2.5A Octal Three-Level Digital Pulsers with TR Switches

General Description

The MAX14988 octal three-level, high-volage (HV) pulser device generates high-frequency HV bipolar pulses (up to $\pm 105 \mathrm{~V}$) from low-voltage control logic inputs for driving piezoelectric transducers in ultrasound systems. All eight channels have embedded overvoltage-protection diodes and an integrated active return-to-zero clamp. The device has embedded independent (floating) power supplies (FPS) and level shifters that allow signal transmission without the need for external HV capacitors. The device also features eight integrated transmit/receive (T/R) switches.
The device features two modes of operation: shutdown mode and octal three-level pulser mode (with integrated active return-to-zero clamp). In octal three-level pulser mode, each channel is controlled by two logic inputs (DINN_/DINP_) and the active return to zero features half the current driving of the pulser 1.25A (typ).
The device can operate both in clocked and transparent mode. In clocked mode, data inputs can be synchronized with a clean differential or single-ended clock to reduce phase noise associated with FPGA output signals that are detrimental for Doppler analysis. In transparent mode, the synchronization feature is disabled and output reflects the data input after a 10.8 ns delay. The device features adjustable maximum current (0.44 A to 2.5 A) to reduce power consumption when full current capability is not required.
The device features integrated grass-clipping diodes (with low parasitic capacitance) for receive (Rx) and transmit (Tx) isolations. The device features a damping circuit that can be activated as soon as the transmit burst is over. The damping circuit has an on-resistance of 200Ω. It fully discharges the pulser's output internal node before the grass-clipping diodes.
The device is available in a $68-\mathrm{pin}(10 \mathrm{~mm} \times 10 \mathrm{~mm})$ TQFN package with an exposed pad and are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Ordering Information appear at end of data sheet.

DirectDrive is a registered trademark of Maxim Integrated Products, Inc.

Benefits and Features

- Saves Space in High-Channel-Count and Portable Systems
- High Density
- 8 Channels (Three-Level Operation)
- Integrated Low-Power T/R Switches
- DirectDrive ${ }^{\circledR}$ Architecture Eliminates External High-Voltage Capacitor
- No External Floating Power Supply (FPS) Required
- High Performance Enhances Image Quality)
- Excellent -43dBc (typ) THD for Second Harmonic at 5 MHz
- Sync Function Eliminates Effects of FPGA Jitter and Improves Performance in Doppler Mode
- Low Propagation Delay 10.8ns (typ)
- Strong Active Return to Zero
- Conserves Power
- Low Quiescent Power Dissipation (13mW/Channel)
- Programmable Current Capability
- Shutdown Mode

Applications

- Ultrasound Medical Imaging
- Industrial Flaw Detection
- Piezoelectric Drivers
- Test Equipment

Functional Diagram

2.5A Octal Three-Level Digital Pulsers with TR Switches

Absolute Maximum Ratings
(All voltages referenced to GND.)
$V_{D D}$ Logic Supply Voltage Range . 0.3 V to +5.6 V
$V_{C C}, V_{C C A}$ Positive Driver Supply Voltage Range .. -0.3 V to +5.6 V
$\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\text {EEA }}$ Negative Driver Supply Voltage Range... -5.6 V to +0.3 V
$V_{\text {NN }}$ High Negative
Supply Voltage Range
.-110 V to +0.3 V
VPp High Positive
Supply Voltage Range -0.3 V to +110 V
OUT_Output Voltage Range $\mathrm{V}_{\text {NN }}$ to V_{PP}
LVOUT_ Output Voltage Range
(100 mA Maximum Current)............................... 1.2 V to +1.2 V
DINN_, DINP_, CC_, SYNC, MODE....................-0.3V to +5.6V
CLK, $\overline{\mathrm{CLK}}$ Voltage Range......................... -0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)

