2.5A Octal Three-Level Digital Pulsers with TR Switches

General Description

The MAX14988 octal three-level, high-volage (HV) pulser device generates high-frequency HV bipolar pulses (up to ± 105 V) from low-voltage control logic inputs for driving piezoelectric transducers in ultrasound systems. All eight channels have embedded overvoltage-protection diodes and an integrated active return-to-zero clamp. The device has embedded independent (floating) power supplies (FPS) and level shifters that allow signal transmission without the need for external HV capacitors. The device also features eight integrated transmit/receive (T/R) switches.

The device features two modes of operation: shutdown mode and octal three-level pulser mode (with integrated active return-to-zero clamp). In octal three-level pulser mode, each channel is controlled by two logic inputs (DINN_/DINP_) and the active return to zero features half the current driving of the pulser 1.25A (typ).

The device can operate both in clocked and transparent mode. In clocked mode, data inputs can be synchronized with a clean differential or single-ended clock to reduce phase noise associated with FPGA output signals that are detrimental for Doppler analysis. In transparent mode, the synchronization feature is disabled and output reflects the data input after a 10.8ns delay. The device features adjustable maximum current (0.44A to 2.5A) to reduce power consumption when full current capability is not required.

The device features integrated grass-clipping diodes (with low parasitic capacitance) for receive (Rx) and transmit (Tx) isolations. The device features a damping circuit that can be activated as soon as the transmit burst is over. The damping circuit has an on-resistance of 200Ω . It fully discharges the pulser's output internal node before the grass-clipping diodes.

The device is available in a 68-pin (10mm x 10mm) TQFN package with an exposed pad and are specified over the -40° C to $+85^{\circ}$ C extended temperature range.

Ordering Information appear at end of data sheet.

DirectDrive is a registered trademark of Maxim Integrated Products, Inc.

Benefits and Features

- Saves Space in High-Channel-Count and Portable Systems
 - · High Density
 - 8 Channels (Three-Level Operation)
 - Integrated Low-Power T/R Switches
 - DirectDrive[®] Architecture Eliminates External High-Voltage Capacitor
 - No External Floating Power Supply (FPS) Required
- High Performance Enhances Image Quality)
 - Excellent -43dBc (typ) THD for Second Harmonic at 5MHz
 - Sync Function Eliminates Effects of FPGA Jitter and Improves Performance in Doppler Mode
 - Low Propagation Delay 10.8ns (typ)
 - Strong Active Return to Zero
- Conserves Power
 - Low Quiescent Power Dissipation (13mW/Channel)
 - Programmable Current Capability
 - Shutdown Mode

Applications

- Ultrasound Medical Imaging
- Industrial Flaw Detection
- Piezoelectric Drivers
- Test Equipment

Functional Diagram

2.5A Octal Three-Level Digital Pulsers with TR Switches

Absolute Maximum Ratings

(All voltages referenced to GND.)	
V _{DD} Logic Supply Voltage Range	0.3V to +5.6V
V _{CC} , V _{CCA} Positive Driver Supply Voltage Range	e0.3V to +5.6V
VEE, VEEA Negative Driver Supply Voltage Range	e5.6V to +0.3V
V _{NN} High Negative	
Supply Voltage Range	110V to +0.3V
V _{PP} High Positive	
Supply Voltage Range	0.3V to +110V
OUT_ Output Voltage Range	V _{NN} to V _{PP}
LVOUT_ Output Voltage Range	
(100mA Maximum Current)	1.2V to +1.2V
DINN_, DINP_, CC_, SYNC, MODE	0.3V to +5.6V
CLK, CLK Voltage Range0.3V	' to (V _{CC} + 0.3V)

THP Logic Output Voltage Range0.3V to +5.6V
V _{GP} Output Voltage
Rangemax[(V _{PP} - 5.6V), (V _{EE} + 0.6V)] to (V _{PP} + 0.3V)
V _{GN} Output Voltage
Range(V _{NN} - 0.3V) to min [(V _{CC} + 0.6V), (V _{NN} + 5.6V)]
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
TQFN (derate 50mW/NC above +70°C)4000mW
Operating Temperature Range40°C to +85°C
Maximum Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TQFN

Junction-to-Ambient Thermal Resistance (0_{JA})......20°C/W

Junction-to-Case Thermal Resistance (θ_{JC}).....0.5°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to **www.maximintegrated.com/thermal-tutorial**.

