6-Channel, Digital Ground-Level Translator

General Description

The MAX14842 translates digital signals between two domains that have different ground references of up to 72V. The device features six communication channels, two bidirectional and four unidirectional. Two of the four unidirectional channels go in each direction. The device is powered by two supply voltages that independently define the logic levels of each ground domain.

The MAX14842 supports guaranteed data rates up to 30 Mbps on the four unidirectional channels and up to 2 Mbps on the two bidirectional channels. The bidirectional channels have open-drain outputs, making them suitable for ${ }^{2}{ }^{2} \mathrm{C}$ signals. ${ }^{2} \mathrm{C}$ clock stretching and hot swapping is supported on the bidirectional channels.
Undervoltage lockout ensures that the output pins have a defined behavior during power-up, power-down, and during supply transients. For proper operation, ensure that $\mathrm{OV} \leq(\mathrm{VGNDB}-\mathrm{VGNDA}) \leq 72 \mathrm{~V}$. Note that GNDB must be greater than or equal to GNDA.
The MAX14842 is available in a 16 -pin TQFN package and is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX $14842 \mathrm{ATE}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TQFN-EP**

${ }^{* *} E P=$ Exposed pad.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Features

- Supports Ground Differences Up to 72V
- Four Unidirectional Channels: Two In/Two Out
- Two Bidirectional Channels
- I2C Compatible
- Supports I²C Clock Stretching
- 30Mbps Unidirectional Data Rates
- 2Mbps Bidirectional Data Rates
* +3.3V to +5V Level Translation
- Undervoltage Lockout
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 16-Pin TQFN Package
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Automotive Temperature Range

Applications
Telecommunication Systems
Battery Management
${ }^{2}{ }^{2} \mathrm{C}$, SMBus ${ }^{\text {TM }}$, SPI $^{\text {TM }}$, and MICROWIRE ${ }^{\text {TM }}$ Signals Medical Systems
Power-Over-Ethernet

SMBus is a trademark of Intel Corp.
SPI is a trademark of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.

Typical Operating Circuit

6-Channel, Digital Ground-Level Translator

ABSOLUTE MAXIMUM RATINGS

VDDA to GNDA	to +6 V
VDDB to GNDB	-0.3V to +6V
GNDB to GNDA.	-0.3V to +80V
INA1, INA2 to GNDA	-0.3V to (VDDA + 0.3V)
INB1, INB2 to GNDB	-0.3V to (VDDB + 0.3V)
OUTA1, OUTA2 to GNDA	-0.3V to (VDDA + 0.3V)
OUTB1, OUTB2 to GNDB	-0.3V to (VDDB + 0.3V)
I/OA1, I/OA2 to GNDA	-0.3 V to +6V
I/OB1, I/OB2 to GNDB	-0.3V to +6V
Common-Mode Transien	
Between GNDA and GN	10V/ μ

Short-Circuit Duration (OUTA1, OUTA2 to GNDA; OUTB1, OUTB2 to GNDB).....................................Continuous Continuous Power Dissipation ($\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)

TQFN (derate $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots \ldots2000 \mathrm{~mW}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

PACKAGE THERMAL CHARACTERISTICS (Note 1)

```
TQFN
    Junction-to-Ambient Thermal Characteristics (0JA) ....40}\mp@subsup{}{}{\circ}\textrm{C}/\textrm{W
    Junction-to-Case Thermal Characteristics (0JC) ...........6C/W
```