$V_{G P}$ Output Voltage
Range.......... $\max \left[\left(\mathrm{V}_{\mathrm{PP}}-5.6 \mathrm{~V}\right)\right.$, $\left.\left(\mathrm{V}_{\mathrm{EE}}+0.6 \mathrm{~V}\right)\right]$ to $\left(\mathrm{V}_{\mathrm{PP}}+0.3 \mathrm{~V}\right)$
V_{GN} Output Voltage
Range......... $\left(\mathrm{V}_{\mathrm{NN}}-0.3 \mathrm{~V}\right)$ to $\min \left[\left(\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}\right),\left(\mathrm{V}_{\mathrm{NN}}+5.6 \mathrm{~V}\right)\right]$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
TQFN (derate $50 \mathrm{~mW} / \mathrm{NC}$ above $+70^{\circ} \mathrm{C}$).................... 4000 mW Operating Temperature Range........................... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)...................................... $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance (θ_{JA}) $\ldots20^{\circ} \mathrm{C} / \mathrm{W} \quad$ Junction-to-Case Thermal Resistance (θ_{JC})................... $0.5^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+105 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-105 \mathrm{~V}, 1 \mu \mathrm{~F}\right.$ bypass capacitor between V_{GN} and
$\mathrm{V}_{\mathrm{NN}}, 1 \mu \mathrm{~F}$ bypass capacitor between V_{GP} and V_{PP}, no load, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}_{-}}, \mathrm{V}_{\mathrm{EE}_{-},}, \mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\text {NN }}$)						
Logic Supply Voltage	$V_{\text {DD }}$		+1.7	+3	+5.25	V
Positive Drive Supply Voltage	V_{CC}		+4.9	+5	+5.1	V
Negative Drive Supply Voltage	V_{EE}		-5.1	-5	-4.9	V
High-Side Supply Voltage	$V_{P P}$		0		+105	V
Low-Side Supply Voltage	V_{NN}		-105		0	V
LOGIC INPUTS/OUTPUTS (DINN_, DINP_, MODE, SYNC, CC_)						
Low-Level Input Threshold	$\mathrm{V}_{\text {IL }}$				$\times V_{\text {DD }}$	V
High-Level Input Threshold	V_{IH}		$0.8 \times$			V
Differential Input Resistance Between DINPx and DINNx	RIND		70	100	170	k ת
Pulldown Input Resistance Pins MODE, SYNC, CC0, CC1	RPD		70	100	170	k Ω
Logic Input Capacitance	$\mathrm{C}_{\text {IN }}$			4		pF
Logic Input Leakage DINP, DINN	In	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}	-1	0	+1	$\mu \mathrm{A}$
THP Low-Level Output Voltage	V_{OL}	Pullup resistor to $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{R}_{\text {PULLUP }}=1 \mathrm{k} \Omega\right)$			0.1	V
CLOCK INPUTS (CLK, CLK)—DIFFERENTIAL MODE						
Differential Clock Input Voltage Range	$\mathrm{V}_{\text {CLKD }}$		0.2		2	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$

DC Electrical Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+105 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-105 \mathrm{~V}, 1 \mu \mathrm{~F}\right.$ bypass capacitor between V_{GN} and $\mathrm{V}_{\mathrm{NN}}, 1 \mu \mathrm{~F}$ bypass capacitor between V_{GP} and V_{PP}, no load, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Common-Mode Voltage	$\mathrm{V}_{\text {CLKCM }}$			$\mathrm{V}_{\mathrm{CC}} / 2$			V
Common-Mode Voltage Range	V_{CL}			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} / 2 \\ & -045 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} / 2 \\ & +0.45 \end{aligned}$	V
Input Resistance	RCLK, RCLK	Differential		4.9	7	10.2	$\mathrm{k} \Omega$
		Common mode		16	23	31	k Ω
Input Capacitance	$\mathrm{C}_{\text {CLK }}$, CLK	Capacitance to GND (each input)		4			pF
CLOCK INPUTS (CLK, CLK)—SINGLE-ENDED MODE ($\mathrm{V}_{\text {CLK }}<0.1 \mathrm{~V}$)							
Low-Level Input	$\mathrm{V}_{\text {IL }}$	CLK			$0.2 \times \mathrm{V}_{\text {DD }}$		V
High-Level Input	V_{IH}	CLK		$0.8 \times V_{\text {DD }}$			V
Single-Ended Mode Selection Threshold Low	VIL	CLK				0.1	V
Single-Ended Mode Selection Threshold High	V_{IH}	CLK		1			V
Input Capacitance (CLK)	$\mathrm{C}_{\text {CLK }}$			4			pF
Logic Input Leakage (CLK)	ICLK	$\mathrm{V}_{\mathrm{CLK}}=0 \mathrm{~V}$ or V_{DD}		-1	0	+1	$\mu \mathrm{A}$
Pullup Current (CLK)	ICLK	$\mathrm{V}_{\text {CLK }}=0 \mathrm{~V}$			120	180	$\mu \mathrm{A}$
SUPPLY CURRENT-SHUTDOWN MODE (MODE = Low)							
$V_{\text {DD }}$ Supply Current	IDD	All inputs connected to GND or V_{DD}			12	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ Supply Current	I_{CC}	All inputs connected to GND or V_{DD}			22	35	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CCA }}$ Supply Current	ICCA	All inputs connected to GND or $V_{\text {DD }}$			0	1	$\mu \mathrm{A}$
$V_{\text {EE }}$ Supply Current	IEE	All inputs connected to GND or $V_{\text {DD }}$			30	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {EEA }}$ Supply Current	IEEA	All inputs connected to GND or $V_{\text {DD }}$			0	1	$\mu \mathrm{A}$
V ${ }_{\text {PP }}$ Supply Current	IPP	All inputs connected to GND or $V_{\text {DD }}$			0	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {NN }}$ Supply Current	$\mathrm{I}_{\text {NN }}$	All inputs connected to GND or V_{DD}			0	10	$\mu \mathrm{A}$
SUPPLY CURRENT-NORMAL OPERATION MODE, NO LOAD (MODE = High)							
$V_{D D}$ Supply Current (Quiescent Mode)	IDD	All inputs connected to GND or $V_{D D}$	Transparent or single-ended clock mode		13	30	$\mu \mathrm{A}$
$V_{E E}$ Supply Current (Quiescent Mode)	$I_{\text {EEQ }}$				0.15	0.3	mA
$\mathrm{V}_{\text {EEA }}$ Supply Current (Quiescent Mode)	$I_{\text {EEAQ }}$	DINN_ = DINP_ = GND				0.01	mA
		DINN_ = DINP_ $=\mathrm{V}_{\mathrm{DD}}$			8	13	

