MAX14914, MAX14914A, MAX14914B

General Description

The MAX14914, MAX14914A and MAX14914B are the family of high-side/push-pull drivers that operate as both an industrial digital output (DO) and an industrial digital input (DI). The MAX14914 family features full IEC 61131-2 compliance in both their DO and DI modes of operation. The high-side switch current is resistor settable from $135 \mathrm{~mA}(\mathrm{~min})$ to $1.3 \mathrm{~A}(\mathrm{~min})$. The high-side driver's on-resistance is $120 \mathrm{~m} \Omega$ (typ) at $125^{\circ} \mathrm{C}$ ambient temperature. Optional push-pull operation allows driving of cables and fast discharge of load capacitance. The output voltage is monitored and indicated through the $\overline{\text { DOI_LVL }}$ pin for safety applications.
The MAX14914 family complies with Type 1, Type 2, or Type 3 input characteristics when configured for DI operation.
The MAX14914A is a low-DOI-leakage version of MAX14914, designed to work together with the MAX22000 Industrial Configurable Analog IO device. The MAX14914B features a high-side switch overcurrent indication.

Applications

- Industrial Digital Outputs and Inputs Modules
- Configurable Digital Input/Output
- Motor Control
- Safety Systems

Benefits and Features

- Reduces Power and Heat Dissipation
- $240 \mathrm{~m} \Omega$ (max) HS R ON at $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$
- 0.9 mA (typ) High-Side DO-Mode Supply Current
- Accurate Internal Current Limiter for Type 1, Type 2, and Type 3 Digital Inputs
- Enhances System Robustness
- SafeDemagTM for Safe Turn-Off of Unlimited Inductance
- 60V Supply Tolerance
- Accurate Short-Circuit DO Mode Current Limiting
- $\pm 2 k V$ IEC 61000-4-5 Surge Protection
- $\pm 20 k V$ IEC 61000-4-2 Air-Gap ESD Protection
- $\pm 7 \mathrm{kV}$ IEC 61000-4-2 Contact ESD Protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Operating Temperature
- Reduces BOM Count and PCB Space
- Small $4 m m \times 4 m m$ TQFN Package
- Internal Clamp for Fast Inductive Load Turn-Off
- On-Chip 5V Regulator
- Provides Flexibility
- Configurable as a Digital Input, or a High-Side or Push-Pull Digital Output
- Low-Leakage Mode (MAX14914A) Allows High Accuracy AIO/DIO applications
- Resistor Settable Current Limiting for the High-Side Switch (135mA to 1.3A)
- Pin-Selectable Type $1 / 3$ or Type 2 DI Operation
- Improves System Speed and Throughput
- Propagation Delay of Less Than $2 \mu \mathrm{~s}$

Ordering Information and Typical Application Diagram appears at end of data sheet.

