## General Description

The MAX15108A high-efficiency, current-mode, synchronous step-down switching regulator with integrated power switches delivers up to 8A of output current. The regulator operates from 2.7 V to 5.5 V and provides an output voltage from 0.6 V up to $95 \%$ of the input voltage, making the device ideal for distributed power systems, portable devices, and preregulation applications.
The IC utilizes a current-mode control architecture with a high gain transconductance error amplifier. The currentmode control architecture facilitates easy compensation design and ensures cycle-by-cycle current limit with fast response to line and load transients.
The low $R_{D S}(O N)$ integrated switches ensure high efficiency at heavy loads while minimizing critical inductance, making the layout design a much simpler task with respect to discrete solutions. The IC's simple layout and footprint assures first-pass success in new designs.
The regulator features a 1 MHz , factory-trimmed fixedfrequency PWM mode operation. The high switching frequency, along with the PWM current-mode architecture allows for a compact, all ceramic capacitor design.

The IC features a capacitor-programmable soft-start to reduce input inrush current. Internal control circuitry ensures safe-startup into a prebiased output. Power sequencing is controlled with the enable input and powergood output.
The IC is available in a 20 -bump ( $4 \times 5$ array), $2.5 \mathrm{~mm} \times$ 2 mm , WLP package and is fully specified over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range.

## Applications

- Distributed Power Systems
- DDR Memory
- Base Stations
- Portable Devices
- Notebook Power
- Server Power

[^0]
## Features

- Continuous 8A Output Current
- Efficiency Up to $96 \%$
- $\pm 1 \%$ Accuracy Over Load, Line, and Temperature
- Operates from a 2.7 V to 5.5 V Supply
- Adjustable Output from 0.6 V to $0.95 \times \mathrm{V}_{\mathrm{IN}}$
- Programmable Soft-Start
- Safe Startup into Prebiased Output
- External Reference Input
- 1 MHz Switching Frequency
- Stable with Low-ESR Ceramic Output Capacitors
- Forced PWM Mode
- Enable Input and Power-Good Output for PowerSupply Sequencing
- Cycle-by-Cycle Overcurrent Protection
- Fully Protected Features Against Overcurrent and Overtemperature
- Input Undervoltage Lockout
- 20-Bump (4 x 5 Array), $2.5 \mathrm{~mm} \times 2 \mathrm{~mm}$, WLP Package


## Typical Operating Circuit



## High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator

## Absolute Maximum Ratings

| IN | 3 V to +6 V |
| :---: | :---: |
| LX to PGND. | -0.3V to ( $\left.\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$ |
| LX to PGND. | -1 V to ( $\left.\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$ for 50 ns |
| EN, COMP, FB, SS to | ...........-0.3V to ( $\left.\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$ |
| Continuous LX Curren | . -12 A to +12A |
| Output Short-Circuit | Continuous |



Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: LX has internal clamp diodes to PGND and IN. Do not exceed the power dissipation limits of the device when forward biasing these diodes.
Note 2: Limit the junction temperature to $+125^{\circ} \mathrm{C}$ for continuous operation at full current.
Note 3: The WLP package is constructed using a unique set of package techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.

## Package Thermal Characteristics (Note 4) <br> WLP <br> Junction-to-Ambient Thermal Resistance ( $\theta_{\mathrm{JA}}$ ) ....... $31.5^{\circ} \mathrm{C} / \mathrm{W}$

Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

## Electrical Characteristics

$\left(\mathrm{V}_{I N}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SS}}=4.7 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN Voltage Range | $\mathrm{V}_{\text {IN }}$ |  | 2.7 |  | 5.5 | V |
| IN Shutdown Supply Current |  | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ |  | 0.3 | 3 | $\mu \mathrm{A}$ |
| IN Supply Current | 1 IN | $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.75 \mathrm{~V}$, not switching |  | 3.4 | 6 | mA |
| $\mathrm{V}_{\text {IN }}$ Undervoltage Lockout Threshold |  | LX starts switching, $\mathrm{V}_{\text {IN }}$ rising |  | 2.6 | 2.7 | V |
| $\mathrm{V}_{\text {IN }}$ Undervoltage Lockout Hysteresis |  | LX stops switching, $\mathrm{V}_{\text {IN }}$ falling |  | 200 |  | mV |
| ERROR AMPLIFIER |  |  |  |  |  |  |
| Transconductance | gmV |  |  | 1.4 |  | mS |
| Voltage Gain | AVEA |  |  | 90 |  | dB |
| FB Set-Point Accuracy | $V_{F B}$ | Over line, load, and temperature | 594 | 600 | 606 | mV |
| FB Input Bias Current | $\mathrm{I}_{\text {FB }}$ |  | -100 |  | +100 | nA |
| COMP to Current-Sense Transconductance | $\mathrm{G}_{\text {MOD }}$ |  |  | 25 |  | A/V |
| COMP Clamp Low |  | $\mathrm{V}_{\mathrm{FB}}=0.75 \mathrm{~V}$ |  | 0.93 |  | V |
| Compensation RAMP Valley |  |  |  | 1 |  | V |
| POWER SWITCHES |  |  |  |  |  |  |
| High-Side Switch Current-Limit Threshold | $\mathrm{l}_{\mathrm{HSCL}}$ |  |  | 14 |  | A |
| Low-Side Switch Sink Current-Limit Threshold |  |  |  | 14 |  | A |
| Low-Side Switch Source Current-Limit Threshold |  |  |  | 14 |  | A |

## Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SS}}=4.7 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LX Leakage Current |  | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| RMS LX Output Current |  |  | 8 |  |  | A |
| OSCILLATOR |  |  |  |  |  |  |
| Switching Frequency | fsw |  | 850 | 1000 | 1150 | kHz |
| Maximum Duty Cycle | D MAX |  |  | 94 |  | \% |
| Minimum Controllable On-Time |  |  |  | 100 |  | ns |
| ENABLE |  |  |  |  |  |  |
| EN Input High Threshold Voltage |  | $\mathrm{V}_{\text {EN }}$ rising | 1.3 |  |  | V |
| EN Input Low Threshold Voltage |  | $\mathrm{V}_{\mathrm{EN}}$ falling |  |  | 0.4 | V |
| EN Input Leakage Current |  | $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| SOFT-START, PREBIAS |  |  |  |  |  |  |
| Soft-Start Current | Iss | $\mathrm{V}_{\text {SS }}=0.45 \mathrm{~V}$, sourcing |  | 10 |  | $\mu \mathrm{A}$ |
| SS Discharge Resistance | $\mathrm{R}_{\text {SS }}$ | $\mathrm{I}_{\text {SS }}=10 \mathrm{~mA}$, sinking |  | 8.5 |  | $\Omega$ |
| SS Prebias Mode Stop Voltage |  | SS rising |  | 0.58 |  | V |
| HICCUP |  |  |  |  |  |  |
| Number of Consecutive Current-Limit Events to Hiccup |  |  |  | 8 |  | Events |
| Timeout |  |  |  | 1024 |  | Clock Cycles |
| POWER-GOOD OUTPUT |  |  |  |  |  |  |
| PGOOD Threshold |  | FB rising | 0.54 | 0.56 | 0.58 | V |
| PGOOD Threshold Hysteresis |  | FB falling |  | 25 |  | mV |
| PGOOD $\mathrm{V}_{\text {OL }}$ |  | $\mathrm{I}_{\mathrm{PGOOD}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$ |  | 22 | 100 | mV |
| PGOOD Leakage |  | $\mathrm{V}_{\mathrm{PGOOD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.75 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| THERMAL SHUTDOWN |  |  |  |  |  |  |
| Thermal Shutdown Threshold |  |  |  | +160 |  | ${ }^{\circ} \mathrm{C}$ |
| Thermal Shutdown Hysteresis |  | Temperature falling |  | 25 |  | ${ }^{\circ} \mathrm{C}$ |

Note 5: Specifications are $100 \%$ production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.