2.5A Octal Three-Level Digital Pulsers with TR Switches

DC Electrical Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+105 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-105 \mathrm{~V}, 1 \mu \mathrm{~F}\right.$ bypass capacitor between V_{GN} and $\mathrm{V}_{\mathrm{NN}}, 1 \mu \mathrm{~F}$ bypass capacitor between V_{GP} and V_{PP}, no load, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

2.5A Octal Three-Level Digital Pulsers with TR Switches

DC Electrical Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+105 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-105 \mathrm{~V}, 1 \mu \mathrm{~F}\right.$ bypass capacitor between V_{GN} and $V_{N N}, 1 \mu \mathrm{~F}$ bypass capacitor between V_{GP} and V_{PP}, no load, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
$\mathrm{V}_{\text {CCA }}$ Supply Current	ICCA1	8 channels switching, CW Doppler (Note 4), CC0 = high, CC1 = high		0		mA
	ICCA2	8 channels switching, B mode (Note 5) (Figure 1), CC0 = low, CC1 = low		8		
V_{CC} Supply Current Increase in Clocked Mode	$\Delta_{\text {l }} \mathrm{CC}$	Differential clock mode		5.6		mA
$\mathrm{V}_{\text {NN }}$ Supply Current	${ }^{\text {a }}$ N1	8 channels switching, CW Doppler, $\mathrm{CC} 0=$ high, $\mathrm{CC} 1=$ high, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=240 \mathrm{pF}$ (Note 4)		127	200	mA
	${ }^{\text {INN2 }}$	8 channels switching, B mode (Figure 1),$\begin{aligned} & \mathrm{CC} 0=\text { low, } \mathrm{CC} 1=\text { low, } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=240 \mathrm{pF}(\text { Note } 5) \end{aligned}$		1.9	2.8	
VPP Supply Current	IPP1	8 channels switching, CW Doppler, $\mathrm{CC} 0=$ high, $\mathrm{CC} 1=$ high, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, $C_{L}=240 \mathrm{pF}$ (Note 4)		146	230	mA
	IPP2	8 channels switching, B mode (Figure 1),$\begin{aligned} & \mathrm{CC} 0=\text { low, } \mathrm{CC} 1=\text { low, } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=240 \mathrm{pF}(\text { Note } 5) \end{aligned}$		3.3	5	
Power Dissipation per Channel (Octal Three-Level Mode)	PDCW	1 channel switching, CW Doppler (Note 4)		207		mW
	PDPW	1 channel switching, B mode (Note 5) (Figure 1), CC0 = low, CC1 = low, $R_{L}=1 \mathrm{k} \Omega, C_{L}=240 \mathrm{pF}$		79		
OUTPUT STAGE						
V_{NN} Connected Low-Side Output Impedance	RoLS	lout_ $=-50 \mathrm{~mA}$	$\begin{aligned} & \mathrm{CCO}=\text { low }, \\ & \mathrm{CC} 1 \text { = low } \end{aligned}$	7	16	Ω
			$\begin{aligned} & \text { CC0 }=\text { high }, \\ & \text { CC1 }=\text { low } \end{aligned}$	9		
			$\begin{aligned} & \text { CC0 }=\text { low, } \\ & \text { CC1 }=\text { high } \end{aligned}$	17		
			$\begin{aligned} & \text { CC0 }=\text { high }, \\ & \text { CC1 }=\text { high } \end{aligned}$	32	60	
$V_{\text {PP }}$ Connected High-Side Output Impedance	ROHS	$\mathrm{l}_{\text {OUT_}}=+50 \mathrm{~mA}$	$\begin{aligned} & \text { CC0 }=\text { low }, \\ & \text { CC1 }=\text { low } \end{aligned}$	7	16	Ω
			$\begin{aligned} & \text { CC0 = high }, \\ & \text { CC1 = low } \end{aligned}$	9		
			$\begin{aligned} & \text { CC0 }=\text { low, } \\ & \text { CC1 }=\text { high } \end{aligned}$	17		
			$\begin{aligned} & \text { CC0 }=\text { high }, \\ & \text { CC1 }=\text { high } \end{aligned}$	32	60	