Block Diagram of MAX14914 and MAX14914A

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Absolute Maximum Ratings

ave $+70^{\circ} \mathrm{C}$).. 2280 mW W

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

16 TQFN

Package Code	T1644+4A
Outline Number	$\underline{21-0139}$
Land Pattern Number	$\underline{90-0070}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	$35^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient $\left(\theta_{\mathrm{JA}}\right)$	$2.7^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)$	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\right.$ to $+40 \mathrm{~V}, \mathrm{~V}_{5}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted., Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=$ $+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{V}_{5}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{LIM}}=50 \mathrm{k} \Omega$.) ((Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VDD SUPPLY						
Supply Voltage	$V_{D D}$	Operting Conditions	10		40	V
		Tolerant	0		60	
Supply Current	IDD_ON_HS	HS mode, $\mathrm{PP}=$ low, $\mathrm{IN}=\mathrm{V}_{\mathrm{L}}, \mathrm{DOI}$ high (no switching), no load, $\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}=$ REGIN $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=40 \mathrm{~V}$.		0.6	0.95	mA
	IDD_ON_PP	PP mode, $\mathrm{PP}=$ high, 10 kHz switching, V_{5} $=V_{L}=$ REGIN $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=40 \mathrm{~V}$, no load		0.85	1.4	
	IDD_ON_DI	$\begin{aligned} & \text { DI mode, DI_EN = V } \mathrm{V}, \mathrm{REGIN}=\mathrm{V}_{\mathrm{DD}}= \\ & 40 \mathrm{~V} \end{aligned}$		0.13	0.3	mA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\right.$ to $+40 \mathrm{~V}, \mathrm{~V}_{5}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted., Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=$ $+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{V}_{5}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{LIM}}=50 \mathrm{k} \Omega$.) ((Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Undervoltage-Lockout Threshold	VDD_UVLO	V_{DD} rising, $\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}$	8.5	9.1	9.7	V
	VDD_UVLO	V_{DD} falling, $\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}$	8	8.6	9	V
Undervoltage-Lockout Hysteresis	VDD_UVHYST	$\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}$		0.5		V
$V_{D D}$ OvervoltageLockout Threshold	VDD_OVLO	V_{DD} rising, $\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}$	41.5	43.5	45	V
	VDD_OVLO	V_{DD} falling, $\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}$	40.5	42.2	44	V
VDD OvervoltageLockout Hysteresis	VDD_OVHYST	$\mathrm{V}_{5}=\mathrm{V}_{\mathrm{L}}$		1		V
V_{L} LOGIC INTERFACE SUPPLY						
V_{L} Supply Voltage	V_{L}		2.5		5.5	V
V_{L} Supply Current	IL	All logic inputs high or low, all outputs unloaded		10	25	uA
VL POR Threshold	$\mathrm{V}_{\text {L_POR }}$	V_{L} falling	1.12	1.27	1.52	V
5V SUPPLY / LINEAR REGULATOR						
REGIN Current HS Mode	$\frac{\text { IREGIN_ON_H }}{\mathrm{S}}$	HS mode, REGIN $=40 \mathrm{~V}$, $\mathrm{IN}=\mathrm{V}_{\mathrm{L}}$, no load on DOI, no load on V_{5}		0.3	0.5	mA
REGIN Current PP Mode	IREGIN_ON_PP	$\begin{array}{\|l} \hline \mathrm{PP}=\text { high, REGIN }=40 \mathrm{~V}, 10 \mathrm{kHz} \\ \text { switching, no load on DOI, no load on } \mathrm{V}_{5} \\ \hline \end{array}$		0.35	0.6	mA
REGIN Current DI Mode	IREGIN_ON DI	DI_EN = V ${ }_{\text {L }}$, REGIN $=40 \mathrm{~V}$			0.5	mA
V_{5} Supply Current	IV5_HS	HS mode, REGIN $=\mathrm{V}_{5}=5 \mathrm{~V}, \mathrm{IN}=\mathrm{V}_{\mathrm{L}}$, no load on DOI		0.24	0.4	mA
	IV5_PP	PP mode, REGIN $=\mathrm{V}_{5}=5 \mathrm{~V}, 10 \mathrm{kHz}$ switching, no load on DOI		0.3	0.5	
	IV5_DI	DI mode, DI_EN = high, REGIN = V5 = 5V		0.22	0.4	
REGIN Undervoltage Threshold	VREG_UV	REGIN rising. V_{5} enabled when REGIN > VREG_UV.	6.75		7.6	V
REGIN Undervoltage Hysteresis	VREG_UVHYS $_{T}$			0.45		V
V_{5} UndervoltageLockout Threshold	V5_UVLO	V_{5} rising	3.8		4.2	V
V_{5} UndervoltageLockout Hysteresis	V5UV_UVHYST			0.3		V
V_{5} Output Voltage	V_{5}	OmA - 20mA external load	4.75	5.0	5.25	V
V_{5} Current Limit	IV5_CL		25			mA
DRIVER OUTPUT (DOI)						
HS On-Resistance	RDOI_ON_HS	$\mathrm{PP}=\mathrm{X}, \mathrm{IN}=$ high, $\mathrm{I}_{\mathrm{DOI}}=500 \mathrm{~mA}$		120	240	$\mathrm{m} \Omega$
LS Output Low	$\mathrm{V}_{\text {DOI }}$ LOW	$\mathrm{PP}=$ high, $\mathrm{IN}=$ low, $\mathrm{I}_{\mathrm{DOI}}=100 \mathrm{~mA}$			1.2	V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\right.$ to $+40 \mathrm{~V}, \mathrm{~V}_{5}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted., Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=$ $+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{V}_{5}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{LIM}}=50 \mathrm{k} \Omega$.) ((Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DOI Clamp Voltage	VDOI_CL	Relative to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DOI}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}<$ VD_OVLO	-63	-55	-49	V
	VDOI_CL	Relative to GND, I $\mathrm{I}_{\mathrm{DOI}}=500 \mathrm{~mA}$, V_{DD} OVLO $<\mathrm{V}_{\mathrm{DD}}<60 \mathrm{~V}$	-4.5	-2.9	-1.5	V
DOI Leakage MAX14914,	IDOI_LK	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{PP}=\mathrm{IN}=\text { low, DI_EN = low, } \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{DOI}}<\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{L}} \text { POR } \\ & \hline \end{aligned}$	-60		60	$\mu \mathrm{A}$
MAX14914A, MAX14914B		$\begin{aligned} & \mathrm{VDD}=60 \mathrm{~V}, \mathrm{PP}=\mathrm{IN}=\mathrm{X}, \mathrm{DI} \text { EN }=\text { low, } \\ & \mathrm{OV}<\mathrm{V}_{\mathrm{DOI}}<\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{L}} \text { POR } \end{aligned}$	-150		150	
DOI Leakage MAX14914A	IDOI_LK	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}<\mathrm{V}_{\mathrm{L}} \mathrm{POR}, \mathrm{PP}=\mathrm{IN}= \\ & \mathrm{DI} \mathrm{EN}=\mathrm{X}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{DOI}}<15 \mathrm{~V} \\ & \hline \end{aligned}$	-2.4		0	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}<\mathrm{V}_{\mathrm{L}} \mathrm{POR}, \mathrm{PP}=\mathrm{IN}= \\ & \mathrm{DI} _\mathrm{EN}=\mathrm{X}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{DOI}}<15 \mathrm{~V}, \mathrm{~T}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-0.4		0	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=34 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}<\mathrm{V}_{\mathrm{L}} \mathrm{POR}, \mathrm{PP}=\mathrm{IN}= \\ & \mathrm{DI} \mathrm{EN}=\mathrm{X},-15 \mathrm{~V}<\mathrm{V}_{\mathrm{DOI}}<0 \mathrm{~V} \end{aligned}$		-80		
OUTPUT DRIVER CURRENT LIMITING (DOI)						
HS Current-Limit Minimum	ICLIM_HS_MIN	$\mathrm{R}_{\text {LIM }}=220 \mathrm{k} \Omega$	135	196	255	mA
HS Current-Limit Maximum	ICLIM_HS_MAX	$R_{\text {LIM }}=27 \mathrm{k} \Omega$	1.3	1.6	1.9	A
HS Current-Limit Offset Error	ICLIM_HS_OE	(Note 2)	-25		+25	mA
HS Current-Limit Gain Error	ICLIM_HS_GE	(Note 2)	-20		+20	\%
CLIM Voltage	$\mathrm{V}_{\text {CLIM }}$			1.21		V
CLIM Short Resistor Threshold Value	RLIM_SHORT	(Note 3)	10	12.9	15	k Ω
CLIM Open Resistor Threshold Value	RLIM_OPEN	(Note 4)	440		750	k ת
LS Current Limit	ICLIM_LS		150		280	mA
DIGITAL INPUT / DOI MONITOR						
DO Monitor Threshold Voltage	$\mathrm{V}_{\text {TH_DO }}$	DI_EN = low, DOI rising	1.5		2.0	V
	$\mathrm{V}_{\text {TH_DO }}$	DI_EN = low, DOI falling	1.3		1.8	V
DO Monitor Hysteresis	$\mathrm{V}_{\text {HYS_DO }}$	DI_EN = low		0.2		V
DI Threshold Voltage	$\mathrm{V}_{\text {TH_DI }}$	DI_EN = high, DOI rising	6.7		8	V
		DI_EN = high, DOI falling	5.5		6.8	
DI Hysteresis	VHYS_DI	DI_EN = high		1.2		V
DI Current Sink Type 1/ 3	IDOI	DI_EN = high, $\mathrm{PP}=$ low, $0 \mathrm{~V}<\mathrm{V}_{\text {DOI }}<5 \mathrm{~V}$			2.6	mA
		$\begin{aligned} & \text { DI_EN = high, } \mathrm{PP}=\text { low, } 8 \mathrm{~V}<\mathrm{V}_{\mathrm{DOI}}< \\ & 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DOI}}<\mathrm{V}_{\mathrm{DD}} \end{aligned}$	2.0	2.3	2.6	