DC Electrical Characteristics

 $(V_{DD} = +3V, V_{CC} = +5V, V_{CCA} = +5V, V_{EE} = -5V, V_{PP} = +105V, V_{NN} = -105V, 1\mu F$ bypass capacitor between V_{GP} and V_{NN} , 1 μ F bypass capacitor between V_{GP} and V_{PP} , no load, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS				
POWER SUPPLIES (V _{DD} , V _{CC} , V _{EE} , V _{PP} , V _{NN})										
Logic Supply Voltage	V _{DD}		+1.7	+3	+5.25	V				
Positive Drive Supply Voltage	V _{CC} _		+4.9	+5	+5.1	V				
Negative Drive Supply Voltage	V _{EE} _		-5.1	-5	-4.9	V				
High-Side Supply Voltage	V _{PP}		0		+105	V				
Low-Side Supply Voltage	V _{NN}		-105		0	V				
LOGIC INPUTS/OUTPUTS (DINN_, DINP_, MODE, SYNC, CC_)										
Low-Level Input Threshold	V _{IL}				0.2 x V _{DD}	V				
High-Level Input Threshold	VIH		0.8 x V _D	D		V				
Differential Input Resistance Between DINPx and DINNx	RIND		70	100	170	kΩ				
Pulldown Input Resistance Pins MODE, SYNC, CC0, CC1	RPD		70	100	170	kΩ				
Logic Input Capacitance	C _{IN}			4		pF				
Logic Input Leakage DINP, DINN	I _{IN}	V_{IN} = 0V or V_{DD}	-1	0	+1	μA				
THP Low-Level Output Voltage	V _{OL}	Pullup resistor to V_{DD} (R _{PULLUP} = 1k Ω)			0.1	V				
CLOCK INPUTS (CLK, CLK)—DI	CLOCK INPUTS (CLK, CLK)—DIFFERENTIAL MODE									
Differential Clock Input Voltage Range	V _{CLKD}		0.2		2	V _{P-P}				

2.5A Octal Three-Level Digital Pulsers with TR Switches

DC Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	TIONS	MIN	TYP	MAX	UNITS		
Common-Mode Voltage	V _{CLKCM}				V _{CC} /2		V		
Common-Mode Voltage Range	V _{CL}			V _{CC} /2 - 0.45		V _{CC} /2 + 0.45	V		
Input Desistance	R _{CLK} ,	Differential		4.9	7	10.2	kΩ		
	R _{CLK}	Common mode		16	23	31	kΩ		
Input Capacitance	C _{CLK} , C _{CLK}	Capacitance to GND	(each input)		4		pF		
CLOCK INPUTS (CLK, CLK)—SINGLE-ENDED MODE (V _{CLK} < 0.1V)									
Low-Level Input	VIL	CLK			0.	2 x V _{DD}	V		
High-Level Input	VIH	CLK		0.8 x V _D	D		V		
Single-Ended Mode Selection Threshold Low	VIL	CLK				0.1	V		
Single-Ended Mode Selection Threshold High	V _{IH}	CLK		1			V		
Input Capacitance (CLK)	C _{CLK}				4		pF		
Logic Input Leakage (CLK)	ICLK	V _{CLK} = 0V or V _{DD}		-1	0	+1	μA		
Pullup Current (CLK)	ICLK	V _{CLK} = 0V			120	180	μA		
SUPPLY CURRENT—SHUTDOW	N MODE (MO	DDE = Low)							
V _{DD} Supply Current	I _{DD}	All inputs connected to	o GND or V _{DD}		12	20	μA		
V _{CC} Supply Current	Icc	All inputs connected to	o GND or V _{DD}		22	35	μA		
V _{CCA} Supply Current	ICCA	All inputs connected to	o GND or V _{DD}		0	1	μA		
V _{EE} Supply Current	I _{EE}	All inputs connected to	o GND or V _{DD}		30	50	μA		
V _{EEA} Supply Current	IEEA	All inputs connected to	o GND or V _{DD}		0	1	μA		
V _{PP} Supply Current	IPP	All inputs connected to	o GND or V _{DD}		0	10	μA		
V _{NN} Supply Current	I _{NN}	All inputs connected to	o GND or V _{DD}		0	10	μA		
SUPPLY CURRENT—NORMAL OPERATION MODE, NO LOAD (MODE = High)									
V _{DD} Supply Current (Quiescent Mode)	I _{DD}	All inputs connected to GND or V _{DD}	Transparent or single-ended clock mode		13	30	μΑ		
V _{EE} Supply Current (Quiescent Mode)	I _{EEQ}				0.15	0.3	mA		
VEEA Supply Current		DINN_ = DINP_ = GN	D			0.01	mΔ		
(Quiescent Mode)	'EEAQ	$DINN_ = DINP_ = V_D$	D		8	13			