DC Electrical Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+105 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-105 \mathrm{~V}, 1 \mu \mathrm{~F}\right.$ bypass capacitor between V_{GN} and $V_{N N}, 1 \mu \mathrm{~F}$ bypass capacitor between V_{GP} and V_{PP}, no load, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Clamp nFET Output Impedance	RONG	$\mathrm{I}_{\text {OUT__ }}=-50 \mathrm{~mA}$,			11	22	Ω
Clamp pFET Output Impedance	ROPG	lout_ $=+50 \mathrm{~mA}$			11	22	Ω
Active Damp Output Impedance	$\mathrm{R}_{\text {DAMP }}$	Before grass-clipping diode				200	Ω
$\mathrm{V}_{\text {NN }}$ Connected Low-Side Output Current	lols	$\mathrm{V}_{\mathrm{DS}}=+100 \mathrm{~V}$	$\begin{aligned} & \mathrm{CC} 0=\text { low }, \\ & \mathrm{CC} 1=\text { low } \end{aligned}$		2.5		A
			$\begin{aligned} & \mathrm{CC0}=\text { high }, \\ & \mathrm{CC} 1=\text { low } \end{aligned}$		1.76		
			$\begin{aligned} & \text { CC0 }=\text { low }, \\ & \text { CC1 }=\text { high } \end{aligned}$		0.88		
			$\begin{aligned} & \text { CC0 }=\text { high }, \\ & \text { CC1 }=\text { high } \end{aligned}$		0.44		
$V_{\text {PP }}$ Connected High-Side Output Current	IOHS	$\mathrm{V}_{\mathrm{DS}}=+100 \mathrm{~V}$	$\begin{aligned} & \mathrm{CC}=\text { low }, \\ & \mathrm{CC} 1=\text { low } \end{aligned}$		2.5		A
			$\begin{aligned} & \text { CC0 }=\text { high }, \\ & \text { CC1 }=\text { low } \end{aligned}$		1.76		
			$\begin{aligned} & \text { CC0 }=\text { low }, \\ & \text { CC1 }=\text { high } \end{aligned}$		0.88		
			$\begin{aligned} & \text { CC0 }=\text { high }, \\ & \text { CC1 }=\text { high } \end{aligned}$		0.44		
GND-Connected nFET Output Current	Iong	$\mathrm{V}_{\mathrm{DS}}=+100 \mathrm{~V}$			1.25		A
GND-Connected pFET Output Current	IOPG	$\mathrm{V}_{\mathrm{DS}}=+100 \mathrm{~V}$			1.25		A
Diode Voltage Drop (Blocking Diode and Grass-Clipping Diode)	$\mathrm{V}_{\text {DROP }}$	$\mathrm{IOUT}_{-}= \pm 50 \mathrm{~mA}$			1.7		V
LVOUT_Diode Clamping Voltage	LV ${ }_{\text {CLAMP }}$	$\mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA}$		-0.9		+1	V
OUT_ Equivalent Small-Signal Shunt Capacitance	$\mathrm{C}_{\text {LS }}$	$0.1 \mathrm{~V}_{\text {P-P }}$ signal			12		pF
OUT_Equivalent Large-Signal Shunt Capacitance	C_{HS}	200V ${ }_{\text {P-P }}$ signal			80		pF
T/R Switch On Impedance	R_{ON}	$\mathrm{f}=5 \mathrm{MHz}$			6.5		Ω
T/R Switch Off Impedance	R OFF				5		$\mathrm{M} \Omega$
LVOUT_ Output Offset	LV ${ }_{\text {OFF }}$	LVOUT_, OUT_unconnected, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$		-40	0	+40	mV
THERMAL PROTECTION							
Thermal Warning	$\mathrm{T}_{\text {THP }}$	Temperature rising			125		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Threshold	TSDN	Temperature rising			+150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	$\mathrm{T}_{\mathrm{HYS}}$				20		${ }^{\circ} \mathrm{C}$