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\right.$ to $+40 \mathrm{~V}, \mathrm{~V}_{5}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted., Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=$ $+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{V}_{5}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{LIM}}=50 \mathrm{k} \Omega$.) ((Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DI Current Sink Type 2	IDOI	DI_EN = high, PP = high, $0 \mathrm{~V}<\mathrm{V}_{\text {DOI }}<5 \mathrm{~V}$	0		7.5	mA
		$\begin{aligned} & \text { DI_EN }=\text { high, } \mathrm{PP}=\text { high, } 8 \mathrm{~V}<\mathrm{V}_{\mathrm{DOI}}< \\ & 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DOI}}<\mathrm{V}_{\mathrm{DD}} \end{aligned}$	6.0	7.0	7.7	
LOGIC (I/O)						
Input Voltage High	V_{IH}		$0.7 \times \mathrm{V}_{\mathrm{L}}$			V
Input Voltage Low	$\mathrm{V}_{\text {IL }}$				$0.3 \times \mathrm{V}_{\mathrm{L}}$	V
Input Threshold Hysteresis	$\mathrm{V}_{\text {IHYST }}$		$0.11 \mathrm{xV} \mathrm{V}_{\mathrm{L}}$			V
Input Pulldown Resistor	R_{l}	All logic input pins	140	200	275	k Ω
Output Logic Low	V_{OL}	$\mathrm{L}_{\text {LOAD }}=+5 \mathrm{~mA}$			0.33	V
$\overline{\text { DOI_LVL }}$ Tristate Leakage	ILEAK	GND < V DOI_LVL $^{\text {< } V_{\text {L }}}$	-1		+1	$\mu \mathrm{A}$
FAULT Output Tristate Leakage	l LEAK	GND $<\mathrm{V}_{\overline{\text { FAULT }}}<\mathrm{V}_{5}$	-1		+1	$\mu \mathrm{A}$
OV_VDD Leakage	lıEAK	GND < $\mathrm{V}_{\text {OV_VDD }}<\mathrm{V}_{\text {DD }}$	-1		+1	$\mu \mathrm{A}$
$\overline{\text { OV_CURR Leakage }}$	l LEAK	GND < V $\mathrm{OV}_{\text {_ }}$ CURR $<\mathrm{V}_{\text {DD }}$	-1		+1	$\mu \mathrm{A}$
THERMAL PROTECTION						
Driver ThermalShutdown Temperature	TJSHDN	Junction temperature rising		170		${ }^{\circ} \mathrm{C}$
Driver ThermalShutdown Hysteresis	TJSHDN_HYST			15		${ }^{\circ} \mathrm{C}$
Chip Thermal Shutdown	TCSHDN	Temperature rising		150		${ }^{\circ} \mathrm{C}$
Chip Thermal-Shutdown Hysteresis	$\begin{gathered} \hline \text { TCSHDN_HYS } \\ \mathrm{T} \end{gathered}$			10		${ }^{\circ} \mathrm{C}$
TIMING CHARACTERISTICS / OUTPUT DRIVER (DOI)						
Output Propagation Delay LH	tPD_LH	PP = low, delay from IN to DOI rising by $1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figure 1)		0.4	1.5	$\mu \mathrm{s}$
Output Propagation Delay HL	tPD_HL	PP = low, delay between IN switching low to DOI falling by $1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=$ $100 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=24 \mathrm{~V}$ (Figure 1)		0.6	1.5	$\mu \mathrm{s}$
	${ }_{\text {tPD_HL }}$	$\mathrm{PP}=$ high, delay between IN switching low to DOI falling by $1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=$ 100pF (Figure 1)		0.6	1.5	$\mu \mathrm{s}$
DOI Output Rise Time	t_{R}	$\begin{aligned} & \mathrm{PP}=\mathrm{X}, 20 \% \text { to } 80 \% \mathrm{~V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \\ & =100 \mathrm{pF} \text { (Figure 2) } \end{aligned}$		0.9	2	$\mu \mathrm{s}$
DOI Output Fall Time	t_{F}	$\begin{aligned} & \mathrm{PP}=\text { low, } 80 \% \text { to } 20 \% \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}=24 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}(\text { (Figure 2) } \end{aligned}$		0.65	2	$\mu \mathrm{s}$
	$t_{\text {F }}$	$\begin{aligned} & \mathrm{PP}=\text { low, } 80 \% \text { to } 20 \% \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}=24 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=47 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}(\text { Figure 2) } \end{aligned}$		1		$\mu \mathrm{s}$
TIMING CHARACTERISTICS / PROPAGATION DELAY (DOI to DOI_LVL)						
Propagation Delay LH	tpdL_LH	DI_EN = low, delay from DOI rising to 5 V to $\overline{\text { DOI_LVL }}$ low (Figure 3)		2.7	5	$\mu \mathrm{s}$

