# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in $\mathbf{2 m m} \times \mathbf{2 m m}$ Package 



The MAX15050/MAX15051 high-efficiency switching regulators deliver up to 4A load current at output voltages from 0.6 V to ( $0.9 \times \mathrm{VIN}$ ). The devices operate from 2.9 V to 5.5 V , making them ideal for on-board point-of-load and postregulation applications. Total output-voltage accuracy is within $\pm 1 \%$ over load, line, and temperature.
The MAX15050/MAX15051 feature 1MHz fixed-frequency PWM operation. The MAX15050 features pulse-skip mode to improve light-load efficiency. The MAX15050 soft-starts in a monotonic mode and then operates in the forced PWM mode or pulse-skip mode depending on the output load current condition. The MAX15051 soft-starts in the monotonic mode and operates in the forced PWM mode. The high operating frequency allows for small-size external components.

The low-resistance on-chip nMOS switches ensure high efficiency at heavy loads while minimizing critical parasitic inductances, making the layout a much simpler task with respect to discrete solutions. Following a simple layout and footprint ensures first-pass success in new designs.
The MAX15050/MAX15051 incorporate a high-bandwidth (> 26 MHz ) voltage-error amplifier. The voltage-mode control architecture and the voltage-error amplifier permit a type III compensation scheme to achieve maximum loop bandwidth, up to 200kHz. High loop bandwidth provides fast transient response, resulting in less required output capacitance and allowing for all-ceramic capacitor designs.
The MAX15050/MAX15051 feature an output overload hiccup protection and peak current limit on both highside and low-side MOSFETs. These features provide for ultra-safe operation in the cases of short-circuit conditions, severe overloads, or in converters with bulk electrolytic capacitors.
The MAX15050/MAX15051 feature an adjustable output voltage. The output voltage is adjustable by using two external resistors at the feedback or by applying an external reference voltage to the REFIN/SS input. The MAX15050/MAX15051 offer programmable soft-start time using one capacitor to reduce input inrush current. A built-in thermal shutdown protection assures safe operation under all conditions. The MAX15050/MAX15051 are available in a $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 16-bump ( $4 \times 4$ array), 0.5 mm pitch WLP package.
$\qquad$

Server Power Supplies
Point-of-Load
ASIC/CPU/DSP Core and I/O Voltages
DDR Power Supplies
Base-Station Power Supplies

Applications
Telecom and
Networking Power
Supplies
RAID Control Power Supplies
Portable Applications
Features
Internal 18m $\Omega$ RDS(ON) MOSFETs
(MAXS-Skip Mode for High-Efficiency Light Load
Continuous 4A Output Current
and Temperature
Operates from 2.9V to 5.5V Supply
Adjustable Output from 0.6V to (0.9 x Vin)
Adjustable Soft-Start Reduces Inrush Supply Current
Factory-Trimmed 1MHz Switching Frequency
Compatible with Ceramic, Polymer, and
Safe Startup Into Prebias Output
Enable Input/Power-Good Output
Fully Protected Against Overcurrent and
Overtemperature

- Sink/Source Current for DDR Applications
- $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 16 -Bump (4 x 4 Array), 0.5 mm Pitch WLP Package

Ordering Information

| PART | TEMP RANGE | PIN- <br> PACKAGE | SKIP <br> MODE |
| :--- | :--- | :--- | :---: |
| MAX15050EWE + | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 WLP | Yes |
| MAX15051EWE + | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 WLP | No |

+Denotes a lead(Pb)-free/RoHS-compliant package.
Typical Operating Circuit


Pin Configuration appears at end of data sheet.

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 

## ABSOLUTE MAXIMUM RATINGS



| Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 16-Bump ( $4 \times 4$ Array), 0.5 mm Pitch WLP (derate $20.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ). | 1000 mW |
| :---: | :---: |
| Thermal Resistance (Note 2) |  |
| $\theta \mathrm{J}$ A | $49^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta \mathrm{Jc}$ | $.^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating Temperature Range ........................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature |  |
|  |  |
| Operating Junction Temperature <br> at Maximum Current (Note 3).. |  |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Soldering Temperature (soldering, 10s) | $+260^{\circ} \mathrm{C}$ |