2.5A Octal Three-Level Digital Pulsers with TR Switches

AC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GN}}\right.\right.$ connectedto V_{NN} with $1 \mu \mathrm{~F}$ capacitor, V_{GP} connectedto V_{PP} with $1 \mu \mathrm{~F}$ capacitor, $\mathrm{V}_{\mathrm{CC} 0}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=220 \mathrm{pF}$, unlessotherwisenoted. Typicalvalues areat $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logic Input to Output Rise Propagation Delay	${ }_{\text {tPLH }}$	From 50\% DINP_/DINN_ (transparent mode) to 10% OUT_ transition swing (Figure 2a)		10.8		ns
Logic Input to Output Fall Propagation Delay	${ }_{\text {tPHL }}$	From 50\% DINP_/DINN_ (transparent mode) to 10\% OUT_ transition swing (Figure 2a)		10.8		ns
Logic Input to Output Rise to GND Propagation Delay	tpLo	From 50\% DINP_/DINN_ (transparent mode) to 10\% OUT_ transition swing (Figure 2a)		10.8		ns
Logic Input to Output Fall to GND Propagation Delay	${ }_{\text {tPHO }}$	From 50\% DINP_/DINN_ (transparent mode) to 10\% OUT_ transition swing (Figure 2a)		10.8		ns
OUT_Fall Time (V_{PP} to V_{NN})	$\mathrm{t}_{\text {FPN }}$	Figure 2b		20	30	ns
OUT_ Rise Time (V_{NN} to V_{PP})	$\mathrm{t}_{\text {RNP }}$	Figure 2b		20	30	ns
OUT_Rise Time (GND to V_{PP})	$\mathrm{t}_{\mathrm{ROP}}$	Figure 2b		7.5	13	ns
OUT_ Fall Time (GND to V_{NN})	$\mathrm{t}_{\mathrm{FON}}$	Figure 2b		7.5	13	ns
OUT_ Rise Time (V_{NN} to GND)	$\mathrm{t}_{\text {RNO }}$	20\% to 80\% transition (Figure 2b)		15	27	ns
OUT_ Fall Time (VPP to GND)	$\mathrm{t}_{\text {FP0 }}$	20\% to 80\% transition (Figure 2b)		15	27	ns
T/R Switch Turn-On Time	tontrsw	Figure 3		0.65	1.1	$\mu \mathrm{s}$
T/R Switch Turn-Off Time	tofftrsw	Figure 3 (Note 6)		0.02	0.1	$\mu \mathrm{s}$
Setup Time from Receive to Transmit	$t_{\text {RXTX }}$	(Note 7)	1			$\mu \mathrm{s}$
Output Enable Time (Shutdown Mode to Normal Operation)	$t_{\text {EN1 }}$				100	$\mu \mathrm{s}$
Output Disable Time (Normal Operation to Shutdown Mode)	${ }^{\text {D }}$ IS1				10	$\mu \mathrm{s}$
Output Enable Time (Normal Operation to Sync Mode)	$t_{\text {EN2 }}$				5	$\mu \mathrm{s}$
Output Disable Time (Sync Mode to Normal Operation)	${ }^{\text {D }}$ IS2				200	ns
CLK Frequency	$\mathrm{f}_{\text {CLK }}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$			200	MHz
Input Setup Time (DINN_, DINP_) S. E.	${ }^{\text {t SETUP }}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, single-ended clock	0.8			ns
Input Hold Time (DINN_, DINP_) S. E.	$\mathrm{t}_{\text {HOLD }}$	$V_{D D}=2.5 \mathrm{~V}$	1.4			ns

2.5A Octal Three-Level Digital Pulsers with TR Switches

AC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EEA}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GN}}\right.\right.$ connectedto V_{NN} with $1 \mu \mathrm{~F}$ capacitor, V_{GP} connectedto V_{PP} with $1 \mu \mathrm{~F}$ capacitor, $\mathrm{V}_{\mathrm{CC} 0}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=220 \mathrm{pF}$, unlessotherwisenoted. Typicalvalues areat $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Setup Time (DINN, DINP) Differential Clock	TSETUP-D	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ - differential clock	0.6			ns
Input Hold Time (DINN, DINP) Differential Clock	THOLD-D	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ - differential clock	1.7			ns
Second-Harmonic Distortion (Low Voltage)	THD2LV	$\begin{aligned} & \mathrm{fout}_{-}=5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}}=-\mathrm{V}_{\mathrm{NN}}=+5 \mathrm{~V}, \\ & \text { square wave (all modes), } \mathrm{R}_{\mathrm{L}}=100 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \end{aligned}$		-36		dBc
Second-Harmonic Distortion (High Voltage)	THD2HV	$\mathrm{f}_{\mathrm{OUT}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{PP}}=-\mathrm{V}_{\mathrm{NN}}=+40 \mathrm{~V}$ to +105 V , square wave (all modes), $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		-43		dBc
Pulse Cancellation	PC1	$\mathrm{f}_{\mathrm{OUT}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{PP}}=-\mathrm{V}_{\mathrm{NN}}=+80 \mathrm{~V}, 2$ periods, all harmonics of the summed signed with respect to the carrier		-43		dBc
Pulser Bandwidth	BW	$\mathrm{V}_{\mathrm{PP}}=+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{NNA}}=-60 \mathrm{~V}$ (Figure 4)		30		MHz
RMS Output Jitter	t_{J}	$\begin{aligned} & \mathrm{f}_{\mathrm{OUT}}=5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PPA}}=-\mathrm{V}_{\mathrm{NNA}}=+5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {PPB }}=-\mathrm{V}_{\text {NNB }}=+5 \mathrm{~V} \text {, clocked mode } \\ & (\underline{\text { Figure } 5}) \end{aligned}$		5.4		ps
T/R Switch Harmonic Distortion	THD ${ }_{\text {TRSW }}$	$\mathrm{R}_{\text {LOAD }}=200 \Omega, \mathrm{~V}_{\text {SIGNAL }}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$		-55		dB
T/R Switch Turn-On/Off Voltage Spike	$\mathrm{V}_{\text {SPIKE }}$	$\mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega$ at both sides of T / R switch		± 20		mV
Crosstalk	CT	$\begin{aligned} & \mathrm{f}=5 \mathrm{MHz} \text {, adjacent channels, } \\ & \mathrm{R}_{\text {Lout_ }}=50 \Omega \end{aligned}$		-53		dB