2.5A Octal Three-Level Digital Pulsers with TR Switches

DC Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
V _{CC} Supply Current (Quiescent Mode)	ICCQ	DINN_ = DINP_ = GND		0.25	0.5	mA	
V _{CCA} Supply Current	lagua	DINN_ = DINP_ = GND		0.01		m۸	
(Quiescent Mode)	ICCAQ	$DINN_ = DINP_ = V_{DD}$		8	13		
V _{CC} _Supply Current Increase in Clocked Mode	∆I _{CC} _	Differential clock mode		3.7	7	mA	
V _{NN} Total Supply Current (Quiescent Mode)	I _{NNQ}	All inputs connected to GND or V_{DD}		100	170	μA	
V _{PP} Total Supply Current (Quiescent Mode)	I _{PPQ}	All inputs connected to GND or V_{DD}		100	170	μA	
Total Power Dissipation per	P _{PDIS1}	T/R switch off, damp off (transparent mode)		3		m\//	
Channel (Quiescent Mode)	P _{PDIS2}	DINN_ = DINP_ = V _{DD} (transparent mode)		13		mVV	
	I _{DD1}	CW Doppler (Note 4), transparent or single-ended clock mode		0.1	0.2	mA	
V _{DD} Supply Current	I _{DD2}	B mode (Note 5), transparent or single- ended clock mode (Figure 1)			30	μA	
	I _{EE1}	8 channels switching, CW Doppler (Note 4), CC0 = high, CC1 = high		37	80		
V _{EE} Supply Current	I _{EE2}	8 channels switching, B mode (Note 5) (<u>Figure 1</u>), CC0 = low, CC1 = low		0.5	1	mA	
	I _{EEA1}	8 channels switching, CW Doppler (Note 4), CC0 = high, CC1 = high	r			_	
V _{EEA} Supply Current	I _{EEA2}	8 channels switching, B mode (Note 5) (<u>Figure 1</u>), CC0 = low, CC1 = low		8		mA	
	I _{CC1}	8 channels switching, CW Doppler (Note 4), CC0 = high, CC1 = high		21	40		
V _{CC} Supply Current	I _{CC2}	8 channels switching, B mode (Note 5) (<u>Figure 1</u>), CC0 = low, CC1 = low		0.5	1	mA	

2.5A Octal Three-Level Digital Pulsers with TR Switches

DC Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
V Oursely Ourset	I _{CCA1}	8 channels switching, (Note 4), CC0 = high,	8 channels switching, CW Doppler (Note 4), CC0 = high, CC1 = high		0		
V _{CCA} Supply Current	I _{CCA2}	8 channels switching, (Note 5) (Figure 1), C	B mode C0 = low, CC1 = low		8		mA
V _{CC} _Supply Current Increase in Clocked Mode	ΔI_{CC}	Differential clock mod	e		5.6		mA
	I _{NN1}	8 channels switching, CC0 = high, CC1 = hi C_L = 240pF (Note 4)	CW Doppler, gh, R _L = 1kΩ,		127	200	
VNN Supply Current	I _{NN2}	8 channels switching, CC0 = low, CC1 = low C_L = 240pF (Note 5)	B mode (<u>Figure 1</u>), /, R _L = 1kΩ,		1.9	2.8	
Vop Supply Current	I _{PP1}	8 channels switching, CC0 = high, CC1 = hi C_L = 240pF (Note 4)	CW Doppler, gh, R _L = 1kΩ,		146	230	mΑ
	I _{PP2}	8 channels switching, B mode (Figure 1), CC0 = low, CC1 = low, $R_L = 1k\Omega$, $C_L = 240pF$ (Note 5)			3.3	5	
	PD _{CW}	1 channel switching, (207			
Power Dissipation per Channel (Octal Three-Level Mode)	PD _{PW}	1 channel switching, B mode (Note 5) (Figure 1), CC0 = low, CC1 = low, $R_L = 1k\Omega$, $C_L = 240pF$			79		mW
OUTPUT STAGE		1	1				1
			CC0 = low, CC1 = low		7	16	
V _{NN} Connected Low-Side	Para	laur = 50mA	CC0 = high, CC1 = low		9		
Output Impedance	NOLS	1001 [–] – -2011A	CC0 = low, CC1 = high		17		
			CC0 = high, CC1 = high		32	60	
			CC0 = low, CC1 = low		7	16	
V _{PP} Connected High-Side	Paula	Laura = +50mA	CC0 = high, CC1 = low		9		
Output Impedance	NOHS		CC0 = low, CC1 = high		17		
			CC0 = high, CC1 = high		32	60	