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\right.$ to $+40 \mathrm{~V}, \mathrm{~V}_{5}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted., Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=$ $+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}$ and $\mathrm{V}_{5}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{LIM}}=50 \mathrm{k} \Omega$.) ((Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay LH DI	tpDL_HL_DI	DI_EN = high, delay from DOI rising to 8 V to $\overline{\bar{D} O I}$ LVL low		1.1		$\mu \mathrm{s}$
Propagation Delay HL	tpDL_HL	DI_EN = low, delay from DOI falling to 3.5 V to $\overline{\mathrm{DOI}} \mathrm{LVL}$ high		0.9	8	$\mu \mathrm{s}$
Propagation Delay HL DI	tpDL_HL_DI	DI_EN = high, delay from DOI falling to 5.5 V to $\overline{\text { DOI_LVL }}$ high		0.9		$\mu \mathrm{s}$
TIMING CHARACTERISTICS / GLITCH REJECTION (IN)						
Pulse Length of Rejected Glitch	$t_{\text {trPL_GF }}$		0		80	ns
Glitch Filter Delay Time	tD_GF			140	300	ns
TIMING CHARACTERISTICS / FAULT DETECTION (OV_VDD)						
OV_VDD Threshold	VTH_OV_VDD	DI_EN = low, relative to VDD. MAX14914 and MAX14914A		0.22		V
OVLO_VDD Debounce Time	TDovLo_VDD	DI_EN = low. MAX14914 and MAX14914A.		200		$\mu \mathrm{s}$

Electrical Characteristics-ESD and SURGE Protection

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
ESD	$\mathrm{V}_{\text {ESD }}$	DOI pin Contact Discharge (Note 5)	± 7		kV
		DOI pin Air Discharge (Note 5)	± 20		
		All other pins. Human Body Model	± 2		
IEC Surge	VSURGE	DOI to PGND or Earth GND per IEC 61000-4-5 (42 / $0.5 \mu \mathrm{~F}$) (Note 6)	± 2		kV

Note 1: All the MAX14914ATE + and MAX14914BATE+ units are production tested at $T_{A}=+25^{\circ} \mathrm{C}$. All the MAX14914AATE + units are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by characterization and design.
Note 2: Specification is guaranteed by design; not production tested.
Note 3: Lower resistor values than CLIM_SHORT act like a CLIM pin short to GND
Note 4: Higher resistor values than CLIM_OPEN act like a CLIM open circuit.
Note 5: Bypass $V_{D D}$ pin to PGND with $1 \mu F$ capacitor as close as possible to the device for high ESD protection.
Note 6: With TVS protection on $V_{D D}$ to PGND.