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 3: CW Doppler: continuous wave, $f=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{EE}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=-\mathrm{V}_{\mathrm{NN}}=+5 \mathrm{~V}$.
Note 4: B mode: $f=5 \mathrm{MHz}, \mathrm{PRF}=5 \mathrm{kHz}, 1$ period, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{EE}}=+5 \mathrm{~V}, \mathrm{~V}_{P P}=-\mathrm{V}_{\mathrm{NN}}=+105 \mathrm{~V}$.
Note 5: T / R switch turn-off time is the time required to switch off the bias current of the T / R switch. The off-isolation is not guaranteed.
Note 6: Both the T/R switch and Damp are designed to be self-protected against the HV transmission. The part is not damaged even if the Transmit setup time is not respected. We recommend having at least 1μ s setup time when moving from receive (INP $=\operatorname{INN}$ $=1$ to transmit (INP $=\operatorname{INN}=0)$. To further reduce the Transmit leakage through the TRSW a longer setup time is recommended (see T/R switch paragraph in the Detailed Description section). See Timing Diagrams.

Timing Diagrams

Figure 1. High-Voltage Burst Test

Figure 2a. Propagation Delay Timing

Timing Diagrams (continued)

Figure 2b. Output Rise/Fall Timing

Figure 3. T/R Switch Turn-On/Off Time

Timing Diagrams (continued)

Figure 4. Bandwidth

Timing Diagrams (continued)

Figure 5. Jitter Timing

Pin Configuration

2.5A Octal Three-Level Digital Pulsers with TR Switches

Pin Description

PIN	NAME	FUNCTION
1	DINN1	Digital Signal Negative Input 1 (see the Truth Tables section)
2	DINP2	Digital Signal Positive Input 2 (see the Truth Tables section)
3	DINN2	Digital Signal Negative Input 2 (see the Truth Tables section)
4	DINP3	Digital Signal Positive Input 3 (see the Truth Tables section)
5	DINN3	Digital Signal Negative Input 3 (see the Truth Tables section)
6	DINP4	Digital Signal Positive Input 4 (see the Truth Tables section)
7	DINN4	Digital Signal Negative Input 4 (see the Truth Tables section)
8	$\overline{\text { CLK }}$	CMOS Control Input. Clock negative phase input. Data inputs are clocked in at the edge of CLK and $\overline{\text { CLK }}$ in differential clocked mode. Clock maximum frequency is 200 MHz . If $\overline{C L K}$ is connected to GND, the CLK input is a single-ended logic-level clock input. Otherwise, CLK and CLK are self-biased differential clock inputs.
$\begin{gathered} 9,24,25, \\ 30,56, \\ 61,62 \\ \hline \end{gathered}$	GND	Ground
10	CLK	CMOS Control Input. Clock positive phase input. Data inputs are clocked in at the rising edge of CLK and $\overline{\text { CLK }}$ in differential clocked mode or at the rising edge of CLK in single-ended clocked mode. Clock maximum frequency is 200 MHz .
11	DINN5	Digital Signal Negative Input 5 (see the Truth Tables section)
12	DINP5	Digital Signal Positive Input 5 (see the Truth Tables section)
13	DINN6	Digital Signal Negative Input 6 (see the Truth Tables section)
14	DINP6	Digital Signal Positive Input 6 (see the Truth Tables section)
15	DINN7	Digital Signal Negative Input 7 (see the Truth Tables section)
16	DINP7	Digital Signal Positive Input 7 (see the Truth Tables section)
17	DINN8	Digital Signal Negative Input 8 (see the Truth Tables section)
18	DINP8	Digital Signal Positive Input 8 (see the Truth Tables section)
19	$V_{D D}$	Logic Supply Voltage. Bypass V_{DD} to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
20	SYNC	CMOS Control Input. Drive SYNC high to enable clocked-input mode. Drive SYNC low to operate in transparent mode (see the Truth Tables section).
21	MODE	Mode Control Input. Control operation mode (see the Truth Tables section).
22, 64	V_{CC}	V_{CC} Supply Voltage. Bypass V_{CC} (both pins) to GND with a 220 nF capacitor as close as possible to the device.
23,63	V_{EE}	V_{EE} Supply Voltage. Bypass V_{EE} (both pins) to GND with a 220 nF capacitor as close as possible to the device.
$\begin{gathered} 26,27, \\ 59,60 \end{gathered}$	$V_{\text {PP }}$	High-Voltage Positive Supply Input. Bypass V_{PP} to $G N D$ with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
$\begin{gathered} 28,29, \\ 57,58 \end{gathered}$	V_{GP}	Driver Voltage Supply Output. Connect a $1 \mu \mathrm{~F}$ capacitor to V_{PP} as close as possible to the device.
31,55	V_{GN}	Driver Voltage Supply Output. Connect a $1 \mu \mathrm{~F}$ capacitor to $\mathrm{V}_{\text {NN }}$ as close as possible to the device.
$\begin{gathered} 32,33,43, \\ 53,54 \\ \hline \end{gathered}$	V_{NN}	the device.