Note 1: LX has internal clamp diodes to GND and IN. Applications that forward bias these diodes should take care not to exceed the IC's power dissipation limit of the device.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 3: Operating the junction temperature above $+105^{\circ} \mathrm{C}$ will degrade the life of the device.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=V_{E N}=5 \mathrm{~V}, \mathrm{C}_{V D D}=2.2 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN Voltage Range |  |  | 2.9 |  | 5.5 | V |
| IN Supply Current | No load, no switching | $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ |  | 4.8 | 8 | mA |
|  |  | V IN $=5 \mathrm{~V}$ |  | 5.3 | 8.5 |  |
| Total Shutdown Current from IN | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{LX}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$ |  |  | 10 | 20 | $\mu \mathrm{A}$ |
| VDD Undervoltage Lockout Threshold | LX starts/stops switching, no load | VDD rising |  | 2.6 | 2.8 | V |
|  |  | $V_{\text {DD }}$ falling | 2.35 | 2.55 |  |  |
| VDD Undervoltage Deglitching |  |  |  | 10 |  | $\mu \mathrm{s}$ |
| VDD Output Voltage | IVDD $=0$ to 10mA |  | 3.1 | 3.3 | 3.5 | V |
| VDD Dropout | V IN $=2.9 \mathrm{~V}, \mathrm{IVDD}=10 \mathrm{~mA}$ |  |  |  | 0.09 | V |
| VDD Current Limit | $V_{D D}=0 \mathrm{~V}$ |  | 20 | 37 |  | mA |
| BST |  |  |  |  |  |  |
| BST Supply Current | MAX15050, $\mathrm{V}_{\text {BST }}=5 \mathrm{~V}$, V VLX $=0 \mathrm{~V}$, no switching |  |  | 10 |  | $\mu \mathrm{A}$ |
|  | MAX15051, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{LX}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}=6.6 \mathrm{~V}$, no switching |  |  | 250 |  |  |
| IN to BST On-Resistance | $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=0.16 \mathrm{~A}$ |  |  | 4 |  | $\Omega$ |
| PWM COMPARATOR |  |  |  |  |  |  |
| PWM Comparator Propagation Delay | 10 mV overdrive |  | 20 |  |  | ns |
| PWM Peak-to-Peak Ramp Amplitude |  |  |  | 1 |  | V |
| PWM Valley Amplitude |  |  |  | 0.76 |  | V |

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{E N}=5 \mathrm{~V}, \mathrm{CVDD}^{2}=2.2 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

| PARAMETER | CONDITIONS |  |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COMP |  |  |  |  |  |  |  |
| COMP Clamp Voltage High | $\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {REFIN } / S S}=0.6 \mathrm{~V}$ |  |  | 2 |  |  | V |
| COMP Clamp Voltage Low | $\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {REFIN } / S S}=0.6 \mathrm{~V}$ |  |  | 0.68 |  |  | V |
| COMP Slew Rate | $\mathrm{V}_{\text {FB }}=0.7 \mathrm{~V}$ to 0.5V, $\mathrm{V}_{\text {REFIN/SS }}=0.6 \mathrm{~V}$ |  |  | 1.4 |  |  | V/us |
| COMP Shutdown Resistance | From COMP to GND, VIN $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}}=100 \mathrm{mV}$, $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\text {REFIN/SS }}=0 \mathrm{~V}$ |  |  | 6 |  |  | $\Omega$ |
| ERROR AMPLIFIER |  |  |  |  |  |  |  |
| FB Regulation Accuracy Using External Resistors |  |  |  | 0.594 | 0.6 | 0.606 | V |
| Open-Loop Voltage Gain |  |  |  |  | 115 |  | dB |
| Error-Amplifier Unity-Gain Bandwidth |  |  |  |  | 26 |  | MHz |
| Error-Amplifier Common-Mode Input Range | $\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}$ to 3.5 V |  |  | 0 |  | VDD-2 | V |
| Error-Amplifier Maximum Output Current | $V_{C O M P}=1 V$, no switching, $V_{\text {REFIN/SS }}=0.6 \mathrm{~V}$ |  | $V_{F B}=0.7 \mathrm{~V}$, sink | 1 |  |  | mA |
|  |  |  | $\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$, source | -1 |  |  |  |
| FB Input Bias Current | $\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$ |  |  | 70 |  |  | nA |
| REFIN/SS |  |  |  |  |  |  |  |
| REFIN/SS Common-Mode Range | $\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}$ to 3.5 V |  |  | 0 |  | DD-2 | V |
| REFIN/SS Charging Current | $\mathrm{V}_{\text {REFIN/SS }}=0.45 \mathrm{~V}$ |  |  | 6 | 8 | 10 | $\mu \mathrm{A}$ |
| REFIN/SS Offset Voltage | $\mathrm{V}_{\text {REFIN/SS }}=0.9 \mathrm{~V}$, FB shorted to COMP |  |  | -4.5 |  | +4.5 | mV |
| REFIN/SS Pulldown Resistance | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}$ SS $=0.1 \mathrm{~V}$ |  |  |  | 300 |  | $\Omega$ |
| LX (ALL BUMPS COMBINED) |  |  |  |  |  |  |  |
| LX On-Resistance, High Side | $1 \mathrm{LX}=-500 \mathrm{~mA}$ | $\mathrm{V}_{\text {IN }}$ | $\mathrm{V}_{\text {BST }}-\mathrm{V}_{\text {LX }}=3.3 \mathrm{~V}$ |  | 24 | 54 | $\mathrm{m} \Omega$ |
| LX On-Resistance, Low Side | $1 \mathrm{LX}=500 \mathrm{~mA}$ | VIN | 3.3 V |  | 18 | 50 | $\mathrm{m} \Omega$ |
| LX Current-Limit Thresholds | $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ | High | -side sourcing | 5.4 | 8 |  | A |
|  |  | Low- | side sourcing |  | 7 |  |  |
|  |  | Low- | side sinking |  | 7 |  |  |
|  |  | Zero | crossing current threshold | 0.2 |  |  |  |
|  |  | Skip | high-side sourcing | 0.58 |  |  |  |
|  |  | Sink | current-limit DAC steps | 4 |  |  | Steps |
| LX Leakage Current | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ | VLX | OV | -10 |  |  | $\mu \mathrm{A}$ |
|  |  | VLX | 5V | 10 |  |  |  |
| LX Switching Frequency | V IN $=3.3 \mathrm{~V}$ |  |  | 0.9 | 1 | 1.1 | MHz |
| LX Maximum Duty Cycle | V IN $=3.3 \mathrm{~V}$ |  |  | 90 | 96 |  | \% |
| LX Minimum On-Time | V IN $=3.3 \mathrm{~V}$ |  |  | 80 |  |  | ns |
| RMS LX Output Current |  |  |  | 4 |  |  | A |
| ENABLE |  |  |  |  |  |  |  |
| EN Input Logic-Low Threshold (Falling) |  |  |  |  |  | 0.7 | V |