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\right.$ VDDA $-\mathrm{VGNDA}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ DDB $-\mathrm{VGNDB}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{VGNDB}-\mathrm{VGNDA}=0$ to $+72 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} D D A-\mathrm{VGNDA}=+3.3 \mathrm{~V}, \mathrm{~V} D D B-\mathrm{VGNDB}=+3.3 \mathrm{~V}, \mathrm{VGNDB}-\mathrm{VGNDA}=+50 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
DC CHARACTERISTICS						
Supply Voltage	VDDA	Relative to GNDA	3.0		5.5	V
	VDDB	Relative to GNDB	3.0		5.5	
Supply Current	$\begin{aligned} & \text { IDDA } \\ & \text { IDDB } \end{aligned}$	$\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {GNDA }}=+5.5 \mathrm{~V}$; $\mathrm{V}_{\text {DDB }}-\mathrm{V}_{\text {GNDB }}=$ +5.5 V ; VGNDB $-\mathrm{V}_{\mathrm{GNDA}}=+70 \mathrm{~V}$; all inputs at $\mathrm{V}_{\text {GNDA }}$, $\mathrm{V}_{\text {GNDB }}$, or +5.5 V ; no load			7.5	mA
Voltage Between GNDB and GNDA	VGG	VGNDB - VGNDA	0		72	V
Side B Leakage Current	IL				1	mA
Undervoltage-Lockout Threshold	VUVLO	VDDA - VGNDA, VDDB - VGNDB		2		V
Undervoltage-Lockout Hysteresis	VUVLOHYS	VDDA - VGNDA, VDDB - VGNDB		0.1		V
LOGIC INPUTS AND OUTPUTS						
Input Logic Threshold Voltage	VIT	I/OA1, I/OA2, relative to GNDA	0.5		0.7	V
Input Logic-High Voltage	VIH	INA1, INA2, relative to GNDA	$\begin{aligned} & 0.7 \times \\ & \text { VDDA } \end{aligned}$			V
		INB1, INB2, relative to GNDB	$\begin{gathered} 0.7 \times \\ V_{\text {DDB }} \end{gathered}$			
		I/OA1, I/OA2, relative to GNDA	0.7			
		I/OB1, I/OB2, relative to GNDB	$\begin{gathered} 0.7 \times \\ \text { VDDB } \end{gathered}$			

6-Channel, Digital Ground-Level Translator

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D A}-V_{G N D A}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ DDB $-\mathrm{V}_{\mathrm{GNDB}}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GNDB}}-\mathrm{V}_{\mathrm{GNDA}}=0$ to $+72 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\mathrm{GNDA}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDB}}-\mathrm{V}_{\mathrm{GNDB}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GNDB}}-\mathrm{V}_{\mathrm{GNDA}}=+50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Input Logic-Low Voltage	VIL	INA1, INA2, relative to GNDA			0.8	V
		INB1, INB2, relative to GNDB			0.8	
		I/OA1, I/OA2, relative to GNDA			0.5	
		I/OB1, I/OB2, relative to GNDB			$\begin{gathered} 0.3 \times \\ \text { VDDB } \end{gathered}$	
Output Logic-High Voltage	VOH	OUTA1, OUTA2, relative to GNDA, source current $=4 \mathrm{~mA}$	$\begin{gathered} \hline \text { VDDA - } \\ 0.4 \mathrm{~V} \end{gathered}$			V
		OUTB1, OUTB2, relative to GNDB, source current $=4 \mathrm{~mA}$	$\begin{gathered} \hline \text { VDDB - } \\ 0.4 \mathrm{~V} \end{gathered}$			
Output Logic-Low Voltage	VoL	OUTA1, OUTA2, relative to GNDA, sink current $=4 \mathrm{~mA}$			0.8	V
		OUTB1, OUTB2, relative to GNDB, sink current $=4 \mathrm{~mA}$			0.8	
		I/OA1, I/OA2, relative to GNDA, sink current $=10 \mathrm{~mA}$	0.6		0.9	
		I/OA1, I/OA2, relative to GNDA, sink current $=0.5 \mathrm{~mA}$	0.6		0.85	
		I/OB1, I/OB2, relative to GNDB, sink current $=30 \mathrm{~mA}$			0.4	
Input/Output Logic-Low Threshold Difference	$\Delta \mathrm{V}$ TOL	I/OA1, I/OA2 (Note 3)	50			mV
Input Leakage Current	IL	VINA1, VINA2, $\mathrm{V}_{\text {DDA }}=+3.6 \mathrm{~V}$, $V_{\text {INB1 }}, V_{\text {INB2 }}, V_{\text {DDB }}=+3.6 \mathrm{~V}$	-2		+2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I} / \mathrm{OA} 1}, \mathrm{~V}_{\mathrm{I} / \mathrm{OA} 2}, \mathrm{~V}_{\mathrm{DDA}}=+3.6 \mathrm{~V}$, $\mathrm{V}_{\text {I/OB1 }}, \mathrm{V}_{\text {I/OB2 }}, \mathrm{V}_{\mathrm{DDB}}=+3.6 \mathrm{~V}$	-2		+2	
Input Capacitance	CIN	INA1, INA2, INB1, INB2, f = 1MHz (Note 4)		4		pF