2.5A Octal Three-Level Digital Pulsers with TR Switches

DC Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Clamp nFET Output Impedance	R _{ONG}	I _{OUT} _ = -50mA,			11	22	Ω	
Clamp pFET Output Impedance	R _{OPG}	I _{OUT} _ = +50mA			11	22	Ω	
Active Damp Output Impedance	R _{DAMP}	Before grass-clipping	diode			200	Ω	
			CC0 = low, CC1 = low		2.5			
V _{NN} Connected Low-Side	1)/	CC0 = high, CC1 = low		1.76			
Output Current	IOLS	VDS - +100V	CC0 = low, CC1 = high		0.88			
			CC0 = high, CC1 = high		0.44			
			CC0 = low, CC1 = low		2.5			
V _{PP} Connected High-Side)/ = :400)/	CC0 = high, CC1 = low		1.76		- A	
Output Current	IOHS	V _{DS} = +100V	CC0 = low, CC1 = high		0.88			
			CC0 = high, CC1 = high		0.44			
GND-Connected nFET Output Current	I _{ONG}	V _{DS} = +100V			1.25		A	
GND-Connected pFET Output Current	I _{OPG}	V _{DS} = +100V			1.25		A	
Diode Voltage Drop (Blocking Diode and Grass-Clipping Diode)	V _{DROP}	I _{OUT} _ = ±50mA			1.7		v	
LVOUT_Diode Clamping Voltage	LV _{CLAMP}	I _{LOAD} = 1mA		-0.9		+1	V	
OUT_ Equivalent Small-Signal Shunt Capacitance	C _{LS}	0.1V _{P-P} signal			12		pF	
OUT_ Equivalent Large-Signal Shunt Capacitance	C _{HS}	200V _{P-P} signal			80		pF	
T/R Switch On Impedance	R _{ON}	f = 5MHz			6.5		Ω	
T/R Switch Off Impedance	R _{OFF}				5		MΩ	
LVOUT_ Output Offset	LV _{OFF}	LVOUT_, OUT_ unconnected, V_{CC} = +5V, V _{EE} = -5V		-40	0	+40	mV	
THERMAL PROTECTION								
Thermal Warning	T _{THP}	Temperature rising			125		°C	
Thermal-Shutdown Threshold	T _{SDN}	Temperature rising			+150		°C	
Thermal-Shutdown Hysteresis	T _{HYS}			20		°C		

2.5A Octal Three-Level Digital Pulsers with TR Switches

AC Electrical Characteristics

 $(V_{DD}=+3V, V_{CC}=+5V, (V_{DD}=+3V, V_{CC}=+5V, V_{CCA}=+5V, V_{EE}=-5V, V_{EEA}=-5V, V_{PP}=+100V, V_{NN}=-100V, V_{GN} connected to V_{NN} with 1\mu F capacitor, V_{GP} connected to V_{PP} with 1\mu F capacitor, V_{CC0}=0V, V_{CC1}=0V, R_L=1k\Omega, C_L=220pF, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logic Input to Output Rise Propagation Delay	^t PLH	From 50% DINP_/DINN_ (transparent mode) to 10% OUT_ transition swing (Figure 2a)		10.8		ns
Logic Input to Output Fall Propagation Delay	t _{PHL}	From 50% DINP_/DINN_ (transparent mode) to 10% OUT_ transition swing (Figure 2a)		10.8		ns
Logic Input to Output Rise to GND Propagation Delay	t _{PL0}	From 50% DINP_/DINN_ (transparent mode) to 10% OUT_ transition swing (Figure 2a)		10.8		ns
Logic Input to Output Fall to GND Propagation Delay	tph0	From 50% DINP_/DINN_ (transparent mode) to 10% OUT_ transition swing (Figure 2a)	10.8			ns
OUT_Fall Time (V_PP to V_NN)	t _{FPN}	Figure 2b		20	30	ns
OUT_Rise Time (V_{NN} to V_{PP})	t _{RNP}	Figure 2b		20	30	ns
OUT_Rise Time (GND to $V_PP)$	t _{R0P}	Figure 2b		7.5	13	ns
OUT_ Fall Time (GND to V_{NN})	t _{FON}	Figure 2b		7.5	13	ns
OUT_ Rise Time (V _{NN} to GND)	t _{RN0}	20% to 80% transition (Figure 2b)		15	27	ns
OUT_ Fall Time (V _{PP} to GND)	t _{FP0}	20% to 80% transition (Figure 2b)		15	27	ns
T/R Switch Turn-On Time	tONTRSW	Figure 3		0.65	1.1	μs
T/R Switch Turn-Off Time	tOFFTRSW	Figure 3 (Note 6)		0.02	0.1	μs
Setup Time from Receive to Transmit	t _{RXTX}	(Note 7)	1			μs
Output Enable Time (Shutdown Mode to Normal Operation)	t _{EN1}				100	μs
Output Disable Time (Normal Operation to Shutdown Mode)	t _{DIS1}				10	μs
Output Enable Time (Normal Operation to Sync Mode)	t _{EN2}				5	μs
Output Disable Time (Sync Mode to Normal Operation)	t _{DIS2}				200	ns
CLK Frequency	fCLK	V _{DD} = 2.5V			200	MHz
Input Setup Time (DINN_, DINP_) S. E.	^t SETUP	V _{DD} = 2.5V, single-ended clock	0.8			ns
Input Hold Time (DINN_, DINP_) S. E.	t _{HOLD}	V _{DD} = 2.5V	1.4			ns