## High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=V_{E N}=5 \mathrm{~V}, \mathrm{CVDD}^{2}=2.2 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EN Input Logic-High Threshold (Rising) |  | 1.5 |  |  | V |
| EN Input Current | $\mathrm{VEN}=0$ or 5 V |  | 0.01 | 1 | $\mu \mathrm{A}$ |
| THERMAL SHUTDOWN |  |  |  |  |  |
| Thermal-Shutdown Threshold |  |  | +165 |  | ${ }^{\circ} \mathrm{C}$ |
| Thermal-Shutdown Hysteresis |  |  | 20 |  | ${ }^{\circ} \mathrm{C}$ |
| POWER-GOOD (PWRGD) |  |  |  |  |  |
| Power-Good Threshold Voltage | $\mathrm{V}_{\text {FB }}$ falling, $\mathrm{V}_{\text {REFIN/SS }}=0.6 \mathrm{~V}$ | 87 | 90 | 93 | \% of$V_{\text {REFIN/SS }}$ |
|  | $\mathrm{V}_{\text {FB }}$ rising, $\mathrm{V}_{\text {REFIN/SS }}=0.6 \mathrm{~V}$ |  | 92.5 |  |  |
| Power-Good Edge Deglitch | $V_{\text {FB }}$ falling or rising |  | 48 |  | Clock cycles |
| PWRGD Output-Voltage Low | IPWRGD $=4 \mathrm{~mA}$ |  | 0.03 | 0.15 | V |
| PWRGD Leakage Current | $\mathrm{V}_{\text {PWRGD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.9 \mathrm{~V}, \mathrm{~V}_{\text {REFIN } / S S}=0.6 \mathrm{~V}$ |  | 0.1 | 1 | $\mu \mathrm{A}$ |
| OVERCURRENT LIMIT (HICCUP MODE) |  |  |  |  |  |
| Current-Limit Startup Blanking |  |  | 112 |  | Clock cycles |
| Autoretry Restart Time |  |  | 896 |  | Clock cycles |
| FB Hiccup Threshold | $V_{\text {FB }}$ falling |  | 70 |  | \% of VREFIN/SS |
| Hiccup Threshold Blanking Time | $V_{\text {FB }}$ falling |  | 36 |  | $\mu \mathrm{s}$ |

Note 4: Specifications are $100 \%$ production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.

## Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\right.$, output voltage $=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=4 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1 , unless otherwise noted. $)$


## High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\right.$, output voltage $=1.8 \mathrm{~V}$, $\operatorname{LLOAD}=4 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1, unless otherwise noted. )



SHUTDOWN WAVEFORM


## High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\right.$, output voltage $=1.8 \mathrm{~V}$, $\operatorname{LLOAD}=4 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1, unless otherwise noted. $)$





# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in $\mathbf{2 m m} \times \mathbf{2 m m}$ Package 

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\right.$, output voltage $=1.8 \mathrm{~V}, \operatorname{ILOAD}=4 \mathrm{~A}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, circuit of Figure 1, unless otherwise noted. $)$