MAX14914, MAX14914A, MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Figure 1. IN to DOI Propagation Delay

Figure 2. DOI Rise and Fall Time

MAX14914, MAX14914A,
MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

| DOI |
| :--- | :--- | :--- |
| |

Figure 3. DOI to DOI_LVL Propagation Delay

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~V}_{5}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

PROPAGATION DELAY

SUPPLY CURRENT

SUPPLY CURRENT

SUPPLY CURRENT

PROPAGATION DELAY

SUPPLY CURRENT vs. TEMPERATURE (HIGH-SIDE MODE)

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+3.3 \mathrm{~V}, \mathrm{~V}_{5}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

D to DO MODE TRANSITION (DI TYPE 1, 3, to DO HS HiZ, NO LOAD)

SUPPLY CURRENT

DO TO DI MODE TRANSITION (DO HIGH TO DI TYPE 1, 2, 3, 1k LOAD)

DI to DO MODE TRANSITION

 (DI TYPE 2 to DO PP LOW, NO LOAD

DI to DO MODE TRANSITION (DI TYPE 1, 2, 3, to DO HIGH, NO LOAD)

MAX14914, MAX14914A,
MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Pin Configurations
MAX14914 and MAX14914A

MAX14914B

Pin Description

PIN		NAME	FUNCTION	TYPE
$\begin{gathered} \text { MAX14914 } \\ \text { and } \\ \text { MAX14914A } \end{gathered}$	MAX14914B			
1	1	V_{L}	Logic Supply Input. V_{L} defines the levels on all I/O logic interface pins. Bypass V_{L} to GND through a 100 nF ceramic capacitor.	Supply
2	2	GND	Analog Ground	Supply
3	3	CLIM	Current Limit Set Input. Connect a resistor from CLIM to GND to set the current limit. See Detailed Description for further information.	Analog Input
4	4	$\overline{\text { FAULT }}$	Open-Drain Fault Output. The $\overline{\text { FAULT }}$ transistor turns on when a fault condition (driver thermal shutdown or loss of ground) occurs. Connect a pullup to V_{L} or V_{5}.	Logic Output
5	5	$\overline{\text { DOI_LVL }}$	Open-Drain DOI Level Output. $\overline{\text { DOI_LVL }}$ is logic-low when DOI voltage is higher than the threshold voltage. $\overline{\text { DOI_LVL }}$ is logic-high (using a pullup resistor) when DOI voltage is lower than the threshold voltage. The threshold voltage depends on DI_EN. Connect a pullup to V_{L} or V_{5}.	Logic Output
6	6	DI_EN	Digital Input Mode Logic Enable Input. Set DI_EN high to enable digital input operation on the DOI pin, which enables the internal current sink and sets Type 1, Type 2, or Type 3 thresholds on DOI_LVL. Select between Type 1 and 3, and Type 2 DI characteristics through the PP input.	Analog
7	7	IN	Switch Control Input. Drive IN high to close the HS switch; drive IN low to open the HS switch and close the LS switch (when PP = low).	Logic Input
8	8	PP	Push-Pull DO or DI Type Select Input. In DO mode, set PP high to enable push-pull mode operation of the DO driver. In DI mode, set PP low for IEC Type $1 / 3$ input characteristics and set high for Type 2 input characteristics.	Logic Input
9	9	PGND	Power Ground	Supply
10, 11	10, 11	DOI	High-Side / Push-Pull Output (DI_EN = low) or Digital Input (DI_EN = high). Connect both DOI pins together externally.	Power
12, 13	12, 13	$V_{D D}$	Supply Voltage, Nominally 24V. Bypass VDD to GND through a 1uF capacitor.	Supply
14	14	REGIN	5 V Regulator Input. Connect REGIN to V_{DD} when using the internal 5 V regulator. Connect REGIN to V_{5} when powering V_{5} from an external regulator.	Supply
15	-	OV_VDD	Open-Drain Overvoltage Output for the MAX14914 and MAX14914A. The OV_VDD transistor turns off when: 1) a device configured for DI operation; 2) DOI level is higher than V_{DD}. Connect a pullup to $V_{D D}$.	
-	15	$\overline{\text { OV_CURR }}$	Open-Drain Overcurrent Output for the MAX14914B. $\overline{\text { OV_CURR }}$ turns active low when the load current exceeds the high-side current limit. Connect a pullup resistor between OV_CURR and V_{L}.	

MAX14914, MAX14914A, MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Pin Description (continued)

PIN				F FUNCTION
MAX14914 and MAX14914A	MAX14914B	NAME		TYPE
16	16	V_{5}	Analog Supply Voltage/LDO Output. The MAX14914 requires a 5 V supply for normal operation, which can come from the internal linear regulator (REGIN connected to $V_{\text {DD }}$) or from an external regulator (REGIN connected to V_{5}). Bypass to GND through a $1 \mu \mathrm{~F}$ ceramic capacitor.	Supply
-	-	EP	Exposed Pad. Connect EP to GND.	

