MAX15095/MAX15095A/ MAX15095D

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

Benefits and Features

- Integration Reduces Solution Size for Blade Servers and Other Space-Constrained Designs
- Integrated $10.6 \mathrm{~m} \Omega$ (typ) Internal Power MOSFET
- Programmable Overvoltage Protection and Undervoltage-Lockout Threshold
- Drive-Present Signal Input ($\overline{\mathrm{PRSNT}}$ pin)
- Thermal Protection
- Flexibility Enables Use in Many Unique Designs
- 2.7 V to 18 V Operating Voltage Range
- Programmable Inrush-Current Control under SOA Operation
- Adjustable Circuit-Breaker Current/Current-Limit Threshold
- Programmable Slew-Rate Control
- Variable-Speed Circuit-Breaker Response
- Latchoff (MAX15095) or Automatic Retry (MAX15095A) Options
- Safety Features Ensure Accurate, Robust Protection
- 6.6A (max) Load-Current Capability
- $\pm 10 \%$ Circuit-Breaker Threshold Accuracy
- IN-to-OUT Short-Circuit Detection
- Open-Drain PG Output
- Output Discharge after a Fault Event (MAX15095D Only)
- Programmable Additional Delay ($2 \mu \mathrm{~s}$ max) to Fast-Comparator Response Time
- Enable Input (EN)

Applications

- Blade Servers
- Server I/O Cards
- RAID Systems
- Disk Drive Power
- Storage Applications
- Industrial Applications

Ordering Information appears at end of data sheet.

[^0]
MAX15095/MAX15095A/ MAX15095D

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) derate $13.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
1.105W

Operating Temperature Range......................... $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Junction Temperature
$150^{\circ} \mathrm{C}$
Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (reflow)....................................... $260^{\circ} \mathrm{C}$

TIMER, CB to GND-0.3V to (VREG +0.3 V)
REG to GND...........................-0.3V to min ($+6 \mathrm{~V},\left(\mathrm{~V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right.$))
-0.3 V to +20 V
IN to GND...-0.3V to +20V
PG, $\overline{\text { PRSNT }}$ to GND...-0.3V to +20 V
OUT to GND..-0.3V to (VIN +0.3 V)
GATE to OUT ...-0.3V to +6V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 12-PIN FC2QFN