Pin Description

| BUMP | NAME | FUNCTION |
| :---: | :---: | :---: |
| A1, A2 | GND | Analog/Power Ground. Connect GND to the PCB ground plane at one point near the input bypass capacitor return terminal as close as possible to the device. |
| A3, A4 | IN | Power-Supply Input. Input supply range is from 2.9 V to 5.5 V . Bypass IN to GND with a $22 \mu \mathrm{~F}$ ceramic capacitor in parallel to a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close as possible to the device. |
| $\begin{gathered} \text { B1, B2, } \\ \text { B3 } \end{gathered}$ | LX | Inductor Connection. All LX bumps are internally connected together. Connect all LX bumps to the switched side of the inductor. LX is high impedance when the device is in shutdown mode. |
| B4 | VDD | 3.3V LDO Output. VDD powers the internal analog core. Connect a low-ESR, ceramic capacitor with a minimum value of $2.2 \mu \mathrm{~F}$ from $\mathrm{V}_{\mathrm{DD}}$ to GND . |
| C1 | BST | High-Side MOSFET Driver Supply. Connect BST to LX with a $0.1 \mu \mathrm{~F}$ capacitor. |
| C2, C3 | I.C. | Internally Connected. Leave unconnected or connect to ground. |
| C4 | EN | Enable Input. Connect EN to GND to disable the device. Connect EN to IN to enable the device. |
| D1 | PWRGD | Power-Good Output. PWRGD is an open-drain output that goes high impedance when $V_{F B}$ exceeds $92.5 \%$ of $V_{\text {REFIN/SS }}$ and $V_{\text {REFIN/SS }}$ is above 0.54V. PWRGD is internally pulled low when $\mathrm{V}_{\text {FB }}$ falls below $90 \%$ of $V_{\text {REFIN/SS }}$ or $V_{\text {REFIN/SS }}$ is below 0.54 V . PWRGD is internally pulled low when the device is in shutdown mode, $V_{D D}$ is below the internal UVLO threshold, or the device is in thermal shutdown. |
| D2 | FB | Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to GND to set the output voltage from 0.6 V to $90 \%$ of $\mathrm{V}_{\mathrm{IN}}$. |
| D3 | COMP | Voltage-Error Amplifier Output. Connect the necessary compensation network from COMP to FB and the converter output (see the Compensation Design section). COMP is internally pulled to GND when the device is in shutdown mode. |
| D4 | REFIN/SS | External Reference Input/Soft-Start Timing Capacitor Connection. Connect REFIN/SS to a system voltage to force FB to regulate to REFIN/SS voltage. REFIN/SS is internally pulled to GND when the device is in shutdown and thermal shutdown mode. If no external reference is applied, the internal 0.6 V reference is automatically selected. REFIN/SS is also used to perform soft-start. Connect a minimum of 1 nF capacitor from REFIN/SS to GND to set the startup time (see the Soft-Start and Reference Input (REFIN/SS) section). |

High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package


# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 

Typical Application Circuit



Figure 1. All-Ceramic Capacitor Design with VOUT $=1.8 \mathrm{~V}$

## Detailed Description

The MAX15050/MAX15051 high-efficiency, voltagemode switching regulators can deliver up to 4A of output current. The MAX15050/MAX15051 provide output voltages from 0.6 V to $(0.9 \times \mathrm{VIN})$ from 2.9 V to 5.5 V input supplies, making them ideal for on-board point-of-load applications. The output-voltage accuracy is better than $\pm 1 \%$ over load, line, and temperature.
The MAX15050/MAX15051 feature a 1MHz fixed switching frequency, allowing the user to achieve all-ceramic capacitor designs and fast transient responses. The high operating frequency minimizes the size of external components. The MAX15050/MAX15051 are available in a $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 16 -bump ( $4 \times 4$ array), 0.5 mm pitch WLP package. The REFIN/SS function makes the MAX15050/MAX15051 ideal solutions for DDR and tracking power supplies. Using internal Iow-RDS(ON) $(24 \mathrm{~m} \Omega$ and $18 \mathrm{~m} \Omega$ ) $n$-channel MOSFETs for the high- and lowside switches, respectively, maintains high efficiency at both heavy-load and high-switching frequencies.
The MAX15050/MAX15051 employ voltage-mode control architecture with a high-bandwidth ( $>26 \mathrm{MHz}$ ) error amplifier. The op-amp voltage-error amplifier works with
type III compensation to fully utilize the bandwidth of the high-frequency switching to obtain fast transient response. Adjustable soft-start time provides flexibilities to minimize input startup inrush current. An open-drain, power-good (PWRGD) output goes high impedance when Vfb exceeds 92.5\% of Vrefin/ss and Vrefin/ss is above 0.54 V . PWRGD goes low when $\mathrm{V}_{\text {FB }}$ falls below $90 \%$ of VREFIN/SS or VREFIN/SS is below 0.54 V .

## Controller Function

The controller logic block is the central processor that determines the duty cycle of the high-side MOSFET under different line, load, and temperature conditions. Under normal operation, where the current-limit and temperature protection are not triggered, the controller logic block takes the output from the PWM comparator and generates the driver signals for both high-side and low-side MOSFETs. The control logic block controls the break-before-make logic and the timing for charging the bootstrap capacitors. The error signal from the volt-age-error amplifier is compared with the ramp signal generated by the oscillator at the PWM comparator to produce the required PWM signal. The high-side switch turns on at the beginning of the oscillator cycle and

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 

turns off when the ramp voltage exceeds the VCOMP signal or the current-limit threshold is exceeded. The low-side switch then turns on for the remainder of the oscillator cycle.