DYNAMIC SWITCHING CHARACTERISTICS

Maximum Data Rate	DRmax	INA1 to OUTB1, INA2 to OUTB2, INB1 to OUTA1, INB2 to OUTA2	30		Mbps
		I/OA1 to I/OB1, I/OA2 to I/OB2, I/OB1 to I/OA1, I/OB2 to I/OA2	2		
Minimum Pulse Width	PWMIN	INA1 to OUTB1, INA2 to OUTB2, INB1 to OUTA1, INB2 to OUTA2	30		ns
Propagation Delay	tDPLH tDPHL	INA1 to OUTB1, INA2 to OUTB2, INB1 to OUTA1, INB2 to OUTA2, $\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDB}}=+3.0 \mathrm{~V}$, $R L=1 M \Omega, C L=15 p F$, Figure 1	20	30	ns
	tDPLH tDPHL	I/OA1 to I/OB1, I/OA2 to I/OB2, $V_{D D A}=V_{D D B}=+3.0 \mathrm{~V}, R_{1}=1.6 \mathrm{k} \Omega$, $R_{2}=180 \Omega, C L 1=C L 2=15 p F$, Figure 2	30	100	
	tDPLH tDPHL	I/OB1 to I/OA1, I/OB2 to I/OA2, $\mathrm{V} D D A=\mathrm{VDDB}=+3.0 \mathrm{~V}, \mathrm{R}_{1}=1 \mathrm{k} \Omega$, $R_{2}=120 \Omega, C L 1=C L 2=15 p F$, Figure 2	60	100	

