MAX14778

Dual $\pm 25 \mathrm{~V}$ Above- and Below-the-Rails 4:1 Analog Multiplexer

General Description

The MAX14778 dual 4:1 analog multiplexer supports analog signals up to $\pm 25 \mathrm{~V}$ with a single 3.0 to 5.5 V supply. Each multiplexer has separate control inputs to allow independent switching, making the device ideal for multiplexing different communications signals with the same connector pins. Extended ESD protection of $\pm 6 \mathrm{kV}$ (Human Body Model) enable direct interfacing to cables and connectors.

The MAX14778 features a low 1.5Ω (max) on-resistance and $3 \mathrm{~m} \Omega$ (typ) flatness to maximize signal integrity over the entire common-mode voltage range. Each multiplexer can carry up to 300 mA of continuous current through the multiplexer in either direction.

The MAX14778 supports switching of full-speed USB 1.1 signals (12Mbps) and RS-485 data rates of up to 20Mbps.
The MAX14778 is available in a 20 -pin ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) TQFN package and is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ industrial temperature range.

Applications

- RS-485/RS-232/USB 1.1 Multiplexing
- POS Peripherals
- Handheld Industrial Devices
- Communication Systems
- Audio/Data Multiplexing
- Connector Sharing
- Gaming Machines

Ordering Information appears at end of data sheet.

Benefits and Features

- Wide Signal Range Supported from Single-Supply Voltage Eliminates Negative Power Supply
- $\pm 25 \mathrm{~V}$ Signal Range
- Single 3.0 V to 5.5 V Supply
- Two Independent Multiplexers
- Break-Before-Make Operation
- 1.5Ω RoN (max)
- $3 \mathrm{~m} \Omega$ Ron Flatness (typ)
- 300mA Maximum Current Through Multiplexer
- 78pF Input Capacitance
- 75MHz Large-Signal Bandwidth
- 20-Pin TQFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) Package
- Extended ESD Protection on A_ and B_ Pins
- $\pm 6 \mathrm{kV}$ Human Body Model (HBM)

Functional Diagram

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
TQFN (derate $33.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	266.7 mW
Operating Temperature Range...................... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Junction Temperature... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$	
Soldering Temperature (reflow)	,

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 20 TQFN	T2055+4
Package Code	$\underline{21-0140}$
Outline Number	$\underline{90-0009}$
Land Pattern Number	$30^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$2^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC CHARACTERISTICS							
Supply Voltage Range	V_{DD}			3.0		5.5	V
Supply Current	IDD	$\mathrm{ENA}=\mathrm{ENB}=$ high	$\mathrm{V}_{\text {DD }} \leq \mathrm{V}_{\text {DDTH }}$		4.27	10	mA
			$\mathrm{V}_{\text {DD }}>\mathrm{V}_{\text {DDTH }}$		2.54	6	
		$\begin{aligned} & \mathrm{V}_{\mathrm{ENA}}=\mathrm{V}_{\mathrm{ENB}}= \\ & \mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\text {DDTH }}$		4.31	10	
			$\mathrm{V}_{\text {DD }}>\mathrm{V}_{\text {DDTH }}$		2.59	6	
Charge-Pump Threshold	$V_{\text {DDTH }}$	(Note 2)		4.64			V
Analog Signal Range	$\mathrm{V}_{\text {IN }}$	Figure 1, switch open or closed		-25		+25	V
Continuous Current Through Switch	ICOM	年位		-300		+300	mA
On-Resistance	RON	Figure 1, $\mathrm{I}_{\mathrm{COM}}=$ $\pm 300 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}$			0.84	1.7	Ω
					0.84	1.5	
On-Resistance Flatness	RFLAT(ON)	Figure $1,-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+25 \mathrm{~V}$, $I_{\text {COM }}= \pm 300 \mathrm{~mA}$			3		$m \Omega$
A_, B_ Off-Leakage	$\mathrm{I}_{\text {A (OFF) }}$,	Figure 2, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-250		+250	nA
Current	$\mathrm{I}_{\mathrm{B} \text { (OFF) }}$			-200		+200	
ACOM, BCOM Off-Leakage Current	$\mathrm{I}_{\mathrm{ACOM}}(\mathrm{OFF})$, $\mathrm{I}_{\mathrm{BCOM}}(\mathrm{OFF})$	Figure 2, $\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$
A_, B_On-Leakage Current	$\mathrm{I}_{\mathrm{A}(\mathrm{ON}),}$ $\mathrm{I}_{\mathrm{B}(\mathrm{ON})}$	Figure $2, \mathrm{~V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}$, ACOM or BCOM is unconnected		-1		+1	$\mu \mathrm{A}$
LOGIC INPUTS (ENA, ENB, SA_, SB_)							
Input Logic-Low Voltage	VIL	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$				0.8	V
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$				0.8	
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$				0.7	
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$				0.7	
Input Logic-High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		2.2			V
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$		2.1			
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		1.9			
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		1.8			
		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	2.1			V
			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	2.0			
			$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	1.9			
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	1.7			

