20رA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

General Description
The MAX1482 and MAX1483 are low-power transceivers for RS-485 and RS-422 communication. Both feature slew-rate-limited drivers that minimize EMI and reduce reflections caused by improperly terminated cables. Data rates are guaranteed up to 250kbps.
The MAX1482/MAX1483 draw only 20μ A of supply current. Additionally, they have a low-current shutdown mode that consumes only $0.1 \mu \mathrm{~A}$. Both parts operate from a single +5 V supply.
Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.
The MAX1482 is full duplex and the MAX1483 is half duplex. Both parts have a $1 / 8$-unit-load input impedance that guarantees up to 256 transceivers on the bus.

Applications

Low-Power RS-485/RS-422 Networks Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks Large 256-Node LANs

Typical Operating Circuits

NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH. TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.

MAX1482 appears at end of data sheet.

Features

- Low 20~A Operating Current
- Slew-Rate Limited for Reduced EMI and Reduced Reflections
- $0.1 \mu \mathrm{~A}$ Low-Current Shutdown Mode
- Designed for RS-485 and RS-422 Applications
- Operate from a Single +5V Supply
- -7 V to +12 V Common-Mode Input Voltage Range
- Allows up to 256 Transceivers on the BusGuaranteed (1/8-unit load)
- Current Limiting and Thermal Shutdown for Driver Overload Protection

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX1482CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 PDIP	P14-3
MAX1482CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO	$\mathrm{S} 14-4$
MAX1482EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 PDIP	P14-3
MAX1482ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	$\mathrm{S} 14-4$
MAX1483CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PDIP	$\mathrm{P} 8-1$
MAX1483CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-5$
MAX1483CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}{ }^{\circ}$	$\mathrm{U} 8-1$
MAX1483EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP	$\mathrm{P} 8-1$
MAX1483ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	S8-5

Pin Configurations

MAX1482 appears at end of data sheet.
$\mu M A X$ is a registered trademark of Maxim Integrated products, Inc.

20цA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

ABSOLUTE MAXIMUM RATINGS

c)	7V
Control Input Voltages (RE, DE)-0.5V to (VCC + 0.5V)	
Driver Input Voltage (DI).........................-0.5V to (VCC +0.5 V)	
Driver Output Voltages-7.5V to 12.5V	
Receiver Input Voltages (A, B)-7.5V to 12.5V	
Receiver Output Voltage (RO)...................-0.5V to (VCC +0.5 V)	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
8-Pin Plastic DIP (derate 9.09m	ve $\left.+70^{\circ} \mathrm{C}\right)727 \mathrm{~mW}$
Plastic DIP (derate 10	+ $70^{\circ} \mathrm{C}$) .800 mW

8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	$.471 \mathrm{~mW}$
14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 667 mW	
8-Pin μ MAX (derate $4.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW	
Operating Temperature Ranges	
MAX148_C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX148_E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Differential Driver Output (no load)	Vod1				5	V
Differential Driver Output (with load)	VOD2	$R=50 \Omega$ (RS-422), Figure 1		2	5	V
		$R=27 \Omega$ (RS-485), Figure 1		1.5	5	
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 1			0.2	V
Driver Common-Mode Output Voltage	Voc	$R=27 \Omega$ or 50Ω, Figure 1			3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 1			0.2	V
Three-State (high impedance) Output Current at Driver	IozD	MAX1482 only, $-7 \mathrm{~V}<\mathrm{V}_{\mathrm{Y}}$ and $\mathrm{V}_{\mathrm{Z}}<12 \mathrm{~V}$			± 50	$\mu \mathrm{A}$
Logic Input High Voltage	V_{IH}	DE, DI, $\overline{\mathrm{RE}}$		2.0		V
Logic Input Low Voltage	VIL	DE, DI, $\overline{\mathrm{RE}}$			0.8	V
Logic Input Current	IIN1	DE, DI, RE			± 2	$\mu \mathrm{A}$
Input Current (A, B)	IIN2	482	V IN $=12 \mathrm{~V}$		150	$\mu \mathrm{A}$
		$D E=0 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$ or 5.25 V	V IN $=-7 \mathrm{~V}$		-100	
		MAX1483,$D E=0 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$		200	
			V IN $=-7 \mathrm{~V}$		-150	
Receiver Differential Threshold Voltage	VTH	$-7 \mathrm{~V} \leq \mathrm{VCM} \leq 12 \mathrm{~V}$		-0.2	0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			75	mV
Receiver Output High Voltage	V OH	$\mathrm{IO}=-4 \mathrm{~mA}, \mathrm{VID}=200 \mathrm{mV}$		3.5		V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=4 \mathrm{~mA}, \mathrm{VID}=-200 \mathrm{mV}$			0.4	V
Three-State (high impedance) Output Current at Receiver	IOZR	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V}$			± 1	$\mu \mathrm{A}$
Receiver Input Resistance	Rin	$-7 \mathrm{~V} \leq \mathrm{VCM} \leq 12 \mathrm{~V}$		96		k Ω

Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

20رA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
No-Load Supply Current	IcC	MAX1482,	$\mathrm{DE}=\mathrm{VCC}$		25	45	$\mu \mathrm{A}$
		$\mathrm{RE}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$	DE $=0 \mathrm{~V}$		20	35	
		$\begin{aligned} & \text { MAX1483, } \\ & \text { RE }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\mathrm{DE}=\mathrm{VCC}$		55	85	
			DE $=0 \mathrm{~V}$		20	35	
Supply Current in Shutdown	ISHDN	$\mathrm{DE}=0 \mathrm{~V}, \mathrm{RE}=\mathrm{VCC}$			0.1	10	$\mu \mathrm{A}$
Driver Short-Circuit Current	IOSD	$\mathrm{DI}=$ high or low, $-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 12 \mathrm{~V}$ (Note 2)		35		250	mA
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		± 7		± 95	mA

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Input to Output	tPLH	Figures 3 and 5, RDIFF $=54 \Omega$, $C_{L 1}=C L 2=100 \mathrm{pF}$			2	$\mu \mathrm{s}$	
	tPHL				2		
Driver Output Skew to Output	tSKEW	Figures 3 and 5, RDIFF $=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$			800	ns	
Driver Rise or Fall Time	$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$	Figures 3 and 5, RDIFF $=54 \Omega, \mathrm{CL}_{\text {L1 }}=\mathrm{C}_{\text {L2 }}=100 \mathrm{pF}$	0.25		2	$\mu \mathrm{s}$	
Driver Enable to Output High	tZH	Figures 4 and 6, CL $=100 \mathrm{pF}$, S2 closed	0.2		2	$\mu \mathrm{s}$	
Driver Enable to Output Low	tZL	Figures 4 and 6, CL $=100 \mathrm{pF}$, S1 closed	0.1		2	$\mu \mathrm{s}$	
Driver Disable Time from Low	tLZ	Figures 4 and 6, CL $=15 \mathrm{pF}$, S1 closed	0.3		3.0	$\mu \mathrm{s}$	
Driver Disable Time from High	thz	Figures 4 and 6, CL $=15 \mathrm{pF}$, S2 closed	0.3		3.0	$\mu \mathrm{s}$	
Receiver Input to Output	tPLH, tPHL	Figures 3 and 7, RDIFF $=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$	0.25		2.25	$\mu \mathrm{s}$	
\| tPLH - tPHL	Differential Receiver Skew	tSKD	Figures 3 and 7, RDIFF $=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$		160		ns
Receiver Enable to Output Low	tZL	Figures 2 and 8, $\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$, S1 closed			90	ns	
Receiver Enable to Output High	tzH	Figures 2 and 8, $\mathrm{C}_{\text {RL }}=15 \mathrm{pF}$, S2 closed			90	ns	
Receiver Disable Time from Low	tLZ	Figures 2 and 8, $\mathrm{C}_{\text {RL }}=15 \mathrm{pF}$, S1 closed			90	ns	
Receiver Disable Time from High	thz	Figures 2 and 8, CRL $=15 \mathrm{pF}$, S2 closed			90	ns	
Maximum Data Rate	fmax		250			kbps	
Time to Shutdown	tSHDN	(Note 3)	50	200	600	ns	
Driver Enable from Shutdown to Output High	tzH(SHDN)	Figures 4 and 6, CL = 100pF, S2 closed			2	$\mu \mathrm{s}$	
Driver Enable from Shutdown to Output Low	tZL(SHDN)	Figures 4 and 6, CL $=100 \mathrm{pF}$, S1 closed			2	$\mu \mathrm{s}$	
Receiver Enable from Shutdown to Output High	tZH(SHDN)	Figures 2 and 8, $C L=15 p F$, S2 closed, $\mathrm{A}-\mathrm{B}=2 \mathrm{~V}$			3	$\mu \mathrm{s}$	
Receiver Enable from Shutdown to Output Low	tZL(SHDN)	Figures 2 and 8, $C L=15 p F$, S1 closed, $B-A=2 V$			3	$\mu \mathrm{s}$	

Note 2: Applies to peak current. See Typical Operating Characteristics.
Note 3: The MAX1482/MAX1483 are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 50 ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

20цA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

Typical Operating Characteristics

20رA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

Pin Description

PIN			NAME	FUNCTION

20رA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

Figure 1. Driver DC Test Load

Figure 3. Driver/Receiver Timing Test Circuit

Figure 2. Receiver Timing Test Load

Figure 4. Driver Timing Test Load

20رA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

Figure 5. Driver Propagation Delays

Figure 7. Receiver Propagation Delays

Figure 6. Driver Enable and Disable Times

Figure 8. Receiver Enable and Disable Times

20цA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

Figure 9. Driver Output Waveform and FFT, Transmitting 250kbps (125kHz) Signal

Table 1. Transmitting

INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	Z	Y
X	1	1	0	1
X	1	0	1	0
X	0	X	High-Z	High-Z