Package Code	F122A2F-1
Outline Number	$\underline{21-100198}$
Land Pattern Number	$\underline{90-100073}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta \mathrm{J}_{\mathrm{A}}\right)$	$72.4^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
V_{CC} Operating Range	V_{CC}		2.7		18	V
IN Operating Range	$\mathrm{V}_{\text {IN }}$		2.7		18	V
$\mathrm{V}_{\text {Cc }}$ Supply Current	$I_{\text {cc }}$	Enable		0.58	0.9	mA
		Disable		0.590		
IN Supply Current	In	$\mathrm{R}_{\mathrm{CB}}=41.67 \mathrm{k} \Omega$, no load		3.3	3.9	mA
		$\mathrm{R}_{\mathrm{CB}}=10 \mathrm{~K} \Omega$, no load		1.3	1.8	
$\mathrm{V}_{\text {CC }}$ Default Undervoltage Lockout	V ${ }_{\text {UVLO }}$	$\mathrm{V}_{\text {CC }}$ rising	2.35	2.5	2.65	V
$V_{C C}$ Default Undervoltage-Lockout Hysteresis	VuVLO_HYS			0.1		V
REG Regulator Voltage	$\mathrm{V}_{\text {REG }}$	No load, $\mathrm{V}_{\mathrm{CC}}>4 \mathrm{~V}$	3	3.3	3.6	V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
UV Turn-On Threshold	VUV_TH	V UVOV rising		0.536	0.55	0.564	V
UV Turn-On Threshold Hysteresis	VUV_HYS	Vuvov falling			50		mV
OV Turn-On Threshold	V ${ }_{\text {OV_TH }}$	V ${ }_{\text {UVOV }}$ rising		1.199	1.23	1.261	V
OV Turn-On Threshold Hysteresis	$\mathrm{V}_{\text {OV_HYS }}$	Vuvov falling			50		mV
OVUV Input Leakage Current	l LEAK	$\mathrm{V}_{\text {UVOV }}=\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ to 5.5 V		-1		+1	$\mu \mathrm{A}$
CURRENT LIMIT							
Circuit-Breaker Accuracy (Note 2)	$\mathrm{ICB}_{\text {_ }}$ TH	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$	$\mathrm{R}_{\mathrm{CB}}=41.2 \mathrm{k} \Omega$	6	6.6	7.2	A
			$\mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$	1.2	1.43	1.66	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & (\text { Note } 3,4) \end{aligned}$	$\mathrm{R}_{\mathrm{CB}}=46.4 \mathrm{k} \Omega$	7.0	7.7	8.4	
Circuit-Breaker Accuracy Deviation (Note 4)		$R_{C B}=10.5 \mathrm{k} \Omega$ to $21.5 \mathrm{k} \Omega$, compared to nominal current-limit value, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ $=2.7 \mathrm{~V}$ to 12 V		-16		+16	\%
		$\mathrm{R}_{\mathrm{CB}}=21.5 \mathrm{k} \Omega$ to $41.2 \mathrm{k} \Omega$, compared to nominal current-limit value		-10		+10	
Slow-Comparator Response Time (Note 5)	${ }^{\text {tsCD }}$	0.6\% overcurrent			2.7		ms
		30\% overcurrent			200		$\mu \mathrm{s}$
CB Source Current	ITHCB_NORM	In power-on mode			12		$\mu \mathrm{A}$
Maximum Current Limit During Startup	ILIM	(see Figure 2)		$\begin{gathered} 0.5 \times \\ \mathrm{I}_{\mathrm{CB}} \mathrm{TH} \end{gathered}$			A
Fast-Comparator Threshold	$\mathrm{IFC}_{\text {_ }}$ TH			$\begin{gathered} 1.5 \mathrm{x} \\ \mathrm{I}_{\mathrm{CB}} \mathrm{TH} \end{gathered}$			A
Fast-Comparator Response Time	$\mathrm{t}_{\text {FCD }}$			200			ns
Additional Delay Time by TIMER	${ }^{\text {t }}$ AFCD	$\mathrm{R}_{\text {TIMER }}=$ open			2		$\mu \mathrm{s}$
Minimum CB Voltage Reference During Foldback (Note 6)	VTHCB_MIN	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}>10 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=41.2 \mathrm{k} \Omega$		60			mV
Maximum CB Voltage Reference During Foldback (Note 6)	VTHCB_MAX	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}<2 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=41.2 \mathrm{k} \Omega$		250			mV
TIMING							
Startup Maximum Time Duration	tsu			43	52	61	ms
Autoretry Delay Time	trestart	MAX15095A and MAX15095D only		3.4			s
Output Short Detection at Startup	$\mathrm{t}_{\text {SHORT }}$			10.4	13.2	15.6	ms
MOSFET							
Total On-Resistance	RON	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}$			10.6	14.3	$m \Omega$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, $\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}$				18	
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=4 \mathrm{~A} \\ & \text { (Note 4) } \end{aligned}$				18	
GATE Charge Current	IGATE			4.8	5.9	7.1	$\mu \mathrm{A}$

Electrical Characteristics (continued)