2.5A Octal Three-Level Digital Pulsers with TR Switches

AC Electrical Characteristics (continued)

(V_{DD}=+3V, V_{CC}=+5V, (V_{DD}=+3V, V_{CC}=+5V, V_{CCA}=+5V, V_{FF}=-5V, V_{FFA}=-5V, V_{PP}=+100V, V_{NN}=-100V, V_{GN} connected to V_{NN} with 1µF capacitor, V_{GP} connected to V_{PP} with 1µF capacitor, V_{CC0} = 0V, V_{CC1} = 0V, R_L = 1k Ω , C_L = 220pF, unless otherwise noted. Typical values are at the second se T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Setup Time (DINN, DINP) Differential Clock	T _{SETUP-D}	V _{DD} = 2.5V - differential clock	0.6			ns
Input Hold Time (DINN, DINP) Differential Clock	T _{HOLD-D}	V _{DD} = 2.5V - differential clock	1.7			ns
Second-Harmonic Distortion (Low Voltage)	THD2LV	f_{OUT} = 5MHz, V _{PP} = -V _{NN} = +5V, square wave (all modes), R _L = 100 Ω , , C _L = 200pF	-36			dBc
Second-Harmonic Distortion (High Voltage)	THD2HV	f_{OUT} = 5MHz, V _{PP} = -V _{NN} = +40V to +105V, square wave (all modes), R _L = 100 Ω , C _L = 200pF	-43			dBc
Pulse Cancellation	PC1	f _{OUT} = 5MHz, V _{PP} = -V _{NN} = +80V, 2 periods, all harmonics of the summed signed with respect to the carrier		-43		dBc
Pulser Bandwidth	BW	V _{PP} = +60V, V _{NNA} = -60V (Figure 4)		30		MHz
RMS Output Jitter	tj	f_{OUT} = 5MHz, V_{PPA} = - V_{NNA} = +5V, V_{PPB} = - V_{NNB} = +5V, clocked mode (<u>Figure 5</u>)		5.4		ps
T/R Switch Harmonic Distortion THD		R_{LOAD} = 200Ω, V_{SIGNAL} = 100m V_{P-P}		-55		dB
T/R Switch Turn-On/Off Voltage Spike	V _{SPIKE}	R_{LOAD} = 1k Ω at both sides of T/R switch		±20		mV
Crosstalk	posstalk CT $\begin{cases} f = 5MHz, adjacent channels, \\ R_{LOUT} = 50\Omega \end{cases}$ -53			dB		

Note 2: All devices are 100% production tested at T_A = +85°C. Limits over the operating temperature range are guaranteed by design.

Note 3: CW Doppler: continuous wave, f = 5MHz, $V_{DD} = +3V$, $V_{CC_{-}} = -V_{EE_{-}} = +5V$, $V_{PP} = -V_{NN} = +5V$. **Note 4:** B mode: f = 5MHz, PRF = 5kHz, 1 period, $V_{DD} = +3V$, $V_{CC_{-}} = -V_{EE_{-}} = +5V$, $V_{PP} = -V_{NN} = +105V$. **Note 5:** T/R switch turn-off time is the time required to switch off the bias current of the T/R switch. The off-isolation is not guaranteed.