2.5A Octal Three-Level Digital Pulsers with TR Switches

Pin Description (continued)

PIN	NAME	FUNCTION
34	$\mathrm{V}_{\text {CCA }}$	$\mathrm{V}_{\mathrm{CCA}}$ Analog Supply Voltage. Bypass $\mathrm{V}_{\mathrm{CCA}}$ to GND with a 220 nF capacitor as close as possible to the device.
35	OUT8	Pulser Output 8
36	LVOUT8	Low-Voltage T/R Switch Output 8
37	OUT7	Pulser Output 7
38	LVOUT7	Low-Voltage T/R Switch Output 7
39	OUT6	Pulser Output 6
40	LVOUT6	Low-Voltage T/R Switch Output 6
41	OUT5	Pulser Output 5
42	LVOUT5	Low-Voltage T/R Switch Output 5
44	LVOUT4	Low-Voltage T/R Switch Output 4
45	OUT4	Pulser Output 4
46	LVOUT3	Low-Voltage T/R Switch Output 3
47	OUT3	Pulser Output 3
48	LVOUT2	Low-Voltage T/R Switch Output 2
49	OUT2	Pulser Output 2
50	LVOUT1	Low-Voltage T/R Switch Output 1
51	OUT1	Pulser Output 1
52	$V_{\text {EEA }}$	$\mathrm{V}_{\text {EEA }}$ Analog Supply Voltage. Bypass $\mathrm{V}_{\text {EEA }}$ to $G N D$ with a 220 nF capacitor as close as possible to the device.
65	THP	Open-Drain Thermal-Protection Output. Connect 1 kW pullup resistor between THP and VDD. THP asserts and drives the pin logic low when the junction temperature exceeds $+125^{\circ} \mathrm{C}$.
66	CCO	Current Control Input. Control current capability (see the Truth Tables section).
67	CC1	Current Control Input. Control current capability (see the Truth Tables section).
68	DINP1	Digital Signal Positive Input 1 (see the Truth Tables section)
-	EP	Exposed Pad. Connect EP to GND. Not intended as an electrical connection point.

2.5A Octal Three-Level Digital Pulsers with TR Switches

Detailed Description

The MAX14988 octal three-level, high-voltage (HV) pulser device generates high-frequency, HV bipolar pulses (up to $\pm 105 \mathrm{~V}$) from low-voltage control logic inputs for driving piezoelectric transducers in ultrasound systems. All 8 channels have embedded overvoltage-protection diodes and integrated active return-to-zero clamp. The device has embedded independent (floating) power supplies (FPSs) and level shifters that allow signal transmission without the need for external HV capacitors. The MAX14988 also features eight integrated transmit receive (T/R) switches.
In octal three-level pulser mode, each channel is controlled by two logic inputs (DINN_/DINP_) and the active return to zero features half the current driving of the pulser, 1.25A (typ).
The device can operate both in clocked and transparent mode. In clocked mode, data inputs can be synchronized with a clean differential or single-ended clock to reduce phase noise associated with FPGA output signals that are detrimental for Doppler analysis. In transparent mode, the synchronization feature is disabled and output reflects the data input after an 10.8ns delay. The device features adjustable maximum current (0.44 A to 2.5 A) to reduce power consumption when full current capability is not required.

The device features integrated grass-clipping diodes (with low parasitic capacitance) for receive (Rx) and transmit (Tx) isolations. The device features a damping circuit that can be activated as soon as the transmit burst is over. The damping circuit has an on-resistance of 200Ω. It fully discharges the pulser's output internal node before the grass-clipping diodes.

Operation Mode

The devices have two operation modes: shutdown and octal three-level. Use the MODE input to select the operation mode.

Shutdown Mode

All channels are disabled, no transmission and reception is possible. This mode has the lowest power consumption. See Table 1.

Octal Three-Level Mode

The devices operate in eight independent channels. Each channel can generate a three-level pulse. The high-side and low-side FET of each channel are capable of providing 2.5 A current, while the clamp is capable of 1.25 A current. See Table 2.

Truth Tables

Table 1. Shutdown Mode (MODE = Low)

INPUTS		OUTPUTS	
DINN_	DINP_ 2	OUT_	LVOUT_
X	X	High impedance	High impedance (T/R switch off)

$X=$ Don't care
Table 2. Normal Operation Mode (MODE = High)

INPUTS		OUTPUTS	
DINN_	DINP_	OUT_	LVOUT_
0	0	Clamp on (damp off)	T/R switch off (LVOUT_ = GND)
1	0	$\mathrm{V}_{\text {NN }}$ (damp off)	T/R switch off (LVOUT_ = GND)
0	1	V_{PP} (damp off)	T/R switch off (LVOUT_ = GND)
1	1	Clamp on (damp on)	T/R switch on

[^0]
2.5A Octal Three-Level Digital Pulsers with TR Switches

Current Capability Selection

The device features pulser current drive capability selection. Two control inputs (CC0, CC1) control the current drive capability (Table 3).

