is low.
7	A2	Analog Switch 2 Terminal A. Switch 2 is open when EN2 is low.
8	A3	Analog Switch 3 Terminal A. Switch 3 is open when EN3 is low.
9	A4	Analog Switch 4 Terminal A. Switch 4 is open when EN4 is low.
10	SEL35	Analog-Signal Range Select Input. Drive SEL35 low to enable the -15V/+15V analog signal range. Drive SEL35 high to enable the -15V/+35V analog signal range.
11	EN1	Switch 1 Control Input. Drive EN1 high to close switch 1. Drive EN1 low to open switch 1.

Quad Beyond-the-Rails -15 V to +35 V Analog Switch

Pin Description (continued)

PIN	NAME	
12	EN2	Switch 2 Control Input. Drive EN2 high to close switch 2. Drive EN2 low to open switch 2.
13	$\mathrm{~V}_{\mathrm{L}}$	Logic Interface Reference Supply Input. Bypass V_{L} to GND with a 1 $\mu \mathrm{F}$ ceramic capacitor.
14	EN3	Switch 3 Control Input. Drive EN3 high to close switch 3. Drive EN3 low to open switch 3.
15	EN4	Switch 4 Control Input. Drive EN4 high to close switch 4. Drive EN4 low to open switch 4.
16	N.C.	No Connection. Not internally connected.
17	B4	Analog Switch 4 Terminal B. Switch 4 is open when EN4 is low.
18	B3	Analog Switch 3 Terminal B. Switch 3 is open when EN3 is low.
19	B2	Analog Switch 2 Terminal B. Switch 2 is open when EN2 is low.
20	B1	Analog Switch 1 Terminal B. Switch 1 is open when EN1 is low.
-	EP	Exposed Pad. Connect EP to V_{N}. Do not connect to ground. EP is not intended as an electrical connection point.

Detailed Description

The MAX14777 quad SPST switch supports analog signals above and below the rails with a single 3.0 V to 5.5 V supply. The device features up to $-15 \mathrm{~V} /+35 \mathrm{~V}$ analog signal range for all switches when pin SEL35 is high. When pin SEL35 is low, the analog signal range reduces to $-15 \mathrm{~V} /+15 \mathrm{~V}$ signal range, also resulting in a lower V_{CC} supply current. SEL35 trades off high-side analog signal range for supply current. Each switch has a separate control input to allow independent switching.
The MAX14777 features 10Ω (max) on-resistance, and $9 \mathrm{~m} \Omega$ (typ) Ron flatness, along with a 50 nA (max at $+85^{\circ} \mathrm{C}$) on-leakage. For maximum signal integrity, the IC keeps this performance over the entire common-mode voltage range. Each switch can carry up to 60 mA (max) of continuous current in either direction.

Integrated Bias Generation

The MAX14777 contains a total of three charge pumps to generate bias voltages for the internal switches: a 5 V regulated charge pump, a positive high-voltage charge pump $\left(V_{P}\right)$, and a negative high-voltage charge pump (V_{N}). When V_{CC} is above 4.75 V (typ), the 5 V charge pump is bypassed and V_{CC} provides the input for the high-voltage charge pumps, reducing overall supply current.

The voltage at V_{N} is always -16 V (typ); however, the MAX14777 features a pin-selectable (SEL35) voltagehigh range for the analog signal. When the SEL35 input is low, the voltage on V_{p} is +26 V (typ) and the analog signal range is $-15 \mathrm{~V} /+15 \mathrm{~V}$. When the SEL35 input is high, the voltage on V_{P} is +46 V (typ) and the analog signal range is extended to $-15 \mathrm{~V} /+35 \mathrm{~V}$.
An external 10 nF capacitor is required for each highvoltage charge pump between $\mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{N}}$ and GND. Use a 50 V -rated capacitor on V_{N}. On V_{P} use a 50 V capacitor if SEL35 = low or use a 100 V capacitor if SEL35 = high. Never use V_{P} or V_{N} to power external circuitry.