Note 6: Both the T/R switch and Damp are designed to be self-protected against the HV transmission. The part is not damaged even if the Transmit setup time is not respected. We recommend having at least 1µs setup time when moving from receive (INP = INN = 1 to transmit (INP = INN = 0). To further reduce the Transmit leakage through the TRSW a longer setup time is recommended (see T/R switch paragraph in the Detailed Description section). See Timing Diagrams.

2.5A Octal Three-Level Digital Pulsers with TR Switches

Timing Diagrams

Figure 1. High-Voltage Burst Test

Figure 2a. Propagation Delay Timing

2.5A Octal Three-Level Digital Pulsers with TR Switches

Timing Diagrams (continued)

Figure 3. T/R Switch Turn-On/Off Time

2.5A Octal Three-Level Digital Pulsers with TR Switches

Timing Diagrams (continued)

Figure 4. Bandwidth

2.5A Octal Three-Level Digital Pulsers with TR Switches

Timing Diagrams (continued)

Figure 5. Jitter Timing

2.5A Octal Three-Level Digital Pulsers with TR Switches

Pin Configuration

2.5A Octal Three-Level Digital Pulsers with TR Switches

Pin Description

PIN	NAME	FUNCTION					
1	DINN1	Digital Signal Negative Input 1 (see the Truth Tables section)					
2	DINP2	igital Signal Positive Input 2 (see the Truth Tables section)					
3	DINN2	Digital Signal Negative Input 2 (see the Truth Tables section)					
4	DINP3	Digital Signal Positive Input 3 (see the Truth Tables section)					
5	DINN3	Digital Signal Negative Input 3 (see the Truth Tables section)					
6	DINP4	Digital Signal Positive Input 4 (see the Truth Tables section)					
7	DINN4	Digital Signal Negative Input 4 (see the Truth Tables section)					
8	CLK	CMOS Control Input. Clock negative phase input. Data inputs are clocked in at the edge of CLK and CLK in differential clocked mode. Clock maximum frequency is 200MHz. If CLK is connected to GND, the CLK input is a single-ended logic-level clock input. Otherwise, CLK and CLK are self-biased differential clock inputs.					
9, 24, 25, 30, 56, 61, 62	GND	Ground					
10	CLK	CMOS Control Input. Clock positive phase input. Data inputs are clocked in at the rising edge of CLK and CLK in differential clocked mode or at the rising edge of CLK in single-ended clocked mode. Clock maximum frequency is 200MHz.					
11	DINN5	Digital Signal Negative Input 5 (see the <u>Truth Tables</u> section)					
12	DINP5	Digital Signal Positive Input 5 (see the Truth Tables section)					
13	DINN6	Digital Signal Negative Input 6 (see the Truth Tables section)					
14	DINP6	Digital Signal Positive Input 6 (see the Truth Tables section)					
15	DINN7	Digital Signal Negative Input 7 (see the Truth Tables section)					
16	DINP7	Digital Signal Positive Input 7 (see the <u>Truth Tables</u> section)					
17	DINN8	Digital Signal Negative Input 8 (see the <u>Truth Tables</u> section)					
18	DINP8	Digital Signal Positive Input 8 (see the <u>Truth Tables</u> section)					
19	V _{DD}	Logic Supply Voltage. Bypass V_{DD} to GND with a 0.1 μ F capacitor as close as possible to the device.					
20	SYNC	CMOS Control Input. Drive SYNC high to enable clocked-input mode. Drive SYNC low to operate in transparent mode (see the <i>Truth Tables</i> section).					
21	MODE	Mode Control Input. Control operation mode (see the Truth Tables section).					
22, 64	V _{CC}	V_{CC} Supply Voltage. Bypass V_{CC} (both pins) to GND with a 220nF capacitor as close as possible to the device.					
23, 63	V _{EE}	$V_{\mbox{\scriptsize EE}}$ Supply Voltage. Bypass $V_{\mbox{\scriptsize EE}}$ (both pins) to GND with a 220nF capacitor as close as possible to the device.					
26, 27, 59, 60	V _{PP}	High-Voltage Positive Supply Input. Bypass V_{PP} to GND with a 0.1µF capacitor as close as possible to the device.					
28, 29, 57, 58	V _{GP}	Driver Voltage Supply Output. Connect a 1μ F capacitor to V _{PP} as close as possible to the device.					
31, 55	V _{GN}	Driver Voltage Supply Output. Connect a 1μ F capacitor to V _{NN} as close as possible to the device.					
32, 33, 43, 53, 54	V _{NN}	High-Voltage Negative Supply Input. Bypass V_{NN} to GND with a 0.1µF capacitor as close as possible to the device.					