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC CHARACTERISTICS						
Power-Up Time	tPOR			404		ms
Enable Turn-On Time	ton	Figure 3, $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $C_{L}=15 \mathrm{pF}$			2	ms
Enable Turn-Off Time	tofF	Figure $3, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $C_{L}=15 \mathrm{pF}$			1.5	ms
Break-Before-Make Interval	$t_{\text {BBM }}$	Figure $4, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $C_{L}=15 \mathrm{pF}$		840		$\mu \mathrm{s}$
Charge Injection	Q	Figure 5, $\mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		1720		pC
Off-Isolation	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & \text { Figure } 6, \mathrm{~V}_{\mathrm{A}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}^{-}=15 \mathrm{pF} \end{aligned}$		-80		dB
Crosstalk	V_{CT}	Figure 6, $\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \mathrm{l}$		-103		dB
-3dB Bandwidth	BW	Figure 6, $\mathrm{R}_{S}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$		75		MHz
Total Harmonic Distortion Plus Noise	THD+N	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz		0.003		\%
Input Capacitance	$\mathrm{C}_{\text {IN }}$	A_, B_pins		78		pF
THERMAL PROTECTION						
Thermal-Shutdown Threshold	TSHUT			145		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	THYST			25		${ }^{\circ} \mathrm{C}$
ESD PROTECTION						
A_, B_Pins (Note 3)		Human Body Model		Q6		kV
All Other Pins		Human Body Model		Q2		kV

Note 1: All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: When V_{DD} is higher than the charge-pump threshold, the internal 5 V regulated charge pump is turned off and the input to the high-voltage charge pumps is provided by V_{DD}.
Note 3: The MAX14778 requires a 100 nF capacitor on both V_{P} and V_{N} to $G N D$ to guarantee full ESD protection. See the Applications Information section for details on ESD test conditions.

Test Circuits/Timing Diagrams

Figure 1. On-Resistance Measurement

Figure 2. Leakage Current Measurement

Test Circuits/Timing Diagrams (continued)

Figure 3. Turn-On/Turn-Off Timing

Figure 4. Break-Before-Make Timing

Test Circuits/Timing Diagrams (continued)

Figure 5. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS. OFF-ISOLATION IS MEASURED BETWEEN ACOM AND "OFF" A_ TERMINAL ON EACH MULTIPLEXER.
-3dBW IS MEASURED BETWEEN ACOM AND "ON" A TERMINAL ON EACH MULTIPLEXER.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH MULTIPLEXER IS REVERSED; WORST VALUES ARE RECORDED.

Figure 6. Off-Isolation, -3dB Bandwidth, and Crosstalk

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

TURN-ON TIME
vs. ANALOG-SIGNAL VOLTAGE

CHARGE PUMP NOISE WITH SWITCH ENABLED

PSRR vs. FREQUENCY

TURN-OFF TIME
vs. ANALOG-SIGNAL VOLTAGE

CHARGE PUMP NOISE WITH SWITCH DISABLED

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	BCOM	MUX B Common Terminal
2	V_{P}	Positive Charge-Pump Output. Bypass VP to GND with a 100nF 50V ceramic capacitor.
3	GND	Ground
4	V_{N}	Negative Charge-Pump Output. Bypass V_{N} to GND with a 100 nF 50 V ceramic capacitor.
5	ACOM	MUX A Common Terminal
6	A0	MUX A Bidirectional Analog Input/Output 0
7	A1	MUX A Bidirectional Analog Input/Output 1
8	A2	MUX A Bidirectional Analog Input/Output 2
9	A3	MUX A Bidirectional Analog Input/Output 3
10	ENA	MUX A Enable Input
11	SAO	MUX A Channel Select Input 0
12	SA1	MUX A Channel Select Input 1
13	$V_{D D}$	Power-Supply Input. Bypass $\mathrm{V}_{\text {DD }}$ to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor.
14	SB1	MUX B Channel Select Input 1
15	SB0	MUX B Channel Select Input 0
16	ENB	MUX B Enable Input
17	B3	MUX B Bidirectional Analog Input/Output 3
18	B2	MUX B Bidirectional Analog Input/Output 2
19	B1	MUX B Bidirectional Analog Input/Output 1
20	B0	MUX B Bidirectional Analog Input/Output 0
-	EP	Exposed Pad. Connect EP to V_{N}. EP is not intended as an electrical connection point.

Truth Tables
Table 1. MUX A Channel Selection

ENA	SA1	SA0	ACOM CONNECTED TO
0	X	X	Open
1	0	0	A0
1	0	1	A1
1	1	0	A2
1	1	1	A3

$X=$ Don't care

Detailed Description

The MAX14778 dual 4:1 analog multiplexer integrates bias circuitry to provide a $\pm 25 \mathrm{~V}$ analog voltage range with a single 3.0 to 5.5 V supply. This extended input range allows multiplexing different communications signals such as RS-232, RS-485, audio and USB 1.1 onto the same connector.

