General Description

The MAX15070A/MAX15070B are high-speed MOSFET drivers capable of sinking 7A and sourcing 3A peak currents. The ICs, which are an enhancement over MAX5048 devices, have inverting and noninverting inputs that provide greater flexibility in controlling the MOSFET. They also feature two separate outputs working in complementary mode, offering flexibility in controlling both turn-on and turn-off switching speeds.
The ICs have internal logic circuitry that prevents shootthrough during output-state changes. The logic inputs are protected against voltage spikes up to +16 V , regardless of $\mathrm{V}+$ voltage. Propagation delay time is minimized and matched between the inverting and noninverting inputs. The ICs have a very fast switching time, combined with short propagation delays (12ns typ), making them ideal for high-frequency circuits. The ICs operate from a +4 V to +14 V single power supply and typically consume 0.5 mA of supply current. The MAX15070A has standard TTL input logic levels, while the MAX15070B has CMOS-like high-noise-margin (HNM) input logic levels.
Both ICs are available in a 6-pin SOT23 package and operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Features

- Independent Source and Sink Outputs
- +4 V to +14 V Single Power-Supply Range
- 7A Peak Sink Current
- 3A Peak Source Current
- Inputs Rated to +14V Regardless of V+ Voltage
- 12ns Propagation Delay
- Matched Delays Between Inverting and Noninverting Inputs Within 500ps
- HNM or TTL Logic-Level Inputs
- Low-Input Capacitance: 10pF (typ)
- Thermal-Shutdown Protection
- Small SOT23 Package Allows Routing PCB Traces Underneath
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information appears at end of data sheet.

Applications

- Power MOSFET Switching
- Switch-Mode Power Supplies
- DC-DC Converters
- Motor Control
- Power-Supply Modules

Typical Operating Circuit

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers

Absolute Maximum Ratings
(Voltages referenced to GND.)
V+, IN+, IN-.. -0.3 V to +16 V
N_OUT, P OOUT................................-0.3V to (V+ +0.3 V)
N_OUT Continuous Output Current (Note 1)............. -200 mA
P_OUT Continuous Output Current (Note 1).............. +125 mA
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) ~$
$696 \mathrm{~mW}{ }^{*}$

Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering,	
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

*As per JEDEC 51 standard.
Note 1: Continuous output current is limited by the power dissipation of the package.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

6 SOT23

Package Code	U6+1A
Outline Number	$\underline{21-0058}$
Land Pattern Number	$\underline{90-0175}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$115^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$80^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to http://www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Parameters specified at $\mathrm{V}+=+4.5 \mathrm{~V}$ apply to the MAX15070A only; see Figure 1.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY (V+)							
Input Voltage Range		MAX15070A		4		14	V
		MAX15070B		6		14	
Undervoltage Lockout	VUVLO	V+rising		3.3	3.45	3.6	V
Undervoltage-Lockout Hysteresis				200			mV
Undervoltage Lockout to Output Rising Delay		V+ rising		100			$\mu \mathrm{s}$
Undervoltage Lockout to Output Falling Delay		V+ falling		2			$\mu \mathrm{s}$
Supply Current	IV^{+}	$\mathrm{V}+=14 \mathrm{~V}$, no switching			0.5	1	mA
		$\mathrm{V}+=14 \mathrm{~V}$, switching at 1 MHz		2.3			
n-CHANNEL OUTPUT (N_OUT)							
N_OUT Resistance	RN_OUT	$\begin{aligned} & \mathrm{V}+=+12 \mathrm{~V}, \\ & \mathrm{I}_{\text {N_OUT }}=-100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.256	0.32	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			0.45	
		$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{N}} \text { _OUT }=-100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.268	0.33	
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			0.465	
Power-Off Pulldown Resistance		$\mathrm{V}+=$ unconnected, I_{N} OUUT $=-1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.3	1.9	$\mathrm{k} \Omega$
Output Bias Current	IBIASN	$\mathrm{V}_{\text {N_OUT }}=\mathrm{V}+$			6	11	$\mu \mathrm{A}$
Peak Output Current	IPEAKN	$C_{L}=22 n F$		7.0			A
p-CHANNEL OUTPUT (P_OUT)							
P_OUT Resistance	RP_OUT	$\begin{aligned} & \mathrm{V}+=+12 \mathrm{~V}, \\ & \text { IP_OUT }=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.88	1.2	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			1.7	
		$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \\ & \mathrm{IP} \text { _OUT }=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.91	1.25	
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			1.75	
Output Leakage Current	ILEAKP	$\mathrm{V}_{\text {P_OUT }}=0 \mathrm{~V}$		$0.01-1$3.0			$\mu \mathrm{A}$
Peak Output Current	IPEAKN	$C_{L}=22 n F$					A
LOGIC INPUTS (IN+, IN-)							
Logic-High Input Voltage	V_{IH}	MAX15070A		2.0			V
		MAX15070B		4.25			
Logic-Low Input Voltage	VIL	MAX15070A				0.8	V
		MAX15070B				2.0	
Logic-Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$	MAX15070A			0.2		V
		MAX15070B		0.9			
Logic-Input Leakage Current		$\mathrm{V}_{\text {IN+ }}=\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$, MAX15070A		0.02			$\mu \mathrm{A}$
Logic-Input Bias Current		$\mathrm{V}_{\text {IN+ }}=\mathrm{V}_{\text {IN- }}=0 \mathrm{~V}$ or $\mathrm{V}+$, MAX15070B		10			
Input Capacitance					10		pF