MAX14914, MAX14914A, MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Functional Diagrams

MAX14914 and MAX14914A

Functional Diagrams (continued)

MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Detailed Description

The MAX14914 family of parts is a high-side/push-pull driver that operates as an industrial digital output and can also operate as an industrial digital input. The MAX14914 family is specified for operation with supplies up to 40V. The highside switch current limiting is resistor settable from $135 \mathrm{~mA}(\mathrm{~min})$ to $1.3 \mathrm{~A}(\mathrm{~min})$. The high-side driver on-resistance is $120 \mathrm{~m} \Omega$ (typ) and $240 \mathrm{~m} \Omega$ (max) at $+125^{\circ} \mathrm{C}$ ambient temperature. Optional push-pull operation allows driving of cables and fast discharge of load capacitance. A separate digital $\overline{\text { DOI_LVL }}$ allows supervision of the DOI voltage in DO mode for safety applications. The MAX14914 family complies with IEC Type 1, Type 2, or Type 3 input characteristics when configured for digital input operation.
The difference between the MAX14914, MAX14914A and MAX14914B versions is summarized in Table 1, and the summary of the control signals is shown in Table 2.

Table 1. Features Selection

	DOI OVERVOLTAGE (OV_VDD)	DOI OVERCURRENT $(\overline{\text { OV_CURR }})$	LOW DOI LEAKAGE $\left(\mathbf{V}_{\mathbf{L}}<\right.$ V $\left._{\mathbf{L} _ \text {POR }}\right)$
MAX14914	YES	NO	NO
MAX14914A	YES	NO	YES
MAX14914B	NO	YES	NO

Table 2. Operation Truth Table

MODE	DI_EN	IN	PP	DOI	DOI_LVL
DO High-Side	low	low	low	three-state	high/low
DO High-Side	low	high	low	high	low
DO Push-Pull	low	low	high	low	high
DO Push-Pull	low	high	high	high	low
DI Type 1/3	high	x	low	high	low
DI Type 1/3	high	x	low	low	high
DI Type 2	high	x	high	high	low
DI Type 2	high	x	high	low	high

5V Supply and Regulator

The MAX14914 family requires a 5 V supply on the V_{5} pin for normal operation. This 5 V supply can come from an external supply or from the internal 5 V linear regulator. Connect REGIN pin to $V_{D D}$ to enable the internal regulator. Connect REGIN pin to V_{5} pin to disable the internal regulator, when an external 5 V is used. The internal 5 V regulator also can power the external loads/circuits with of up to 20 mA .

Logic Interface

The logic interface features flexible logic levels, allowing interfacing to a wide range of common logic. The V_{L} supply input defines the logic levels and can be set in the range of 2.5 V to 5.5 V . Connect a $0.1 \mu \mathrm{~F}$ capacitor to V_{L}.

Digital Output Operation

The driver can be configured for high-side (PP pin is driven low) or push-pull (PP pin is driven high) operation. In DO high-side mode, the $D O I$ output voltage is high ($V_{D D}$) when the logic level on IN pin is high, and three-state (Hi-Z), when the logic level on IN pin is low. In DO Push-Pull mode, the DOI output voltage follows the logic level on IN pin. The highside driver has $240 \mathrm{~m} \Omega$ (max) on-resistance at 500 mA and $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$. The DOI voltage can go below ground, as will occur during inductive load demagnetization. An internal clamping diode limits the negative excursion to ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{CL}}$). See Driving Inductive Loads for details. The low-side (LS) switch speeds up the discharge of RC loads in Push-Pull mode.

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Figure 4. Digital Output Driver

Low DOI Leakage Mode

The MAX14914A features a low-leakage mode in which the DOI leakage current is less than $0.4 \mu \mathrm{~A}$ with temperature up to $+85^{\circ} \mathrm{C}$ and DOI between 0 V and +15 V . This is useful when the DOI pin is connected to an analog input/output (I/O) line and does not affect the performance of the analog I/O device. Low-leakage mode is enabled when the V_{L} voltage is held low below V_{L} POR $(\mathrm{min})=1.12 \mathrm{~V}$. Note that the logic inputs, like IN, DI_EN and PP, can be held high or low in low-leakage mode.

Current Limit Adjustment

The MAX14914 family has a settable current limiting of the HS switch. The load current is limited to between 135 mA (min) and $1.3 \mathrm{~A}(\mathrm{~min})$, depending on the value of the resistor used at the CLIM pin. A short-circuit or overcurrent generally creates a temperature rise in the chip; both the HS and LS FET's temperatures are continuously monitored. When any switch temperatures exceed $170^{\circ} \mathrm{C}$, the DOI output is put in $\mathrm{Hi}-\mathrm{Z}$ until the temperature falls by $15^{\circ} \mathrm{C}$. Connect a resistor (RLIM) from CLIM to GND to set the required current limit. The current is given by:

$$
\text { ILIM }=K \times V_{\text {LIM }} / R_{\text {LIM }}
$$

where, $\mathrm{V}_{\text {LIM }}=1.21 \mathrm{~V}$ and $\mathrm{K}=35.6 \times 10^{3}$. If no resistor is connected to CLIM (i.e., CLIM is kept floating) or RLIM is more than 440 k , the ILIM is internally set to 1.1 A (typ). If the RLIM resistor is less than 12.9 k (typ), the output is turned off. CLIM is short-circuit protected.
Use the formulas below to validate the accuracy range
ILIM_MAX $=$ ILIM $\times\left(1+\mid I C L I M _H S _G E / / 100\right)+\mid I C L I M _H S _O E I ~$
ILIM_MIN $=$ ILIM $\times\left(1-\mid I C L I M _H S _G E / / 100\right)-\mid I C L I M _H S _O E I ~$

Low-Side Current Limit

The low-side transistor has fixed-current limiting, when enabled in push-pull mode (PP driven high). The low-side driver limits current at 200 mA (typ). The load current is actively controlled and the low-side switch only turns off if the driver temperature has fallen by the hysteresis value.