Integrated Bias Generation

The MAX14778 contains a total of three charge pumps to generate bias voltages for the internal switches: a 5 V regulated charge pump, a positive high-voltage (+35 V) charge pump, and a negative high-voltage (-27V) charge pump. When $V_{D D}$ is above 4.7 V (typ), the 5 V regulated charge pump is bypassed and $V_{D D}$ provides the input for the highvoltage charge pumps, reducing overall supply current.
An external 100 nF capacitor is required for each highvoltage charge pump between $\mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{N}}$ and GND.

Analog Signal Levels

The MAX14778 transmits signals of up to $\pm 25 \mathrm{~V}$ with a single 3.0 to 5.5 V supply due to integrated bias circuitry. The device features 1.5Ω (max) on-resistance and $3 \mathrm{~m} \Omega$ (typ) flatness for analog signals between -25 V and +25 V (see the Typical Operating Characteristics). The current flow through the multiplexers can be bidirectional, allowing operation either as a multiplexer or demultiplexer.

Table 2. MUX B Channel Selection

ENB	SB1	SB0	BCOM CONNECTED TO
0	X	X	Open
1	0	0	B0
1	0	1	B1
1	1	0	B2
1	1	1	B3

$X=$ Don't care

Digital Interface

The MAX14778 has two digital select inputs for each MUX: SA1 and SA0 control MUX A; SB1 and SB0 control MUX B. Drive the digital select inputs high or low to select which input (A_{-}, B_{-}) is connected to the common terminal (ACOM, BCOM) for each MUX. See the Truth Tables for more information.
Each MUX features an independent enable input (ENA and ENB). Drive ENA or ENB low to disconnect all inputs from the common terminal for that MUX, regardless of the status of the select inputs or the other enable input.

Applications Information

Connector Sharing

The MAX14778 supports a $\pm 25 \mathrm{~V}$ analog signal range independently for each input/output, allowing physical connector sharing between interface types that have differing signal ranges.
The multiprotocol connector-sharing application in the Typical Operating Circuits shows an application with RS-232, half-duplex RS-485, full-speed USB 1.1, and audio signals sharing the same connector. The device allows signals to pass over the entire signal range specified by each standard while safely isolating the unused transceivers.

Non-Powered Condition

The MAX14778 can tolerate input voltages on the A_, B_, ACOM, and BCOM pins in the $\pm 25 \mathrm{~V}$ range when it is not powered.
When VDD $=0 \mathrm{~V}$, the DC input leakage current into the A_, B_, ACOM or BCOM pins will typically be below $1 \mu \mathrm{~A}$. Some devices can have a larger leakage current up to mA range due to technology spread.
With VDD not powered, internal diodes between the analog pins and the VP and VN will charge up the external capacitors on VP and VN when positive and/or negative voltages are applied to these pins. This causes transient input current flow.
Large dv/dt on the inputs causes large capacitive charging currents, which have to be limited to the 300 mA Absolute Maximum Ratings in order to not destroy the internal diodes. With 100nF capacitors on VP and VN, the $\mathrm{dv} / \mathrm{dt}$ must be limited to $3 \mathrm{~V} / \mu$ s once the capacitors reach their final voltage; the input current decays to the leakage current levels mentioned above.

Figure 7. Human Body ESD Test Model

High-ESD Protection

Electrostatic discharge (ESD)-protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2 \mathrm{kV}$ Human Body Model (HBM) encountered during handling and assembly. A_{-}and B_{-} are further protected against ESD up to $\pm 6 \mathrm{kV}$ (HBM) without damage. The ESD structures withstand high ESD both in normal operation and when the device is powered down. After an ESD event, the MAX14778 continues to function without latchup.

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.
The MAX14778 requires a 100 nF capacitor on both V_{P} and V_{N} to GND to guarantee full ESD protection.

Human Body Model

Figure 7 shows the Human Body Model. Figure 8 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 8. Human Body Current Waveform

Typical Operating Circuits

Typical Operating Circuits (continued)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14778ATP +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TQFN-EP*
MAX14778ETP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Chip Information
PROCESS: BiCMOS

Dual $\pm 25 \mathrm{~V}$ Above- and Below-the-Rails 4:1 Analog Multiplexer

Revision History

REVISION NUMBER	REVISION DATE		DESCRIPTION
PAGES			
0	$6 / 11$	Initial release	-
1	$6 / 12$	Added new TOCs 14 and 15, updated Non-Powered Condition section, updated Note 4, Pin Description, ESD Test Conditions, Typical Operating Circuits, updated capacitor values	$3,8,9,10,11$, 12,13
2	$5 / 15$	Revised Benefits and Features section	1
3	$7 / 20$	Updated the General Description, Benefits and Features, Absolute Maximum Ratings, Electrical Characteristics, and Ordering Information sections, and TOC02-TOC04	$1-4,8,15$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW.112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0