2.5A Octal Three-Level Digital Pulsers with TR Switches

Pin Description (continued)

PIN	NAME	FUNCTION
34	V _{CCA}	V_{CCA} Analog Supply Voltage. Bypass V_{CCA} to GND with a 220nF capacitor as close as possible to the device.
35	OUT8	Pulser Output 8
36	LVOUT8	Low-Voltage T/R Switch Output 8
37	OUT7	Pulser Output 7
38	LVOUT7	Low-Voltage T/R Switch Output 7
39	OUT6	Pulser Output 6
40	LVOUT6	Low-Voltage T/R Switch Output 6
41	OUT5	Pulser Output 5
42	LVOUT5	Low-Voltage T/R Switch Output 5
44	LVOUT4	Low-Voltage T/R Switch Output 4
45	OUT4	Pulser Output 4
46	LVOUT3	Low-Voltage T/R Switch Output 3
47	OUT3	Pulser Output 3
48	LVOUT2	Low-Voltage T/R Switch Output 2
49	OUT2	Pulser Output 2
50	LVOUT1	Low-Voltage T/R Switch Output 1
51	OUT1	Pulser Output 1
52	V _{EEA}	$V_{\mbox{\scriptsize EEA}}$ Analog Supply Voltage. Bypass $V_{\mbox{\scriptsize EEA}}$ to GND with a 220nF capacitor as close as possible to the device.
65	THP	Open-Drain Thermal-Protection Output. Connect 1kW pullup resistor between THP and V_{DD} . THP asserts and drives the pin logic low when the junction temperature exceeds +125°C.
66	CC0	Current Control Input. Control current capability (see the <u>Truth Tables</u> section).
67	CC1	Current Control Input. Control current capability (see the <u>Truth Tables</u> section).
68	DINP1	Digital Signal Positive Input 1 (see the Truth Tables section)
	EP	Exposed Pad. Connect EP to GND. Not intended as an electrical connection point.

2.5A Octal Three-Level Digital Pulsers with TR Switches

Detailed Description

The MAX14988 octal three-level, high-voltage (HV) pulser device generates high-frequency, HV bipolar pulses (up to ± 105 V) from low-voltage control logic inputs for driving piezoelectric transducers in ultrasound systems. All 8 channels have embedded overvoltage-protection diodes and integrated active return-to-zero clamp. The device has embedded independent (floating) power supplies (FPSs) and level shifters that allow signal transmission without the need for external HV capacitors. The MAX14988 also features eight integrated transmit receive (T/R) switches.

In octal three-level pulser mode, each channel is controlled by two logic inputs (DINN_/DINP_) and the active return to zero features half the current driving of the pulser, 1.25A (typ).

The device can operate both in clocked and transparent mode. In clocked mode, data inputs can be synchronized with a clean differential or single-ended clock to reduce phase noise associated with FPGA output signals that are detrimental for Doppler analysis. In transparent mode, the synchronization feature is disabled and output reflects the data input after an 10.8ns delay. The device features adjustable maximum current (0.44A to 2.5A) to reduce power consumption when full current capability is not required.

The device features integrated grass-clipping diodes (with low parasitic capacitance) for receive (Rx) and transmit (Tx) isolations. The device features a damping circuit that can be activated as soon as the transmit burst is over. The damping circuit has an on-resistance of 200Ω . It fully discharges the pulser's output internal node before the grass-clipping diodes.

Operation Mode

The devices have two operation modes: shutdown and octal three-level. Use the MODE input to select the operation mode.

Shutdown Mode

All channels are disabled, no transmission and reception is possible. This mode has the lowest power consumption. See Table 1.

Octal Three-Level Mode

The devices operate in eight independent channels. Each channel can generate a three-level pulse. The high-side and low-side FET of each channel are capable of providing 2.5A current, while the clamp is capable of 1.25A current. See Table 2.

Truth Tables

Table 1. Shutdown Mode (MODE = Low)

INP	UTS	OUTPUTS		
DINN_ DINP_		OUT_	LVOUT_	
X	Х	High impedance	High impedance (T/R switch off)	

X = Don't care

Table 2. Normal Operation Mode (MODE = High)

INPUTS		OUTPUTS		
DINN_	DINP_	OUT_	LVOUT_	
0	0	Clamp on (damp off)	T/R switch off (LVOUT_ = GND)	
1	0	V _{NN} (damp off)	T/R switch off (LVOUT_ = GND)	
0	1	V _{PP} (damp off)	T/R switch off (LVOUT_ = GND)	
1	1	Clamp on (damp on)	T/R switch on	

0 = logic-low, 1 = logic-high

2.5A Octal Three-Level Digital Pulsers with TR Switches

Current Capability Selection

The device features pulser current drive capability selection. Two control inputs (CC0, CC1) control the current drive capability (Table 3).