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Overcurrent Signaling

The MAX14914B features an overcurrent output ($\overline{O V}$ _CURR $)$, which provides a diagnostic signal as soon as the load current exceeds the high-side driver set current limit in both high-side and push-pull DO modes (DI_EN = low and PP = x). When the high-side FET detects an overcurrent for a duration longer than $8 \mu \mathrm{~s}$, the OV_CURR open-drain signal becomes active low and remains low until the overcurrent condition disappears. The overcurrent condition also disappears every time the high-side switch turns off when a short-circuit condition exists and the FET turns off for thermal shutdown protection. Note that OV_CURR does not signal an overcurrent on the low-side driver in push-pull mode. The typical application circuit with the overcurrent signaling is shown in Figure 5.

Figure 5. MAX14914B Application Diagram

Short-Circuit Protection

Short circuits at the DOI output generates high transient current until the active current limiting kicks in. In order to protect the MAX14914_ against high currents that can be seen over an extended time, especially if the output is switching at a high rate into a short circuit, the MAX14914_ enters a protect mode. When the MAX14914_ detects that the DOI current is over $3 x$ higher than the set current limit, the driver is switched to protect mode with reduced turn-on slew rate of the rising and falling edges for a duration of 4 ms . The $\overline{\text { FAULT signal does not become active and the chip operates normally, }}$ but with reduced slew rate. If the cause for the short circuit is not removed, the protect mode will remain for an additional 4 ms until the short circuit is removed.

Overvoltage Lockout

When the $V_{D D}$ supply voltage exceeds the OVLO threshold voltage of 42.2 V (typ), for a time duration larger than $200 \mu \mathrm{~s}$, the high-side and low-side switches automatically turn off. They remain off until $V_{D D}$ is reduced to below the threshold OVLO voltage minus hysteresis. When V_{DD} is above the OVLO threshold, the OV_VDD output is active.

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Undervoltage Lockout

When the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{5}$, or V_{L} supply voltages are under their respective UVLO thresholds the DOI driver is turned off (threestated). DOI automatically turns back on, once $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{5}$, and V_{L} rise above their UVLO threshold.
Note that when $\mathrm{V}_{\mathrm{L}} \leq 1.12 \mathrm{~V}$, the MAX14914ATE+ and MAX14914BATE+ force the OV_VDD pin low while the MAX14914AATE+ keeps this pin in a Hi-Z state.

Driving Capacitive Loads

When charging/discharging purely capacitive loads with a push-pull driver, the driver dissipates power that is proportional to the switching frequency. The power can be estimated by $P D \sim C \times V_{D D}{ }^{2} \times f$, where C is the load capacitance, $V_{D D}$ is the supply voltage, and f is the switching frequency. For example, in an application with a 10 nF load and 10 kHz switching frequency, the driver dissipates 130 mW at $\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}$. Therefore, switching a higher capacitance can induce thermal shutdown and that limits the operational frequency.

Driving Inductive Loads

The DOI pins can be pulled below ground potential when the high-side transistor is off. The MAX14914_ has an internal clamping diode from V_{DD} to DO that limits the negative voltage excursion to ($\mathrm{V}_{\mathrm{DD}}-55 \mathrm{~V}$) typ. Turning off the current flowing in ground-connected inductive loads results in a negative voltage at the DOI pin limited to V_{CL} below V_{DD} by the internal clamping diodes.
The MAX14914_features SafeDemag, meaning that there are no limits for load inductance that it can demagnetize, for load currents of up to 600 mA . Turn-off of large inductive loads with currents larger than 600 mA requires an external clamping diode, as shown in Figure 6. The clamping (breakdown) voltage of such diode needs to be less than $\mathrm{V}_{\mathrm{CL}}: \mathrm{V}_{\mathrm{Z}}<$ V_{CL}. Ensure that the Zener diode is able to dissipate the energy.

Figure 6. External Inductive Load Clamping

Monitoring of the DOI Output

The driver output (DOI) is monitored in both high-side and push-pull modes and corresponding logic level can be seen
 2.0 V . This feature is useful for functional safety applications.