Skip Mode (MAX15050)
The MAX15050 features a skip function. In skip mode, the MAX15050 switches only as necessary to maintain the output at light loads (not capable of sinking current from the output). This maximizes light-load efficiency and reduces the input quiescent current.
In skip mode, the low-side switch is turned off when the inductor current decreases to 0.2A (typ) to ensure no reverse current flowing from the output capacitor.
The high-side switch minimum on-time is controlled to guarantee that 0.9A current is reached to avoid high frequency bursts at no-load conditions, which prevents a rapid increase of the supply current caused by additional switching losses. Under heavy load, the device operates as a PWM converter.

## Current Limit

The internal, high-side MOSFET has a typical 8A peak current-limit threshold. When current flowing out of LX exceeds this limit, the high-side MOSFET turns off and the low-side MOSFET turns on. The low-side MOSFET remains on until the inductor current falls below the lowside current limit. This lowers the duty cycle and causes the output voltage to droop until the current limit is no longer exceeded. The MAX15050/MAX15051 use a hiccup mode to prevent overheating during short-circuit output conditions.
During current limit, if $V_{F B}$ drops below $70 \%$ of VREFIN/SS and stays below this level for typically $36 \mu s$ or more, the device enters hiccup mode. The high-side MOSFET and the low-side MOSFET turn off and both COMP and REFIN/SS are internally pulled low. The device remains in this state for 896 clock cycles and then attempts to restart for 112 clock cycles. If the faultcausing current limit has cleared, the device resumes normal operation. Otherwise, the device reenters hiccup mode.

## Soft-Start and Reference Input (REFIN/SS)

The MAX15050/MAX15051 utilize an adjustable softstart function to limit inrush current during startup. An $8 \mu \mathrm{~A}(\mathrm{typ})$ current source charges an external capacitor connected to REFIN/SS. The soft-start time is adjusted by the value of the external capacitor from REFIN/SS to GND. The required capacitance value is determined as:

$$
\mathrm{C}=\frac{8 \mu \mathrm{~A} \times \mathrm{t}_{\mathrm{SS}}}{0.6 \mathrm{~V}}
$$

where tSS is the required soft-start time in seconds. Connect a minimum 1nF capacitor between REFIN/SS and GND. REFIN/SS is also an external reference input (REFIN/SS). The device regulates FB to the voltage applied to REFIN/SS. The internal soft-start is not available when using an external reference. Figure 2 shows a method of soft-start when using an external reference. If an external reference is not applied, the device uses the internal 0.6 V reference.

## Undervoltage Lockout (UVLO)

The UVLO circuitry inhibits switching when VDD is below 2.55 V (typ). Once VDD rises above 2.6V (typ), UVLO clears and the soft-start function activates. A 50 mV hysteresis is built-in for glitch immunity.

BST
The gate-drive voltage for the high-side, $n$-channel switch is generated by a flying-capacitor boost circuit. The capacitor between BST and LX is charged from the VIN supply while the low-side MOSFET is on. When the low-side MOSFET is switched off, the voltage of the capacitor is stacked above LX to provide the necessary turn-on voltage for the high-side internal MOSFET.

## Power-Good Output (PWRGD)

PWRGD is an open-drain output that goes high impedance when $V_{F B}$ is above $92.5 \% \times V_{\text {REFIN/SS }}$ and VREFIN/SS is above 0.54 V . PWRGD pulls low when VFB is below $90 \%$ of $V_{\text {REFIN/SS }}$ for at least 48 clock cycles or VREFIN/SS is below 0.54 V . PWRGD is low during shutdown.


Figure 2. Typical Soft-Start Implementation with External Reference

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in $\mathbf{2 m m} \times \mathbf{2 m m}$ Package 


#### Abstract

Setting the Output Voltage The MAX15050/MAX15051 output voltage is adjustable from 0.6 V to $90 \%$ of V IN by connecting FB to the center tap of a resistor-divider between the output and GND (Figure 3). To determine the values of the resistordivider, first select the value of R3 between $2 k \Omega$ and $10 \mathrm{k} \Omega$. Then use the following equation to calculate R4: $$
R 4=\left(V_{F B} \times R 3\right) /\left(V_{O U T}-V_{F B}\right)
$$ where $V_{F B}$ is equal to the reference voltage at REFIN/SS and VOUT is the output voltage. For VOUT = $V_{F B}$, remove R4. If no external reference is applied at REFIN/SS, the internal reference is automatically selected and $V_{F B}$ becomes 0.6V.


## Shutdown Mode

Drive EN to GND to shut down the device and reduce quiescent current to less than $10 \mu \mathrm{~A}$. During shutdown, LX is high impedance. Drive EN high to enable the MAX15050/MAX15051.