6－Channel，Digital Ground－Level Translator

ELECTRICAL CHARACTERISTICS（continued）

$\left(V_{D D A}-V_{G N D A}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ DDB $-\mathrm{V}_{\mathrm{GNDB}}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GNDB}}-\mathrm{V}_{\mathrm{GNDA}}=0$ to $+72 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，unless oth－ erwise noted．Typical values are at $\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\mathrm{GNDA}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDB}}-\mathrm{V}_{\mathrm{GNDB}}=+3.3 \mathrm{~V}, \mathrm{~V}_{G N D B}-\mathrm{V}_{\mathrm{GNDA}}=+50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）（Note 2）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Skew ItDPLH－tDPHLI	tDSKEW	I／OA1 to I／OB1，I／OA2 to I／OB2， $\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDB}}=+3.0 \mathrm{~V}, \mathrm{R}_{1}=1.6 \mathrm{k} \Omega$ ， $R_{2}=180 \Omega, C L 1=C L 2=15 p F$ ，Figure 2		3	6	ns
		I／OB1 to I／OA1，I／OB2 to I／OA2， $\mathrm{V}_{\mathrm{DDA}}=\mathrm{VDDB}=+3.0 \mathrm{~V}, \mathrm{R}_{1}=1 \mathrm{k} \Omega$ ， $R_{2}=120 \Omega, C_{L 1}=C L 2=15 p F$ ，Figure 2		30	100	
Channel－to－Channel Skew	tDSKEWCC	OUTB1 to OUTB2 output skew，Figure 1		3	6	ns
		OUTA1 to OUTA2 output skew，Figure 1		3	6	
		I／OB1 to I／OB2 output low skew，Figure 2		3	10	
		I／OA1 to I／OA2 output low skew，Figure 2		3	10	
Rise Time	tR	OUTB1，OUTB2，OUTA1，OUTA2， 10\％to 90\％，Figure 1			5	ns
Fall Time	tF	OUTB1，OUTB2，OUTA1，OUTA2， 90\％to 10\％，Figure 1			5	ns
		```I/OA1, I/OA2, 90% to 10%, VDDA = VDDB = +3.0V, R1 = 1.6k\Omega, R2 = 180\Omega, CL1 = CL2 = 15pF, Figure 2```		30	60	
		I／OB1，$/ / O B 2,90 \%$ to $10 \%, \mathrm{~V} D \mathrm{CA}=\mathrm{VDDB}=$ $+3.0 \mathrm{~V}, \mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=120 \Omega, \mathrm{CL}_{1}=\mathrm{CL} 2=$ 15pF，Figure 2		3	6	

Note 2：All units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．Specifications over temperature are guaranteed by design．All voltages of side A are referenced to GNDA；all voltages of side B are referenced to GNDB，unless otherwise noted．
Note 3：$\Delta \mathrm{V}$ TOL $=\mathrm{VOL}-\mathrm{V}_{\mathrm{IL}}$ ．This is the minimum difference between the output logic－low voltage and the input logic threshold for the same I／O pin．This ensures that the I／O channels are not latched low when any of the I／O inputs are driven low（see the Bidirectional Channels section）．
Note 4：Guaranteed by design；not production tested．

## 6-Channel, Digital Ground-Level Translator



Figure 1. Test Circuit (A) and Timing Diagram (B) for Unidirectional Testing

## 6-Channel, Digital Ground-Level Translator



Figure 2. Test Circuit (A) and Timing Diagrams (B) and (C) for Bidirectional Testing

## 6-Channel, Digital Ground-Level Translator

Typical Operating Characteristics
$($ VDDA $-\mathrm{VGNDA}=+3.3 \mathrm{~V}, \mathrm{~V} D D B-\mathrm{VGNDB}=+3.3 \mathrm{~V}, \mathrm{VGNDB}-\mathrm{VGNDA}=+50 \mathrm{~V}, \mathrm{RPUA}=\mathrm{RPUB}=2 \mathrm{k} \Omega, \mathrm{CL}=15 \mathrm{pF}$, see the Typical Operating Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## 6-Channel, Digital Ground-Level Translator

Typical Operating Characteristics (continued)
$\left(V_{D D A}-V_{G N D A}=+3.3 V, V_{D D B}-V_{G N D B}=+3.3 V, V_{G N D B}-V_{G N D A}=+50 \mathrm{~V}, R_{P U A}=R_{P U B}=2 k \Omega, C_{L}=15 p F\right.$, see the Typical Operating Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



PROPAGATION DELAY
vs. TEMPERATURE



PROPAGATION DELAY
vs. CAPACITIVE LOAD


PROPAGATION DELAY
vs. SUPPLY VOLTAGE


# 6-Channel, Digital Ground-Level Translator 

## Typical Operating Characteristics (continued)

$\left(V_{D D A}-V_{G N D A}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDB}}-\mathrm{V}_{\mathrm{GNDB}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GNDB}}-\mathrm{V}_{\mathrm{GNDA}}=+50 \mathrm{~V}, \mathrm{RP}_{\mathrm{P}} \mathrm{A}=\mathrm{RPUB}=2 \mathrm{k} \Omega, \mathrm{CL}^{2}=15 \mathrm{pF}\right.$, see the Typical Operating Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## 6－Channel，Digital Ground－Level Translator