Analog Signal Levels

The MAX14777 transmits signals above and below the rails with a single 3.0 V to 5.5 V supply due to its integrated bias circuitry. The analog signal range is pin selectable using the SEL35 input. Drive SEL35 low to switch signals between -15 V and +15 V . Drive SEL35 high to switch signals between -15 V and +35 V .
Setting SEL35 low reduces both turn-on delay and V_{CC} supply current.
The MAX14777 features 10Ω (max) on-resistance and $9 \mathrm{~m} \Omega$ (typ) RoN flatness for analog signals between -15V and +35 V . The current flow through the switches can be bidirectional.

Quad Beyond-the-Rails -15 V to +35 V Analog Switch

\mathbf{V}_{L} Supply Logic Input

The MAX14777 features a separate logic supply input $\left(V_{\mathrm{L}}\right)$ that sets the high and low thresholds for the logic inputs (EN_ and SEL35). This feature allows flexibility in interfacing to controllers that have a different logic level than V_{CC}. Connect V_{L} to a voltage between 1.62 V and 5.5 V for normal operation.

Applications Information

Non-Powered Condition

To understand the behavior of the MAX14777 when not powered (i.e. $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$), both the transient and DC signal conditions should be considered. Every A_ and B_ pin has internal diodes to V_{P} and V_{N}, as shown in Figure 8. Applying a positive voltage on A_{-}or B_{-}charges the V_{P} capacitor through the diode to $\overline{\mathrm{V}}_{\mathrm{P}}$. Applying a negative voltage on A_{-}or B_{-}charges the V_{N} capacitor negative through the diode to V_{N}. Switch terminals $\mathrm{A}_{-}, \mathrm{B}_{-}$are tolerant to high-voltage signals ranging from -15 V to +35 V when device is unpowered; i.e, $\mathrm{V}_{\mathrm{CC}}=0$ or V_{CC} floating.

Once the capacitor is charged to a DC voltage, the L_IO_OFF current flows. Thus, under transient conditions, applying a changing voltage to an A_{-}or B_{-}pin results in flow into or out of the pin due to a charge movement at the external capacitors on V_{P} and V_{N}.
Under DC conditions, when a voltage is applied to an A_{-} or B_{-}pin, with $V_{C C}$ unpowered, the switch is open when the voltage difference between the A_{-}and B_{-}pin is larger than 3 V . Under these conditions, DC leakage current flows into the pin. When $\left|V_{A}-V_{B}\right|<3 V D C$, the switch is not fully open, and currents up to a few mA can flow between $\mathrm{A}_{\text {_ }}$ and $\mathrm{B}_{\text {_ }}$.
If SEL35 is connected low, the V_{P} capacitor charges to about 25 V . Applying a positive voltage above about 25 V on $\mathrm{A}_{\text {_ }}$ or B_{-}charges the V_{P} capacitor through the diode to V_{P}. Once the V_{P} capacitor is charged to this increased voltage, current flow from A_ or B_ ceases. Thus, even when SEL35 is low, any of A_{-}^{-}or B_{-}^{-}tolerate voltages up to 35 V .

Figure 8. Typical Application Circuit

MAX14777

Application Example

The MAX14777 can be used for designing an industrial single-supply analog input module that supports both $\pm 15 \mathrm{~V}$ voltages and $4 \mathrm{~mA}-20 \mathrm{~mA}$ current measurements. In this scheme, the MAX14777 switches in a 250Ω resistor, typically used for translating the current-loop current to a voltage for analog measurement, as shown in Figure 9. By using three of the four MAX14777 switches, which provide accurate current and voltage measurement, the device handles voltages up to 36 V , as maximally found in current-loop power supplies. In voltage measurement

Quad Beyond-the-Rails -15 V to +35 V Analog Switch

mode, with switch positions as shown in Figure 9, analog input voltages in the $\pm 15 \mathrm{~V}$ range are switched to the amplifier input. Invert all switch positions for current loop measurement operation.
When the analog input module is not powered, the MAX14777 tolerates and protects the resistor and PGA against voltages mistakenly connected to the AIN terminal.

Figure 9. Analog Input Module for Voltage and Current Loop Measurement

MAX14777

Quad Beyond-the-Rails -15 V to +35 V Analog Switch

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14777GTP +	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed Pad

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
20 TQFN-EP	T2044+4	$\underline{21-0139}$	$\underline{90-0409}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 13$	Initial release	-
1	$10 / 13$	Removed reference to prereleased op amp	14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