## Thermal Protection

Thermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds $\mathrm{TJ}=+165^{\circ} \mathrm{C}$, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by $20^{\circ} \mathrm{C}$, causing a pulsed output during continuous overload conditions. The soft-start sequence begins after recovery from a thermal-shutdown condition.

## Applications Information

## IN and VDd Decoupling

To decrease the noise effects due to the high switching frequency and maximize the output accuracy of the MAX15050/MAX15051, decouple VIN with a $22 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor from VIN to GND. Also decouple VDD with a $2.2 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\mathrm{DD}}$ to GND. Place these capacitors as close as possible to the device.

Inductor Selection
Choose an inductor with the following equation:

$$
L=\frac{V_{O U T} \times\left(V_{I N}-V_{O U T}\right)}{f_{S} \times V_{I N} \times \operatorname{LIR} \times I_{\text {OUT }}(M A X)}
$$

where LIR is the ratio of the inductor ripple current to full load current at the minimum duty cycle and fs is the switching frequency ( 1 MHz ). Choose LIR between 20\% to $40 \%$ for best performance and stability.
Use an inductor with the lowest possible DC resistance that fits in the allotted dimensions. Powdered iron or fer-


Figure 3. Setting the Output Voltage with a Resistor VoltageDivider
rite core types are often the best choice for performance. With any core material, the core must be large enough not to saturate at the current limit of the MAX15050/MAX15051.

## Output-Capacitor Selection

The key selection parameters for the output capacitor are capacitance, ESR, ESL, and voltage-rating requirements. These affect the overall stability, output ripple voltage, and transient response of the DC-DC converter. The output ripple occurs due to variations in the charge stored in the output capacitor, the voltage drop due to the capacitor's ESR, and the voltage drop due to the capacitor's ESL. Estimate the output-voltage ripple due to the output capacitance, ESR, and ESL as follows:

$$
\begin{gathered}
V_{\text {RIPPLE }}=V_{\text {RIPPLE(C) }}+ \\
V_{\text {RIPPLE(ESR) }}+V_{\text {RIPPLE(ESL) }}
\end{gathered}
$$

where the output ripple due to output capacitance, ESR, and ESL is:

$$
V_{\mathrm{RIPPLE}(\mathrm{C})}=\frac{\mathrm{P}_{\mathrm{P}-\mathrm{P}}}{8 \times \mathrm{C}_{\mathrm{OUT}} \times \mathrm{f}_{\mathrm{S}}}
$$

$V_{\text {RIPPLE }}(E S R)=l_{\text {P_P }} \times E S R$
and

$$
\begin{aligned}
V_{\text {RIPPLE }(E S L)} & =\frac{\mathrm{P}-\mathrm{P}}{\mathrm{t}_{\mathrm{ON}}} \times E S L \text { or } \\
V_{\mathrm{RIPPLE}(\mathrm{ESL})} & =\frac{\mathrm{P}-\mathrm{P}}{\mathrm{t}_{\mathrm{OFF}}} \times E S L
\end{aligned}
$$

whichever is higher.

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 

The peak-to-peak inductor current (IP-P) is:

$$
I_{P-P}=\frac{V_{I N}-V_{O U T}}{f_{S} \times L} \times \frac{V_{O U T}}{V_{I N}}
$$

Use these equations for initial output-capacitor selection. Determine final values by testing a prototype or an evaluation circuit. A smaller ripple current results in less output-voltage ripple. Since the inductor ripple current is a factor of the inductor value, the output-voltage ripple decreases with larger inductance. Use ceramic capacitors for low ESR and low ESL at the switching frequency of the converter. The ripple voltage due to ESL is negligible when using ceramic capacitors.
Load-transient response depends on the selected output capacitance. During a load transient, the output instantly changes by ESR x $\mathrm{DI}_{\text {LOAD }}$. Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time, the controller responds by regulating the output voltage back to its predetermined value. The controller response time depends on the closed-loop bandwidth. A higher bandwidth yields a faster response time, preventing the output from deviating further from its regulating value. See the Compensation Design section for more details. The minimum recommended output capacitance for the MAX15051 and MAX15051 is $47 \mu \mathrm{~F}$ and $22 \mu \mathrm{~F}$, respectively.

## Input-Capacitor Selection

When transitioning from skip mode to PWM mode (MAX15050) with a large current load step, additional output capacitance can be used to help minimize the loadtransient response. The input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the device. The total input capacitance must be equal to or greater than the value given by the following equation to keep the input ripple voltage within the specification and minimize the high-frequency ripple current being fed back to the input source:

$$
\mathrm{C}_{\mathrm{IN}_{-} \mathrm{MIN}}=\frac{\mathrm{D} \times \mathrm{T}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}-\text { RIPPLE }}}
$$

where VIN-RIPPLE is the maximum-allowed input ripple voltage across the input capacitors and is recommended to be less than $2 \%$ of the minimum input voltage, $D$ is the duty cycle (VOUT/VIN), Ts is the switching period $(1 / f s)=1 \mu s$, and IOUT is the output load.
The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source, but are instead shunted through the input capacitor. The input capacitor must meet the ripple
current requirement imposed by the switching currents. The RMS input ripple current is given by:

$$
I_{\text {RIPPLE }}=L_{\text {LOAD }} \times \frac{\sqrt{V_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right)}}{\mathrm{V}_{\text {IN }}}
$$

where IRIPPLE is the input RMS ripple current.