Pin Description

PIN	NAME	FUNCTION	VOLTAGE RELATIVE TO
1	INA2	Logic Input 2 on Side A．INA2 is translated to OUTB2．	GNDA
2	OUTA1	Logic Output 1 on Side A．OUTA1 is a push－pull output．	GNDA
3	OUTA2	Logic Output 2 on Side A．OUTA2 is a push－pull output．	GNDA
4	I／OA1	Bidirectional Input／Output 1 on Side A．I／OA1 is translated to／from I／OB1 and is an open－ drain output．	GNDA
5	I／OA2	Bidirectional Input／Output 2 on Side A．I／OA2 is translated to／from I／OB2 and is an open－ drain output．	GNDA
6	GNDA	Ground Reference for Side A．VGNDA must be $\leq$ VGNDB．	－
7	GNDB	Ground Reference for Side B．VGNDB must be $\geq$ VGNDA．	－
8	I／OB2	Bidirectional Input／Output 2 on Side B．I／OB2 is translated to／from I／OA2 and is an open－ drain output．	GNDB
9	I／OB1	Bidirectional Input／Output 1 on Side B．I／OB1 is translated to／from I／OA1 and is an open－ drain output．	GNDB
10	INB2	Logic Input 2 on Side B．INB2 is translated to OUTA2．	GNDB
11	INB1	Logic Input 1 on Side B．INB1 is translated to OUTA1．	GNDB
12	OUTB2	Logic Output 2 on Side B．OUTB2 is a push－pull output．	GNDB
13	OUTB1	Logic Output 1 on Side B．OUTB1 is a push－pull output．	GNDB
14	VDDB	Supply Voltage of Logic Side B．Bypass VDDB with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to GNDB．	GNDB
15	VDDA	Supply Voltage of Logic Side A．Bypass VDDA with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to GNDA．	GNDA
16	INA1	Logic Input 1 on Side A．INA1 is translated to OUTB1．	GNDA
－	EP	Exposed Pad．Connect EP to GNDA．	－

# 6－Channel，Digital Ground－Level Translator 

Functional Diagram


## Detailed Description

The MAX14842 provides both ground－level transla－ tion and logic－level shifting needed in systems where there is a difference in ground references of up to 72 V ． The device is powered by two supply voltages，VDDA and VDDB，which independently set the logic levels on either side of the device．VDDA and VDDB are sepa－ rately referenced to GNDA and GNDB，respectively．The MAX14842 supports data rates of up to 30Mbps on each of the four unidirectional channels and 2 Mbps on the two bidirectional channels．

## Ground Translation／Level Shifting

For proper operation，ensure that $0 V \leq(V G N D B$－VGNDA） $\leq 72 \mathrm{~V}$ ．Note that GNDB must be greater than or equal to GNDA．
Also ensure that $3.0 \mathrm{~V} \leq\left(V_{D D A}-V_{G N D A}\right) \leq 5.5 \mathrm{~V}$ and $3.0 \mathrm{~V} \leq(\mathrm{VDDB}-\mathrm{VGNDB}) \leq 5.5 \mathrm{~V}$ ．（VDDA -VGNDA$)$ can be
greater than or less than（VDDB－VGNDB），as long as each is within the normal operating range．

## Unidirectional Channels

The device features four unidirectional channels that can each operate independently with a guaranteed data rate of up to 30 Mbps ．The output driver of each unidirectional channel is push－pull，eliminating the need for pullup resistors．The drivers are also able to drive both TTL and CMOS logic inputs．

Bidirectional Channels
The device features two bidirectional translation chan－ nels that have open－drain outputs．The bidirectional channels do not require a direction input．A logic－low on one side causes the corresponding pin on the other side to be pulled low while avoiding data latching within the translator．To prevent latching of the bidirectional chan－ nels，the input logic－low threshold（VIT）of I／OA1 and I／ OA2 is at least 50 mV lower than the output logic－low volt－ ages（VOL）of I／OA1 and I／OA2．This prevents an output logic－low on side A from being accepted as an input low and subsequently transmitted to side $B$ and vice versa．