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Digital Input Operation

The MAX14914_ can operate as an industrial digital input. Drive the DI_EN pin high to enable digital input operation. The $2.3 \mathrm{~mA} / 7 \mathrm{~mA}$ internal current sink on DIO is then enabled and the $\overline{\mathrm{DOI} \mathrm{LVL}}$ logic output presents the inverse of the DOI logic, with threshold voltages compliant with IEC61131-2 Type 1, Type 2, or Type 3 levels. IN DI mode, the PP input allows selection between IEC Type 1/3 and Type 2 input characteristics. Set PP low for Type 1/3 compatibility and set PP high for Type 2 compatibility. In order to allow the DOI input voltage to go above the $V_{D D}$ supply voltage and preventing race condition, an external Schottky diode can be placed in series with the $V_{D D}$ supply, as shown in Figure 7. Alternatively, an external pMOS transistor can be placed in series with the 24 V supply, as shown in Figure 8, to allow the DOI voltage to exceed $V_{D D}$. The gate of the pMOS can be driven by the open drain OV_VDD output (MAX14914 and MAX14914A only). When DI_EN = high, the OV_VDD pin turns the pMOS off permanently. Therefore, VDD is one forward diode voltage (of the pMOS) below the external 24 V field supply, when the DOI voltage is less than the field supply voltage. The MAX14914_ is parasitically powered by the external DOI input, when the DOI voltage is higher than the $V_{\text {DD }}$ supply. Note that the power dissipation increases strongly when Type 2 DI mode is selected ($\mathrm{PP}=$ high), particularly with high DOI input voltages due to the 7 mA (typ) current sink. When the $\mathrm{V}_{\mathrm{DOI}}$ voltage exceeds 42.5 V (typ) the sink current is automatically decreased from 7 mA (typ) to 2.3 mA (typ) to reduce the power dissipation.

Figure 7. DO/DI Configuration with External Schottky Diode

MAX14914, MAX14914A,
MAX14914B

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Figure 8. DO/DI Configuration with External pMOSFET

Applications Information

Layout Considerations

The PCB designer should follow some critical recommendations in order to get the best performance from the design.

- Keep the input/output traces as short as possible. Avoid using vias to make low-inductance paths for the signals.
- Have a solid ground plane underneath the high-speed signal layer.

A suppressor/TVS diode should be used between $V_{D D}$ and PGND to clamp positive-surge transients on the $V_{D D}$ supply input and surges from DOI. The standoff voltage should be higher than the maximum operating voltage of the device while the breakdown voltage should be below 65 V . As long field-supply cables can generate large voltage transients on the V_{DD} supply due to large $\mathrm{dl} / \mathrm{dt}$, it is recommended to add a large $10 \mu \mathrm{~F}$ capacitor on V_{DD} at the point of field supply entry.

Surge Protection

DOI is protected against $\pm 2 \mathrm{kV} / 42 \Omega$ surge pulses as per IEC61000-4-5. Thus, no external surge suppression is needed on DOI. A suppressor/TVS diode (SMBJ40A, for example) should be used between V_{DD} and PGND to clamp high-surge transients on the V_{DD} supply input and surges from DOI. The breakdown voltage of TVS should be higher than the maximum operating voltage of the equipment, while the maximum clamping voltage should be below 65 V .

Conducted RF Immunity

To insure that the DOI driver, configured for HS mode with the switch turned off, is not turned on during IEC61000-4-6 RF immunity testing, a 10 nF capacitor should be applied between the DOI output and PGND. For PP mode a capacitor on DOI is not needed.

Reverse Current into DOI

Reverse current flow into DOI pin in DO mode will heat up the device and can destroy it thermally. The allowed reverse current depends on $V_{D D}$, the ambient temperature and the thermal resistance. At $25^{\circ} \mathrm{C}$ ambient temperature the continuous reverse current into DOI pin should be limited to 250 mA at $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}$ and 400 mA at $\mathrm{V}_{\mathrm{DD}}=24 \mathrm{~V}$. Using a pMOS transistor or a Schottky diode (as shown in Figure 7 and Figure 8) removes the reverse current flow path into the 24 V field supply.

Typical Application Circuits

Ordering Information

PART	PACKAGE	BODY SIZE	PIN PITCH	TEMP RANGE (${ }^{\circ} \mathrm{C}$)
MAX14914ATE+	TQFN16	$4 \mathrm{~mm} \times 4 \mathrm{~mm}$	0.65 mm	-40 to +125
MAX14914ATE+T	TQFN16	$4 \mathrm{~mm} \times 4 \mathrm{~mm}$	0.65 mm	-40 to +125
MAX14914AATE+	TQFN16	$4 \mathrm{~mm} \times 4 \mathrm{~mm}$	0.65 mm	-40 to +125
MAX14914AATE+T	TQFN16	$4 \mathrm{~mm} \times 4 \mathrm{~mm}$	0.65 mm	-40 to +125
MAX14914BATE+	TQFN16	$4 \mathrm{~mm} \times 4 \mathrm{~mm}$	0.65 mm	-40 to +125
MAX14914BATE+T	TQFN16	$4 \mathrm{~mm} \times 4 \mathrm{~mm}$	0.65 mm	-40 to +125

+Denotes a lead (Pb)-free/RoHS-compliant package
T = Tape and Reel

High-Side Switch with Settable Current-Limiting, Push-Pull Driver Option and Digital Input Configuration

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED		
0	$12 / 16$	Initial release	-		
1	$07 / 17$	Corrected pin number in Pin Description section and updated various typos	$1,10,13$		
2	$12 / 17$	Updated the Electrical Characteristics global specifications	$2-5$		
3	$6 / 18$	Updated the Electrical Characteristics, Typical Operating Characteristics, Pin Description, and Function Diagram sections, and Figures 4 and 5	$5,9,10$,		
$12-14$				$⿻$	(
:---					
4					

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