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUTS						
PG Output Low Voltage	$\mathrm{V}_{\text {OL }}$	Low-impedance state, $\mathrm{l}_{\mathrm{PG}}=+5 \mathrm{~mA}$			0.4	V
PG Output High-Leakage Current	IOH	High-impedance state, $\mathrm{V}_{\mathrm{PG}}=16 \mathrm{~V}$			1	$\mu \mathrm{A}$
DISCHARGE						
Discharge Current After PG Deasserted	IDISCHARGE	$\mathrm{V}_{\text {OUT }}<7.1 \mathrm{~V}$ (MAX15095D only)	50	100	160	mA
		$V_{\text {OUT }} \geq 7.1 \mathrm{~V}$ to 18 V (MAX15095D only)		$710 \mathrm{~mW} /$ VOUT		
PG THRESHOLD						
PG Threshold	$V_{\text {PG }}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		$\begin{aligned} & 0.9 x \\ & V_{\text {IN }} \end{aligned}$		V
PG Assertion Delay	${ }_{\text {tPG }}$	From $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\mathrm{PG}}$ and $\mathrm{V}_{\text {GATE }}-\mathrm{V}_{\text {OUT }}>3 \mathrm{~V}$	12	16	20	ms
OUT-to-IN Short-Circuit Detection Threshold	VIOSHT	Measured at $\mathrm{V}_{\text {OUT }}$		$\begin{gathered} 0.9 x \\ V_{\text {IN }} \end{gathered}$		V
OUT Preload Threshold	$V_{\text {PL }}$	Measured at $\mathrm{V}_{\text {OUT }}$		$\begin{aligned} & \hline 0.5 x \\ & V_{\mathrm{IN}} \end{aligned}$		V
INPUTS						
Input Logic Threshold EN	$\mathrm{V}_{\text {EN_TH }}$	Rising	0.95	1	1.05	V
Threshold Hysteresis EN	$\mathrm{V}_{\text {EN_TH_HYS }}$	Falling		50		mV
Input Logic Threshold $\overline{\text { PRSNT }}$	$V_{\text {PRSNT_TH }}$	Falling	0.92	0.97	1.02	V
Threshold Hysteresis PRSNT	$V_{\text {PRSNT_TH_HYS }}$	Rising		50		mV
EN Bias Current	$\mathrm{I}_{\text {EN_BIAS }}$	$\mathrm{V}_{\mathrm{EN}}=0$ or 5.5 V			1	$\mu \mathrm{A}$
$\overline{\text { PRSNT Input Bias Current }}$	$l_{\text {PRSNT_BIAS }}$	$\mathrm{V}_{\text {PRSNT }}=0$ or 18 V			1	$\mu \mathrm{A}$
EN Deglitch Time	$t_{\text {EN_DEG }}$			100		$\mu \mathrm{s}$
PRSNT High-to-Low Deglitch Time	$\dagger_{\text {PRSNT_DEG }}$			400		$\mu \mathrm{s}$
THERMAL SHUTDOWN						
Thermal Shutdown	TSD	T_{J} rising		145		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis		T_{J} falling		125		${ }^{\circ} \mathrm{C}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 2: $41.2 \mathrm{k} \Omega$ is the maximum allowed external resistance value to be connected at the CB pin to GND for safe operation over the full 2.7 V to $18 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ range. The parameter specified at $\mathrm{R}_{\mathrm{CB}}=41.2 \mathrm{k} \Omega$ is guaranteed by bench characterization and correlation, with respect to the tested parameter at $\mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$. The formula that describes the relationship between R_{CB} and the circuit-breaker current threshold is: $\mathrm{I}_{\mathrm{CB}}=\left(\mathrm{R}_{\mathrm{CB}} / 5920\right)-\left(\mathrm{V}_{\mathrm{IN}} / 33\right)$.
Note 3: The CB resistance can be increased to $46.4 \mathrm{k} \Omega$ if V_{IN} is between 2.7 V and 3.6 V , with operating current of 6.6 A for no longer than 500 ms . Do not exceed 6A continuous current.
Note 4: Guaranteed by design and not production tested.
Note 5: The current-limit slow-comparator response time is weighed against the amount of overcurrent so the higher the overcurrent condition, the faster the response time.
Note 6: Foldback is active during the startup phase so the internal power MOSFET operates within SOA.