X = Don't Care
High-Z = High Impedance

Applications Information

The MAX1482/MAX1483 are low-power transceivers for RS-485 and RS-422 communications. The MAX1482 and MAX1483 are specified for data rates of at least $250 k b p s$. The MAX1482 is a full-duplex transceiver while the MAX1483 is half duplex. When disabled, the driver and receiver outputs are high impedance.
The $96 \mathrm{k} \Omega, 1 / 8$-unit-load receiver input impedance of the MAX1482/MAX1483 allows up to 256 transceivers on a bus, compared to the 1-unit load ($12 \mathrm{k} \Omega$ input impedance) of standard RS-485 drivers (32 transceivers maximum). Any combination of MAX1482/MAX1483 and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus.

Figure 10. Receiver Propagation-Delay Test Circuit

Table 2. Receiving

INPUTS			OUTPUT
$\overline{\mathrm{RE}}$	DE*	A-B	RO
0	0	$\geq+0.2 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs open	1
1	0	x	High-Z

X = Don't Care
High-Z = High Impedance

* DE = 0 for MAX1483 and is a Don't Care for MAX1482.

Reduced EMI and Reflections
The MAX1482/MAX1483 are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 9 shows both the driver output waveform of a MAX1482/MAX1483 transmitting a 125 kHz signal and the Fourier analysis of that signal.
High-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.

20رA，1／8－Unit－Load，Slew－Rate－Limited RS－485 Transceivers

Figure 11．Receiver tPHL

Low－Power Shutdown Mode

A low－power shutdown mode is initiated by bringing RE high and DE low．The devices will not shut down unless both the driver and receiver are disabled．In shut－ down，the devices typically draw only $0.1 \mu \mathrm{~A}$ of supply current．
RE and DE may be driven simultaneously；the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns．If the inputs are in this state for at least 600ns，the parts are guaranteed to enter shut－ down．
For the receiver，the tZH and tZL enable times assume the part was not in the low－power shutdown state．The tZH（SHDN）and tZL（SHDN）enable times assume the parts were shut down（see Electrical Characteristics）．

It takes the receivers longer to become enabled from the low－power shutdown state（tzH（SHDN），tZL（SHDN）） than from the operating mode（tzH，tZL）．（The parts are in operating mode if the RE，DE inputs equal a logical 0,1 or 1,1 or 0,0 ．）

Figure 12．Receiver tPLH

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms．A foldback current limit on the output stage provides immediate protection against short cir－ cuits over the whole common－mode voltage range（see Typical Operating Characteristics）．In addition，a ther－ mal shutdown circuit forces the driver outputs into a high－impedance state if the die temperature rises excessively．

Propagation Delay
Digital encoding schemes depend on the driver and receiver skew．Skew is defined as the difference between the rising and falling propagation delay times． Typical propagation delays are shown in Figures 11 and 12 using Figure 10＇s test circuit．
The difference in receiver delay times，I tPLH－tPHL I，is typically under 160ns．
The driver skew times are typically 160ns（800ns max）．

20ヶA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

Figure 13. System Differential Voltage at 250kbps (125kHz) Driving 4000 Feet of Cable

Line Length vs. Data Rate

The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 16.
Figure 13 shows the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110 kHz into 120Ω loads. Even after 4000 feet of cable, the MAX1482/MAX1483 output shows virtually no distortion.

Typical Applications
The MAX1482/MAX1483 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 14 and 15 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 16.

To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible (although the slew-rate-limited MAX1482 and MAX1483 are more tolerant of imperfect termination than standard RS-485 ICs).

Isolated RS-485
For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.

Figure 14. MAX1483 Typical Half-Duplex RS-485 Network

20بA, 1/8-Unit-Load, Slew-Rate-Limited

 RS-485 Transceivers

Figure 15. MAX1482 Full-Duplex RS-485 Network

Typical Operating Circuits
(continued)

Figure 16. Line Repeater for MAX1482

20цA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

\qquad Chip Information

TRANSISTOR COUNT: 294
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

20رA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

明 DALLAS PROPRIETARY INFORMATION		
PACKAGE OUTLINE, .150" SOIC		
	$\begin{aligned} & \text { NT CoNTROL No. } \\ & 21-0041 \end{aligned}$	B

20цA, 1/8-Unit-Load, Slew-Rate-Limited RS-485 Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NSI83085 WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX485ESA+T MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR DS16F95J/883 MAX490ESA+T LTM2881IY-3\#PBF LT1791CN\#PBF LTM2881CY-3\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF LTC487CS\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485JNZ ADM1490EBRMZ ADM489ABRZ ADM1491EBRZ-REEL7 ADM3070EYRZ ADM3073EARZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3488ARZ ADM3488EARZ ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM3075EWYRZ ADM3490ARZREEL7