Sync Function

The device provides the ability to resynchronize all the data inputs by means of a clean clock signal. In ultrasound systems, the FPGA output signals are often affected by a high jitter. The jitter induces phase noise that is detrimental in Doppler analysis. The input clock can be either a differential signal or a single-ended signal running up to 200MHz. Data are clocked in on the rising edge of the CLK input (falling-edge of \overline{CLK}). Connect \overline{CLK} to GND for single-ended operation. The sync feature can be enabled or disabled by the SYNC control input. Drive the SYNC input low to disable the synchronization function

Table 3. Current Drive Selection

INPUTS		PULSER OUTPUT	
CC0	CC1	CURRENT (typ) (A)	
0	0	2.5	
1	0	1.76	
0	1	0.88	
1	1	0.44	

(no external clock signal). Drive the SYNC input high to enable the synchronization function (with an external clock signal). Figure 6 shows the simplified CLK and $\overline{\text{CLK}}$ inputs schematic.

T/R Switches

Each channel features a low-power T/R switch. The T/R switch recovery time after the transmission is less than 1µs. The T/R switches are controlled by the same pulser digital inputs (see the *Truth Tables* section). No dedicated input signals are required to activate/deactivate the T/R switches. The MAX14988 provides dedicated voltage supplies (V_{CCA}, V_{EEA}) which are used for T/R switches only. The integrated T/R switches do not require any special timings and can operate synchronously with the digital pulser. To minimize the leakage current during transmission, it's recommended to switch off the T/R switches 3µs before the beginning of the transmit burst.

Grass-Clipping Diodes

A pair of diodes in antiparallel configuration (referred to as grass-clipping diodes) is presented at each pulser's output. The diodes' reverse capacitance is extremely low, allowing a perfect isolation between the receive path and the actual pulser's output stage.

Figure 6. Simplified CLK and CLK Inputs Schematic

Active Damp Circuit

An active damp circuit is integrated between the internal pulser output node (before grass-clipping diodes) and GND. The purpose of this circuit is to fully discharge the pulser output internal node so that the node is not left in high-impedance condition as soon as the transmit burst is over. This results in two main advantages:

- 1) The grass-clipping isolation is more effective.
- Suppression of any low-frequency oscillation of a node that could be detrimental for Doppler mode performances.

The integrated damp circuit is self-protected. To reduce power consumption, it is recommended to switch off the damp circuit as least 1μ s before the beginning of the transmit burst.

Thermal Warning Outputs

The devices feature an open-drain thermal-protection output (THP). When the internal junction temperature exceeds +125°C, THP asserts. When the internal junction temperature exceeds +150°C, the device automatically enters shutdown mode. The devices reenter normal operation and the THP deasserts when the die temperature drops below +120°C.

Power Sequencing

The device does not require any power-up/power-down sequence. However, the MODE pin must be forced to GND or leave unconnected during power-up/power-down sequence to prevent the transmitter to be turned on inadvertently.

Applications Information

Exposed Pad and Layout Concerns

The device provides an exposed pad (EP) underneath the TQFN package for improved thermal performance. Connect EP to GND externally and do not run traces under the package to avoid possible short circuits. To aid heat dissipation, connect EP to a similarly sized pad on the component side of the PCB. This pad should be connected through to the solder-side copper by several plated holes to a large heat-spreading copper area to conduct heat away from the device.

The device's high-speed pulser requires low-inductance bypass capacitors to their supply inputs. High-speed PCB trace design practices are recommended. Pay particular attention to minimize trace lengths and use sufficient trace width to reduce inductance. Use of surface-mount components is recommended.

2.5A Octal Three-Level Digital Pulsers with TR Switches

Typical Application Circuit

2.5A Octal Three-Level Digital Pulsers with TR Switches

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14988ETK+	-40°C to +85°C	68 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
68 TQFN-EP	T6800+3	21-0142	90-0100

2.5A Octal Three-Level Digital Pulsers with TR Switches

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	12/14	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management Specialised - PMIC category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 LV56841PVD-XH AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B TCKE712BNL,RF ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MCP16501TC-E/RMB ISL91212AIIZ-TR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C LR745N8-G MPS-3003L-3 MPS-3005D SPD-3606 STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ-AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB MIC5166YML-TR GPE-4323 GPS-2303