## Compensation Design

The power transfer function consists of one double pole and one zero. The double pole is introduced by the inductor, L, and the output capacitor, Co. The ESR of the output capacitor determines the zero. The double pole and zero frequencies are given as follows:

$$
\begin{aligned}
f P 1 \_L C=f P 2 \_L C= & \frac{1}{2 \pi \times \sqrt{L \times C O \times\left(\frac{R_{O}+E S R}{R_{O}+R_{L}}\right)}}
\end{aligned}
$$

where $R_{L}$ is equal to the sum of the output inductor's $D C$ resistance (DCR) and the internal switch resistance, $\operatorname{RDS}(O N)$. A typical value for $\operatorname{RDS}(O N)$ is $25 \mathrm{~m} \Omega$. Ro is the output load resistance, which is equal to the rated output voltage divided by the rated output current. ESR is the total equivalent series resistance of the output capacitor. If there is more than one output capacitor of the same type in parallel, the value of the ESR in the above equation is equal to that of the ESR of a single output capacitor divided by the total number of output capacitors.
The MAX15050/MAX15051 high switching frequency allows the use of ceramic output capacitors. Since the ESR of ceramic capacitors is typically very low, the frequency of the associated transfer function zero is higher than the unity-gain crossover frequency, $\mathrm{f}_{\mathrm{C}}$, and the zero cannot be used to compensate for the double pole created by the output inductor and capacitor. The double pole produces a gain drop of $40 \mathrm{~dB} /$ decade and a phase shift of $180^{\circ}$. The compensation network must compensate for this gain drop and phase shift to achieve a stable high-bandwidth closedloop system. Therefore, use type III compensation as shown in Figure 4 and Figure 5. Type III compensation possesses three poles and two zeros with the first pole, fP1_EA, located at zero frequency (DC). Locations of other poles and zeros of the type III compensation are given by:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{Z} 1} \mathrm{EA} \\
& =\frac{1}{2 \pi \times \mathrm{R} 1 \times \mathrm{C1}} \\
& \mathrm{f}_{\mathrm{Z} 2} \mathrm{EAA}=\frac{1}{2 \pi \times \mathrm{R} 3 \times \mathrm{C} 3}
\end{aligned}
$$

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 

$$
\begin{aligned}
\mathrm{fP}_{2} \mathrm{EA} & =\frac{1}{2 \pi \times \mathrm{R} 2 \times \mathrm{C} 3} \\
\mathrm{fP}_{3} \mathrm{EA} & =\frac{1}{2 \pi \times \mathrm{R} 1 \times \mathrm{C} 2}
\end{aligned}
$$

The above equations are based on the assumptions that C1 >> C2, and R3 >> R2, which are true in most applications. Placements of these poles and zeros are determined by the frequencies of the double pole and ESR zero of the power transfer function. It is also a function of the desired closed-loop bandwidth. The following section outlines the step-by-step design procedure to calculate the required compensation components for the MAX15050/MAX15051.
The output voltage is determined by:

$$
R 4=\frac{V_{F B} \times R 3}{\left(V_{\mathrm{OUT}}-V_{\mathrm{FB}}\right)}
$$

where $V_{F B}$ is the feedback voltage equal to $V_{\text {REFIN/SS }}$ or 0.6 V depending whether or not an external reference voltage is applied to REFIN/SS.
For VOUT $=V_{F B}$, R4 is not needed.
The zero-cross frequency of the closed-loop, fc, should be between $10 \%$ and $20 \%$ of the switching frequency, fs ( 1 MHz ). A higher zero-cross frequency results in faster transient response. Once fc is chosen, C1 is calculated from the following equation:

$$
\mathrm{C} 1=\frac{1.5625\left(\frac{V_{I N}}{V_{P-P}}\right)}{2 \times \pi \times R 3 \times\left(1+\frac{R_{L}}{R_{O}}\right) \times f_{C}}
$$

where $\mathrm{V}_{\mathrm{P}-\mathrm{P}}=1 \mathrm{VP}_{\mathrm{P}} \mathrm{P}$ (typ).