Electrical Characteristics (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Parameters specified at $\mathrm{V}+=+4.5 \mathrm{~V}$ apply to the MAX15070A only; see Figure 1.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS FOR V+ = +12V (Figure 1)						
Rise Time	t_{R}	$C_{L}=1 \mathrm{nF}$		6		ns
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{nF}$		22		
		$C_{L}=10 \mathrm{nF}$		36		
Fall Time	${ }^{\text {t }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		4		ns
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{nF}$		11		
		$C_{L}=10 \mathrm{nF}$		17		
Turn-On Delay Time	${ }^{\text {to }}$-ON	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (Note 3)	7	11	17	ns
Turn-Off Delay Time	${ }^{\text {t }}$ D-OFF	$C_{L}=1 \mathrm{nF}$ (Note 3)	7	12	18	ns
Break-Before-Make Time	tBBM			2		ns
SWITCHING CHARACTERISTICS FOR V+ = +4.5V (MAX15070A only) (Figure 1)						
Rise Time	t_{R}	$C_{L}=1 \mathrm{nF}$		5		ns
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{nF}$		16		
		$C_{L}=10 \mathrm{nF}$		25		
Fall Time	t_{F}	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		4		ns
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{nF}$		10		
		$C_{L}=10 \mathrm{nF}$		14		
Turn-On Delay Time	$t_{\text {D-ON }}$	$C_{L}=1 \mathrm{nF}$ (Note 3)	7	13	21	ns
Turn-Off Delay Time	$\mathrm{t}_{\text {D-OFF }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (Note 3)	7	14	22	ns
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$			2		ns
THERMAL CHARACTERISTICS						
Thermal Shutdown		Temperature rising (Note 3)		166		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis		(Note 3)		13		${ }^{\circ} \mathrm{C}$

Note 2: Limits are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over operating temperature range are guaranteed through correlation using the statistical quality control (SQC) method.
Note 3: Design guaranteed by bench characterization. Limits are not production tested.

Typical Operating Characteristics

$\left(C_{L}=1000 p F, T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. See Figure 1.)

Typical Operating Characteristics (continued)

$\left(C_{L}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. See Figure 1.)

Pin Configuration

Pin Description

PIN	NAME	
1	IN+	FUNCTION
2	GND	Ground
3	IN-	Inverting Logic Input. Connect IN- to GND when not used.
4	N_OUT	Driver Sink Output. Open-drain n-channel output. Sinks current for power MOSFET turn-off.
5	P_OUT	Driver Source Output. Open-drain p-channel output. Sources current for power MOSFET turn-on.
6	V+ +	Power-Supply Input. Bypass $\mathrm{V}+$ to GND with a 1 $1 \mu \mathrm{~F}$ low-ESR ceramic capacitor.

Functional Diagram

Figure 1. Timing Diagram and Test Circuit

Detailed Description

Logic Inputs

The MAX15070A/MAX15070Bs' logic inputs are protected against voltage spikes up to +16 V , regardless of the $\mathrm{V}+$ voltage. The low 10 pF input capacitance of the inputs reduces loading and increases switching speed. These ICs have two inputs that give the user greater flexibility in controlling the MOSFET. Table 1 shows all possible input combinations. The difference between the MAX15070A and the MAX15070B is the input threshold voltage. The MAX15070A has TTL logic-level thresholds, while the

Table 1. Truth Table

IN+	IN-	p-CHANNEL	n-CHANNEL
L	L	Off	On
L	H	Off	On
H	L	On	Off
H	H	Off	On

[^0]MAX15070B has HNM (CMOS-like) logic-level thresholds (see the Electrical Characteristics). Connect IN+ to V+ or IN- to GND when not used. Alternatively, the unused input can be used as an on/off control input (Table 1).

Undervoltage Lockout (UVLO)

When $\mathrm{V}+$ is below the UVLO threshold, the n-channel is on and the p-channel is off, independent of the state of the inputs. The UVLO is typically 3.45 V with 200 mV typical hysteresis to avoid chattering. A typical falling delay of $2 \mu \mathrm{~s}$ makes the UVLO immune to narrow negative transients in noisy environments.

Driver Outputs

The ICs provide two separate outputs. One is an opendrain p-channel, the other an open-drain n-channel. They have distinct current sourcing/sinking capabilities to independently control the rise and fall times of the MOSFET gate. Add a resistor in series with P_OUT/N_OUT to slow the corresponding rise/fall time of the MOSFET gate.

Applications Information

Supply Bypassing, Device Grounding, and Placement

Ample supply bypassing and device grounding are extremely important because when large external capacitive loads are driven, the peak current at the $V+$ pin can approach 3A, while at the GND pin, the peak current can approach 7A. $V_{\text {CC }}$ drops and ground shifts are forms of negative feedback for inverters and, if excessive, can cause multiple switching when the IN - input is used and the input slew rate is low. The device driving the input should be referenced to the ICs' GND pin, especially when the $I N$ - input is used. Ground shifts due to insufficient device grounding can disturb other circuits sharing the same AC ground return path. Any series inductance in the $\mathrm{V}+$, P _OUT, N_OUT, and/or GND paths can cause oscillations due to the very high di/dt that results when the ICs are switched with any capacitive load. A $1 \mu \mathrm{~F}$ or larger value ceramic capacitor is recommended, bypassing V+ to GND and placed as close as possible to the pins. When driving very large loads (e.g., 10nF) at minimum rise time, $10 \mu \mathrm{~F}$ or more of parallel storage capacitance is recommended. A ground plane is highly recommended to minimize ground return resistance and series inductance. Care should be taken to place the ICs as close as possible to the external MOSFET being driven to further minimize board inductance and AC path resistance.

Power Dissipation

Power dissipation of the ICs consists of three components, caused by the quiescent current, capacitive charge and discharge of internal nodes, and the output current (either capacitive or resistive load). The sum of these components must be kept below the maximum power-dissipation limit of the package at the operating temperature.
The quiescent current is 0.5 mA typical. The current required to charge and discharge the internal nodes is frequency dependent (see the Typical Operating Characteristics).
For capacitive loads, the total power dissipation is approximately:

$$
\mathrm{P}=\mathrm{C}_{\mathrm{LOAD}} \times(\mathrm{V}+)^{2} \times \mathrm{FREQ}
$$

where $C_{\text {LOAD }}$ is the capacitive load, $\mathrm{V}+$ is the supply voltage, and FREQ is the switching frequency.

Layout Information

The ICs' MOSFET drivers source and sink large currents to create very fast rise and fall edges at the gate of the switching MOSFET. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. The following PCB layout guidelines are recommended when designing with the ICs:

- Place one or more $1 \mu \mathrm{~F}$ decoupling ceramic capacitor(s) from V+ to GND as close as possible to the IC. At least one storage capacitor of $10 \mu \mathrm{~F}$ (min) should be located on the PCB with a low resistance path to the $\mathrm{V}+$ pin of the ICs. There are two AC current loops formed between the IC and the gate of the MOSFET being driven. The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from N_OUT of the ICs to the MOSFET gate to the MOSFET source and to GND of the ICs. When the gate of the MOSFET is being pulled high, the active current loop is from P_OUT of the ICs to the MOSFET gate to the MOSFET source to the GND terminal of the decoupling capacitor to the $\mathrm{V}+$ terminal of the decoupling capacitor and to the $\mathrm{V}+$ terminal of the ICs. While the charging current loop is important, the discharging current loop is critical. It is important to minimize the physical distance and the impedance in these AC current paths.
- In a multilayer PCB, the component surface layer surrounding the ICs should consist of a GND plane containing the discharging and charging current loops.

Ordering Information

PART	INPUT LOGIC LEVELS	PIN-PACKAGE
MAX15070AAUT +	TTL	6 SOT23
MAX15070AAUT/V+	TTL	6 SOT23
MAX15070BAUT +	HNM	6 SOT23

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
N Denotes an automotive-qualified part.
Chip Information
PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$11 / 10$	Initial release	-
1	$11 / 11$	Added MAX15070AAVT/V+ to data sheet	$1,2,3,8,9$
2	$8 / 12$	Removed Evaluation Kit Available banner	1
3	$5 / 13$	Updated Ordering Information	1
4	$11 / 19$	Updated the Package Information table	2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: L = Logic-low, H = Logic-high.