Sync Function

The device provides the ability to resynchronize all the data inputs by means of a clean clock signal. In ultrasound systems, the FPGA output signals are often affected by a high jitter. The jitter induces phase noise that is detrimental in Doppler analysis. The input clock can be either a differential signal or a single-ended signal running up to 200 MHz . Data are clocked in on the rising edge of the CLK input (falling-edge of $\overline{C L K}$). Connect CLK to GND for single-ended operation. The sync feature can be enabled or disabled by the SYNC control input. Drive the SYNC input low to disable the synchronization function
Table 3. Current Drive Selection

INPUTS		PULSER OUTPUT					
CURRENT (typ) (A)			$	$	CC0	CC1	1.76
:---:	:---:	:---:					
0	0	0.88					
1	0	0.44					
0	1	1					

(no external clock signal). Drive the SYNC input high to enable the synchronization function (with an external clock signal). Figure 6 shows the simplified CLK and CLK inputs schematic.

T/R Switches

Each channel features a low-power T/R switch. The T/R switch recovery time after the transmission is less than $1 \mu \mathrm{~s}$. The T/R switches are controlled by the same pulser digital inputs (see the Truth Tables section). No dedicated input signals are required to activate/deactivate the T/R switches. The MAX14988 provides dedicated voltage supplies ($\mathrm{V}_{\mathrm{CCA}}, \mathrm{V}_{\text {EEA }}$) which are used for T / R switches only. The integrated T/R switches do not require any special timings and can operate synchronously with the digital pulser. To minimize the leakage current during transmission, it's recommended to switch off the T/R switches $3 \mu \mathrm{~s}$ before the beginning of the transmit burst.

Grass-Clipping Diodes

A pair of diodes in antiparallel configuration (referred to as grass-clipping diodes) is presented at each pulser's output. The diodes' reverse capacitance is extremely low, allowing a perfect isolation between the receive path and the actual pulser's output stage.

Figure 6. Simplified CLK and CLK Inputs Schematic

MAX14988

Active Damp Circuit

An active damp circuit is integrated between the internal pulser output node (before grass-clipping diodes) and GND. The purpose of this circuit is to fully discharge the pulser output internal node so that the node is not left in high-impedance condition as soon as the transmit burst is over. This results in two main advantages:

1) The grass-clipping isolation is more effective.
2) Suppression of any low-frequency oscillation of a node that could be detrimental for Doppler mode performances.
The integrated damp circuit is self-protected. To reduce power consumption, it is recommended to switch off the damp circuit as least $1 \mu \mathrm{~s}$ before the beginning of the transmit burst.

Thermal Warning Outputs

The devices feature an open-drain thermal-protection output (THP). When the internal junction temperature exceeds $+125^{\circ} \mathrm{C}$, THP asserts. When the internal junction temperature exceeds $+150^{\circ} \mathrm{C}$, the device automatically enters shutdown mode. The devices reenter normal operation and the THP deasserts when the die temperature drops below $+120^{\circ} \mathrm{C}$.

2.5A Octal Three-Level Digital Pulsers with TR Switches

Power Sequencing

The device does not require any power-up/power-down sequence. However, the MODE pin must be forced to GND or leave unconnected during power-up/power-down sequence to prevent the transmitter to be turned on inadvertently.

Applications Information

Exposed Pad and Layout Concerns

The device provides an exposed pad (EP) underneath the TQFN package for improved thermal performance. Connect EP to GND externally and do not run traces under the package to avoid possible short circuits. To aid heat dissipation, connect EP to a similarly sized pad on the component side of the PCB. This pad should be connected through to the solder-side copper by several plated holes to a large heat-spreading copper area to conduct heat away from the device.
The device's high-speed pulser requires low-inductance bypass capacitors to their supply inputs. High-speed PCB trace design practices are recommended. Pay particular attention to minimize trace lengths and use sufficient trace width to reduce inductance. Use of surface-mount components is recommended.

Typical Application Circuit

MAX14988

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14988ETK +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	68 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Chip Information

PROCESS: BiCMOS

2.5A Octal Three-Level Digital Pulsers with TR Switches

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
68 TQFN-EP	$T 6800+3$	$21-0142$	$90-0100$

2.5A Octal Three-Level Digital Pulsers with TR Switches

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $12 / 14$ | Initial release | - |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management Specialised - PMIC category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 LV56841PVD-XH AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B TCKE712BNL,RF ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MCP16501TC-E/RMB ISL91212AIIZTR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C LR745N8-G MPS-3003L-3 MPS-3005D SPD-3606 STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ$\underline{\text { AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB MIC5166YML-TR GPE-4323 GPS-2303 }}$

[^0]: $0=$ logic-low, 1 = logic-high