Figure 4. Type III Compensation Network

Due to the underdamped nature of the output LC double pole, set the two zero frequencies of the type III compensation less than the LC double-pole frequency to provide adequate phase boost. Set the two zero frequencies to $80 \%$ of the LC double-pole frequency. Hence:

$$
\begin{aligned}
R 1 & =\frac{1}{0.8 \times C 1} \times \sqrt{\frac{L \times C_{O} \times\left(R_{O}+E S R\right.}{} R_{L}+R_{O}} \\
C 3 & =\frac{1}{0.8 \times R 3} \times \sqrt{\frac{L \times C_{O} \times\left(R_{O}+E S R\right)}{R_{L}+R_{O}}}
\end{aligned}
$$

Setting the second compensation pole, fp2_EA, at fZ_ESR yields:

$$
\mathrm{R} 2=\frac{\mathrm{CO}_{\mathrm{O}} \times \mathrm{ESR}}{\mathrm{C}_{3}}
$$

Set the third compensation pole at $1 / 2$ of the switching frequency ( 500 kHz ) to gain phase margin. Calculate C2 as follows:

$$
\mathrm{C} 2=\frac{1}{\pi \times \mathrm{R} 1 \times \mathrm{f}_{\mathrm{S}}}
$$

The above equations provide accurate compensation when the zero-cross frequency is significantly higher than the double-pole frequency. When the zero-cross frequency is near the double-pole frequency, the actual zero-cross frequency is higher than the calculated frequency. In this case, lowering the value of R1 reduces the zero-cross frequency. Also, set the third pole of the type III compensation close to the switching frequency $(1 \mathrm{MHz})$ if the zero-cross frequency is above 200 kHz to boost the phase margin. The recommended range for R3 is $2 k \Omega$ to $10 k \Omega$. Note that the loop compensation remains unchanged if only R4's resistance is altered to set different outputs.


Figure 5. Type III Compensation IIlustration

# High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package 


#### Abstract

Soft-Starting Into a Prebiased Output The MAX15050/MAX15051 can soft-start into a prebiased output without discharging the output capacitor. In safe prebiased startup, both low-side and high-side switches remain off to avoid discharging the prebiased output. PWM operation starts when the voltage on REFIN/SS crosses the voltage on FB. The PWM activity starts with the low-side switch turning on first to build the bootstrap capacitor charge. Power-good (PWRGD) asserts 48 clock cycles after FB crosses $92.5 \%$ of the final regulation set point. After 4096 clock cycles, the MAX15050 switches from prebiased safe-startup mode to either a skip mode or a forced PWM mode depending on whether the inductor current reaches zero. The MAX15051 switches from the prebiased safe-startup mode to forced PWM mode regardless of inductor current level. The MAX15051 also can start into a prebiased voltage higher than the nominal set point without abruptly discharging the output. This is achieved by using the sink current control of the low-side MOSFET, which has four internally set sinking current-limit thresholds. An internal 4-bit DAC steps through these thresholds, starting from the lowest current limit to the highest, in 128 clock cycles on every power-up.


Pin Configuration


## PCB Layout Considerations and <br> Thermal Performance

Careful PCB layout is critical to achieve clean and stable operation. It is highly recommended to duplicate the MAX15050/MAX15051 evaluation kit layout for optimum performance. If deviation is necessary, follow these guidelines for good PCB layout:

1) Place capacitors on IN, VDD, and REFIN/SS as close as possible to the device and the corresponding bump using direct traces.
2) Keep the high-current paths as short and wide as possible. Keep the path of switching current short and minimize the loop area formed by LX, the output capacitors, and the input capacitors.
3) Connect IN, LX, and GND separately to a large copper area to help cool the device to further improve efficiency and long-term reliability.
4) Ensure all feedback connections are short. Place the feedback resistors and compensation components as close to the device as possible.
5) Route high-speed switching nodes, such as LX and BST, away from sensitive analog areas (FB, COMP).
$\qquad$ Chip Information
PROCESS: BiCMOS

## Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE <br> TYPE | PACKAGE <br> CODE | OUTLINE NO. | LAND <br> PATTERN NO. |
| :---: | :---: | :---: | :---: |
| 16 WLP | $\mathrm{W} 162 \mathrm{C} 2+1$ | $\underline{21-0200}$ | - |

## High-Efficiency, 4A, 1MHz, Step-Down Regulators with Integrated Switches in 2mm x 2mm Package

Revision History

| REVISION <br> NUMBER | REVISION <br> DATE | PAGES <br> CHANGED |  |
| :---: | :---: | :--- | :---: |
| 0 | $8 / 09$ | Initial release. | - |
| 1 | $10 / 09$ | Remove future product asterisk for MAX15051, update Electrical Characteristics <br> table and Typical Operating Characteristics. | $1,2,4,5,6,12$, <br> 14 |
| 2 | $3 / 10$ | Revised Absolute Maximum Ratings and Electrical Characteristics table global <br> and note. | $2,3,4$ |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 LTM8064IY LT8315EFE\#TRPBF NCV1077CSTBT3G XCL207A123CR-G
MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 DA9121-B0V76 LTC3644IY\#PBF MP8757GL-P
MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3803ES6\#TR LTC3803ES6\#TRM
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC