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{CB}}=10.5 \mathrm{k} \Omega$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	$V_{C C}$	Power-Supply Input. Connect V_{CC} to a voltage between 2.7 V and 18 V . Connect a Schottky diode (or 10Ω resistor) from IN to V_{CC}, and a $1 \mu \mathrm{~F}$ bypass capacitor to GND to guarantee full operation in the event V_{IN} collapses during a strong short from OUT to GND.
2	CB	Current-Limit Threshold Set. Connect a resistor from CB to GND to set the circuit-breaker threshold. Having the CB pin connected to GND sets the circuit- breaker threshold at OA.
3	GND	Ground
4	REG	Internal Regulator Output. Bypass to ground with a $1 \mu \mathrm{~F}$ capacitor. Do not power external circuitry using the REG output.
5	GATE	Gate of Internal MOSFET. During startup, a $5.9 \mu \mathrm{~A}$ (typ) current is sourced to enhance the internal MOSFET with a $10 \mathrm{~V} / \mathrm{ms}$ slew rate. Connect an external capacitance from GATE to GND to reduce the output slew rate during startup.
6	EN	Active-High Enable Comparator Input. Pulling EN high enables the output if $\overline{\text { PRSNT }}$ is held low.
7	PRSNT	Active-Low Present-Detect Logic Input. Pulling $\overline{\text { PRSNT }}$ to GND enables the output if EN is high.
8	OUT	Load Output. Source of the internal power MOSFET.
9	IN	Supply Voltage Input. IN is connected to the drain of the internal $10.6 \mathrm{~m} \Omega$ (typ) MOSFET. Bypass IN with a transient voltage-suppressor diode to GND for clamping inductive kick transients in the case of fast output short circuit to GND.
10	UVOV	Undervoltage and Overvoltage Threshold Pin. UVOV sets the under/overvoltage threshold.
11	TIMER	Timing Input. Connect a resistor from TIMER to GND to program the maximum time the part is allowed to remain in current limit. See the TIMER section. If TIMER is not connected, the parasitic capacitance between TIMER and GND must be less than 10pF.
12	PG	Power-Good Output. PG is an open-drain output. Connect to an external pullup resistor to make it an active-high output. PG pulls low until the internal power MOSFET is fully enhanced.

Block Diagram

Timing Diagram

Table 1. Timing

TIMING PARAMETER	MIN	TYP	MAX	UNITS
t_{0}	-	400	-	$\mu \mathrm{s}$
t_{1}	-	100	-	$\mu \mathrm{s}$
t_{2}	12	16	20	ms
t_{3}	-	100	-	$\mu \mathrm{s}$
t_{4}	-	0.5	-	$\mu \mathrm{s}$

Detailed Description

Enable Logic and Undervoltage/ Overvoltage-Lockout Threshold

The supply output can become active only after all the following events have occurred:

- IN is within the UVOV window
- $\quad V_{C C}$ is above its UVLO threshold
- EN meets its enable threshold for more than $100 \mu \mathrm{~s}$
- $\overline{\text { PRSNT }}$ is low for more than $400 \mu \mathrm{~s}$

The MAX15095 family of devices enables the outputs as shown in Table 1. The devices are ready to drive the output when the V_{CC} supply rises above the $\mathrm{V}_{\text {UVLO }}$ threshold. The devices turn on the output when $\mathrm{V}_{\mathrm{CC}}>$ VUVLO, VUVOV is higher than 0.55 V ($\mathrm{V}_{\text {UV_TH }}$) and less than $1.23 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{OV}} \mathrm{TH}\right)$. The devices turn off the output when Vuvov falls below (0.55 V - VuV_hys) or VuVOV rises above 1.23 V . An external resistive divider (as shown in Figure 1) from IN to UVOV and ground provide the

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

flexibility to select the undervoltage/overvoltage-lockout threshold to the desired value. Set the UVOV threshold using the following equations:

$$
\begin{aligned}
& U V P=0.55(R 1+R 2) / R 2 \\
& O V P=1.23(R 1+R 2) / R 2
\end{aligned}
$$

Startup

Once the devices' output is enabled, the device provides controlled application of power to the load. The voltage at OUT begins to rise at approximately $10 \mathrm{~V} / \mathrm{ms}$ default until the programmed circuit-breaker current level is reached, while the devices actively limit the inrush current at the circuit-breaker setting. An external capacitance connected to the GATE pin allows the user to program the slew rate to a value lower than the default. The inrush current can be programmed by appropriate selection of R_{CB}. During startup, a foldback current limit is active to protect the internal MOSFET to operate within a safe operating area. (Figure 2).

Table 2. Output-Enable Truth Table

POWER SUPPLY	PRECISION ANALOG INPUT		OUT
$\mathrm{V}_{\text {Cc }}$ UVLO	UVP	OVP	
$\mathrm{V}_{\text {CC }}>\mathrm{V}_{\text {UVLO }}$	VUVOV > VUV_TH	$\mathrm{V}_{\text {UVOV }}<\mathrm{V}_{\text {OV_TH }}$	On
$\mathrm{V}_{\text {CC }}<\mathrm{V}_{\text {UVLO }}$	X	X	Off
X	$\mathrm{V}_{\text {UVOV }}$ < (VUV_TH $-\mathrm{V}_{\text {UV_HYS }}$)	X	Off
X	X	$\mathrm{V}_{\text {UVOV }}>\mathrm{V}_{\text {OV_TH }}$	Off

$X=$ Don't care.
$V_{U V_{-} T H}=0.55 \mathrm{~V}$ (typ).
$V_{O V_{-} T H}=1.23 \mathrm{~V}$ (typ).

Figure 1. Undervoltage/Overvoltage Threshold Setting

Figure 2. Startup Inrush Current Foldback Characteristics

MAX15095/MAX15095A/ MAX15095D

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

An internal 52 ms (typ) timer starts counting when the device enters a startup phase. The devices complete the startup phase and enter normal operation mode if the voltage at OUT rises above the preload threshold $\left(0.9 \times \mathrm{V}_{\mathrm{IN}}\right)$ and $\left(\mathrm{V}_{\text {GATE }}-\mathrm{V}_{\text {OUT }}\right)>3 \mathrm{~V}$. An open-drain power-good output (PG) goes high impedance 16 ms after the startup successfully completes. The thermal-protection circuit is always active and the internal MOSFET is immediately turned off so a thermal-shutdown threshold condition can be reached.
If the startup is not successful because the output is shorted or the load is too high (OUT voltage $<1 \mathrm{~V}$), the devices turn off the hot-swap switch after the output short detection at startup tSHORT (13.2 ms) elapses.

VariableSpeed/BiLevel-Fault Protection

VariableSpeed/BiLevel-fault protection incorporates comparators with different thresholds and response times to monitor the load current (Figure 3). Protection is provided in normal operation (after the startup period has expired) by discharging the MOSFET gate in response to a fault condition. During a fault condition, the MAX15095A enters an autoretry mode while the MAX15095 latches off (see the Autoretry and Latchoff-Fault Management section).

Enable Input (EN)

The devices allow for enabling the MOSFET in an activehigh configuration. When all other enabling conditions are verified and the EN pin is at a logic-high level, the MOSFET is enabled. Similarly, when the EN pin is at a logic-low level, the MOSFET is disabled.

Charge Pump

An integrated charge pump provides the gate-drive voltage for the internal power MOSFET. The charge pump generates the proper gate-drive voltage above $\mathrm{V}_{\text {IN }}$ to fully enhance the internal power MOSFET and guarantee low RON operation during normal-state condition.
During startup, the internal charge pump drives the GATE of the MOSFET with a fixed $5.9 \mu \mathrm{~A}$ current to enhance the internal MOSFET with $10 \mathrm{~V} / \mathrm{ms}$ (typ) slew rate. To reduce the output slew rate during startup below $10 \mathrm{~V} / \mathrm{ms}$, connect an external capacitor ($\mathrm{C}_{\mathrm{GATE}}$) from GATE to GND. The value of $\mathrm{C}_{\text {GATE }}$ is determined according to the equation:

$$
\mathrm{C}_{\text {GATE }}=\mathrm{I}_{\text {GATE }} \times\left(\mathrm{t}_{\mathrm{ON}} / \mathrm{V}_{\mathrm{OUT}}\right)
$$

where $\mathrm{I}_{\text {GATE }}$ is $5.9 \mu \mathrm{~A}$ (typ), toN is the desired output ramp-up time, and $\mathrm{V}_{\text {OUT }}$ is the final output voltage.
The slew rate of the OUT pin during startup is controlled by $\mathrm{I}_{\text {GATE }} / \mathrm{C}_{\text {GATE }}$ under light-load conditions, but under heavier load, the foldback current limit and the external capacitive load will determine the actual slew rate.

$$
\left(\Delta \mathrm{V}_{\mathrm{OUT}} / \Delta \mathrm{t}\right)=\left(\mathrm{l}_{\mathrm{LIM}}-\mathrm{I}_{\mathrm{LOAD}}\right) / \mathrm{C}_{\mathrm{LOAD}}
$$

where lLIM represents the voltage-dependent foldback current limit. See Electrical Characteristics.table and Figure 3. The load current is subtracted from llim, because any current consumed by the load does not help charge the output capacitance.

Figure 3. VariableSpeed/BiLevel Response

Circuit-Breaker Comparator and Current Limit

The current through the internal power MOSFET is compared to a circuit-breaker threshold. An external resistor between CB and ground sets this threshold according to the following formula:

$$
\mathrm{I}_{\mathrm{CB}}(\mathrm{~A})=\left(\mathrm{R}_{\mathrm{CB}} / 5920\right)-\left(\mathrm{V}_{\mathrm{IN}} / 33\right)
$$

where $R_{C B}$ is the resistor between $C B$ and ground.
The circuit-breaker comparator is designed so that the load current can exceed the threshold for some amount of time before tripping. The time delay varies inversely with the overdrive above the threshold. The greater the overcurrent condition, the faster the response time, allowing the devices to tolerate load transients and noise near the circuit-breaker threshold. The operating current should not be allowed to exceed 6.6A for longer than 500 ms . The maximum allowed external resistor value is $46.4 \mathrm{k} \Omega$.
The devices also feature catastrophic short-circuit protection. During normal operation, if OUT is shorted directly to ground, a fast protection circuit forces the gate of the internal MOSFET to discharge quickly and disconnect the output from the input.

Autoretry and Latchoff-Fault Management

During a fault condition, the devices turn off the internal MOSFET, disconnecting the output from the input. The MAX15095A enters an autoretry mode and restarts after trestart (3.4 s typ) time delay elapses.
The MAX15095 latches off and remains off until the enable logic is cycled off and on after a certain delay. The delay prevents the latchoff device from restarting and operating with an unsafe power-dissipation duty cycle. See the Timing Diagram and Table 1 for delay values.

Latchoff Reset

The latchoff could be reset if any one of the following happens:

- V_{Cc} is below its UVLO threshold
- EN is disabled for longer than $100 \mu \mathrm{~s}$
- UV is triggered
- PRSNT goes above its threshold
- OV is triggered

Power-Good (PG) Delay

The devices feature an open-drain, power-good output that asserts after t_{Pg} delay, indicating that OUT voltage has reached $\left(0.9 \times \mathrm{V}_{\text {IN }}\right)$ voltage and $\left(\mathrm{V}_{\text {GATE }}-\mathrm{V}_{\text {OUT }}\right)>3 \mathrm{~V}$.
2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

REG

The devices include a linear regulator that outputs 3.3 V at REG. REG provides power to the internal circuit blocks of the devices and must not be loaded externally (except a resistor $>50 \mathrm{k} \Omega$ connected from REG to EN). REG requires a $1 \mu \mathrm{~F}$ capacitor to ground for proper operation.

Output Discharging

The discharge FET is active when the output is disabled or under fault event. In this event, the hot-swap is off and the output is on the way down. The discharging is triggered after the main FET has completely turned off.
The maximum output capacitance is approximately $1000 \mu \mathrm{~F}$. The voltage could be up to 18 V . Ideally, it discharges the output capacitor in constant-power mode (710 mW typ) to ensure the voltage rail is below 0.3 V within 2 s or less.

TIMER

Connect a resistor from the TIMER pin to the GND pin to program the fast-trip response time. This time is the sum of the internal fast-comparator propagation delay (less than 200ns typ) plus an additional delay set by the external resistor connected from TIMER to ground. Choosing different resistance values, it is possible to change the value of additional delay. If the TIMER pin is connected to REG, the total response time is less than 200ns (typ).
Additional delay is disabled also during the startup phase or after a short-circuit event $\left(\mathrm{V}_{\text {OUT }}<90 \% \mathrm{~V}_{\text {IN }}\right)$. Be careful about additional delay settings related to a short event.
Additional delay can be calculated using the following formula:

$$
\text { Additional_Delay }(\mu \mathrm{s})=\mathrm{R}_{\text {TIMER }}(\mathrm{k} \Omega) \times 22.9 \mathrm{E}-03
$$

Maximum additional delay time is set to $2 \mu \mathrm{~s}$. Table 3 provides additional delay settings.

Table 3. Additional Delay Settings

OPTION	$\mathbf{R}_{\text {TIMER }} \mathbf{(k \boldsymbol { \Omega })}$	RESPONSE TIME ($\boldsymbol{\mu s}$)
1	Open	2
2	86.6	2
3	43.2	1
4	21.5	0.5
5	11	0.25
6	0	0.050

MAX15095/MAX15095A/

MAX15095D

Thermal Protection

The devices enter a thermal shutdown mode in the event of overheating caused by excessive power dissipation or high ambient temperature. When the junction temperature exceeds $\mathrm{T}_{\mathrm{J}}=145^{\circ} \mathrm{C}$ (typ), the internal thermal protection circuitry turns off the internal power MOSFET. The devices recover from thermal shutdown mode once the junction temperature drops by $20^{\circ} \mathrm{C}$ (typ).

2.7V to 18V, 6.6A Integrated Hot-Swap/ Electronic Circuit Breaker

IN-to-OUT Short-Circuit Protection

At startup, after all the input conditions are satisfied (UV, OV, VUVLO), the devices immediately check for IN-toOUT short-circuit faults. If $V_{\text {OUT }}$ is greater than 90% of V_{IN}, the internal MOSFET cannot be turned on, then the MAX15095A autoretries in trestart (3.4s typ), while the MAX15095 latches off.
If $V_{\text {OUT }}$ is in the range from 50% to 90% of $V_{\text {IN }}$, then the internal MOSFET still cannot be turned on after tSU time elapses. The MAX15095A autoretries in tRESTART, while the MAX15095 latches off.

Typical Application Circuit

Ordering Information

PART	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PIN-PACKAGE	FAULT MANAGEMENT
MAX15095GFC +	-40 to +105	12 FC2QFN	Latchoff
MAX15095AGFC +	-40 to +105	12 FC2QFN	Autoretry
MAX15095DGFC+	-40 to +105	12 FC2QFN	Autoretry

+Denotes a lead (Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$2 / 18$	Initial release	-
1	$3 / 18$	Updated TOC01-04, TOC09, and TOC13	$5-6$
2	$4 / 19$	Updated Electrical Characteristics table and the EC Notes section. Updated Pin Description table and the Circuit-Breaker Comparator and Current Limit section under the Detailed Description	$3,4,7,12$
3	$4 / 19$	Corrected the Charge Pump section text and equations.	11
4	$7 / 19$	Corrected units for $V_{C C}$ Supply Current $\left(I_{C C}\right)$	2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hot Swap Voltage Controllers category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
LTC4227CUFD-4\#PBF LTC4212IMS ADM1075-2ARUZ-RL7 LM5067MW-1/NOPB ADM1075-1ARUZ-RL7 MAX5969BETB+T
MIC22700YML-TR LTC4223CDHD-1\#PBF MAX40200AUK+T LTC4224IDDB-2\#TRMPBF LT1640LIS8\#PBF LTC4217CDHC-12\#PBF
LT1640ALCS8\#PBF LT4294HDD\#PBF LTC4253CGN\#PBF LTC4211CMS8\#PBF LTC4230CGN\#PBF LTC4224IMS-1\#PBF
LTC4216IMS\#PBF LTC4212IMS\#PBF LTC4260CGN\#PBF LTC4227CGN-2\#PBF LTC4244IGN\#PBF LTC4212CMS\#PBF
LT4250HCN8\#PBF ADM1276-3ACPZ-RL LTC4226IUD-1\#PBF LT1640AHCN8 ADM1075-2ACPZ ADM1075-1ACPZ ADM1073ARUZ ADM1073ARUZ-REEL7 ADM1075-1ARUZ ADM1075-2ARUZ ADM1170-1AUJZ-RL7 ADM1171-2AUJZ-RL7 ADM1172-1AUJZ-RL7 ADM1172-2AUJZ-RL7 ADM1176-1ARMZ-R7 ADM1177-1ARMZ-R7 ADM1177-2ARMZ-R7 ADM1178-1ARMZ-R7 ADM1275-3ARQZ ADM1275-1ARQZ ADM1275-3ARQZ-R7 ADM1276-3ACPZ ADM1278-1BCPZ ADM4210-1AUJZ-RL7 ADM1275-2ARQZ ADM1070ARTZ-REEL7

[^0]: VariableSpeed/BiLevel is a trademark of Maxim Integrated Products, Inc.