The I／OA1，I／OA2，I／OB1，and I／OB2 pins have open－drain outputs，requiring pullup resistors to their respective sup－ plies for logic－high outputs．The output low voltages are guaranteed for sink currents of up to 30 mA for side B and 10 mA for side A（see the Electrical Characteristics table）． The bidirectional channels of the device support ${ }^{2} \mathrm{C}$ clock stretching．

Separate Ground References
The device is designed to translate logic signals to and from domains with isolated and offset ground references．

Startup and Undervoltage Lockout The VDDA and VDDB supplies are both internally moni－ tored for undervoltage conditions．Undervoltage events can occur during power－up，power－down，or during normal operation due to a slump in the supplies．When an undervoltage event occurs on either of the supplies， all outputs on both sides are automatically controlled， regardless of the status of the inputs．The bidirectional outputs become high impedance and are pulled high by the external pullup resistor on the open－drain output．The unidirectional outputs are pulled high internally to the voltage of the VDDA or VDDB supply during undervoltage conditions．

## 6-Channel, Digital Ground-Level Translator



Figure 3. Undervoltage Lockout Behavior
Figure 3 shows the behavior of the outputs during power up and power down.

## Applications Information

AC Components on Vga When the ground difference voltage, VGG , has a time varying (AC) component, limit the amplitude to ensure that the MAX14842 operates as specified. The maximum allowable amplitude of an AC signal on VGG is a function of frequency.

Power-Supply Sequencing
The MAX14842 does not require power-supply sequencing. The logic levels are set independently on either side by VDDA and VDDB. Each supply can be present over the entire specified range regardless of the level or presence of the other.

Power-Supply Decoupling
To reduce ripple and the chance of introducing data errors, bypass VDDA and VDDB with $0.1 \mu \mathrm{~F}$ ceramic capacitors to GNDA and GNDB, respectively. Place the bypass capacitors as close to the power-supply input pins as possible.

## Unidirectional and Bidirectional Level Translator

The MAX14842 operates both as a unidirectional device and bidirectional device simultaneously. Each unidirectional channel can only be used in the direction shown in the Functional Diagram. The bidirectional channels function without requiring a direction input.

Chip Information
PROCESS: BICMOS
__Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE   TYPE	PACKAGE   CODE	OUTLINE   NO.	LAND   PATTERN NO.
16 TQFN-EP	$\mathrm{T} 1644+4$	$\underline{21-0139}$	$\underline{90-0070}$

# 6-Channel, Digital Ground-Level Translator 

Revision History

REVISION   NUMBER	REVISION   DATE	PAGES   CHANGED	
0	$12 / 10$	Initial release	-
1	$3 / 11$	Deleted the MAX14842ETE+ from the Ordering Information, removed the future   status from the MAX14842ATE+ in the Ordering Information, added the automotive   temperature range to the Features, Absolute Maximum Ratings, and the Electrical   Characteristics sections	$1-4$

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Development Tools category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
BK0004 BK0012 MAX9684EVKIT\# EVAL01-HMC749LC3C 410-320 TPD6F002-Q1EVM TS9002DB 118777-HMC722LC3C 118777HMC723LC3C DC1765A-A 125614-HMC851LC3C DC2062A-A LMH6321MR-EVAL/NOPB EVAL01-HMC747LC3C 4537 DK-M3F-1.8-TRK-1.5-S DK-M3-FS-1.8-1.5-M12/16 DK-M3-LS-1.8-6 ADALP2000 EVAL-CN0202-SDPZ EVAL-CN0203-SDPZ EVAL-CN0204SDPZ EVAL-CN0209-SDPZ EVAL-CN0229-SDPZ EVAL-CN0251-SDPZ EVAL-CN0272-SDPZ EVAL-CN0301-SDPZ EVAL-CN0355PMDZ EVAL-CN0364-SDPZ EVAL-SDP-CB1Z MAX4951AEEVKIT+ MAXREFDES60\# BK0010 EFIELDEV PD70224EVB MIKROE3319 MIKROE-3357 MIKROE-4048 MIKROE-1370 MIKROE-1899 MIKROE-1901 MIKROE-1910 MIKROE-1917 MIKROE-1993 MIKROE-3116 MIKROE-957 BB-GEVK NCS2200AGEVB $27115 \underline{64019}$