## Typical Operating Characteristics

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## Typical Operating Characteristics (continued)

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## Typical Operating Characteristics (continued)

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


ENABLE INTO PREBIASED 0.5V OUTPUT (8A LOAD, PWM MODE)



ENABLE INTO PREBIASED 0.5V OUTPUT (NO LOAD, PWM MODE)


SAFE OPERATING AREA (SOA)
(NO AIRFLOW, NO HEATSINK $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$ )



## Pin Description

| BUMP | NAME | FUNCTION |
| :---: | :---: | :--- |
| A1, A5, B1, <br> C1, D1 | PGND | Power Ground. Low-side switch source terminal. Connect PGND and the return terminals of input <br> and output capacitors to the power ground plane. |
| A2, A3, <br> B2, C2 | LX | Inductor Connection. Connect LX to the switching side of the inductor. LX is high impedance when <br> the device is in shutdown mode. |
| A4 | PGOOD | Open-Drain Power-Good Output. PGOOD goes low when V FB $^{\prime}$ is below 530mV. |
| B3, C3, D3 | IN | Input Power Supply. Input supply range is 2.7 V to 5.5 V . Bypass IN with a minimum 10uF ceramic <br> capacitor to PGND. See the Typical Application Circuit. |
| B4, C4 | I.C. | Internally Connected. Leave unconnected. |
| B5 | FB | Feedback Input. Connect FB to the center tap of an external resistive voltage-divider from the <br> output to PGND to set the output voltage from 0.6V to 95\% of VIN. |
| C5 | SS | Soft-Start. Connect a capacitor from SS to PGND to set the startup time. See the Setting the <br> Soft-Start Startup Time section for details on setting the soft-start time. SS is also an external <br> reference input. Apply an external voltage reference from 0V to VIN - 1.5V to drive soft-start <br> externally. |
| D2 | INX | Input Bump for Control Section. Connect to IN. <br> D4 EN |
| D5 | Enable Input. EN is a digital input that turns the regulator on and off. Drive EN high to turn on the <br> regulator. Connect to IN for always-on operation. |  |
| COMP | Error Amplifier Output. Connect compensation network from COMP to signal ground (SGND). See <br> the Compensation Design Guidelines section. |  |

Functional Diagram


## Detailed Description

The MAX15108A high-efficiency, current-mode switching regulator delivers up to 8 A of output current. The regulator provides output voltages from 0.6 V to $\left(0.95 \times \mathrm{V}_{\mathrm{IN}}\right)$ with 2.7 V to 5.5 V input supplies, making the device ideal for on-board point-of-load applications.
The IC delivers current-mode control architecture using a high gain transconductance error amplifier. The currentmode control architecture facilitates easy compensation design and ensures cycle-by-cycle current limit with fast response to line and load transients.
The regulator features a 1 MHz fixed switching frequency, allowing for all-ceramic capacitor designs with fast transient responses. The high operating frequency minimizes the size of external components. The IC is available in a $2.5 \mathrm{~mm} \times 2 \mathrm{~mm}$ (4x5 5 array), 0.5 mm pitch WLP package.
The low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ integrated switches ensure high efficiency at heavy loads while minimizing critical inductance, making the layout design a much simpler task than that of discrete solutions. The IC's simple layout and footprint assure first-pass success in new designs.
The IC features PWM current-mode control, allowing for an all-ceramic capacitor solution. The regulator offers capacitor-programmable soft-start to reduce input inrush current. The device safely starts up into a prebiased output. The IC includes an enable input and open-drain PGOOD output for sequencing with other devices.

## Controller Function-PWM Logic

The controller logic block determines the duty cycle of the high-side MOSFET under different line, load, and temperature conditions. Under normal operation, where the current-limit and temperature protection are not triggered, the controller logic block takes the output from the PWM comparator to generate the driver signals for both high-side and low-side MOSFETs. The control logic block controls the break-before-make logic and all the necessary timing.

The high-side MOSFET turns on at the beginning of the oscillator cycle and turns off when the COMP voltage crosses the internal current-mode ramp waveform. The internal ramp is the sum of the compensation ramp and
the current-mode ramp derived from the inductor current (current sense block). The high-side MOSFET also turns off if the maximum duty cycle exceeds $95 \%$, or when the current limit is reached. The low-side MOSFET turns on for the remainder of the switching cycle.

## Starting into a Prebiased Output

The IC can soft-start into a prebiased output without discharging the output capacitor. In safe prebiased startup, both low-side and high-side MOSFETs remain off to avoid discharging the prebiased output. PWM operation starts when the voltage on SS crosses the voltage on FB.
The IC can start into a prebiased voltage higher than the nominal set point without abruptly discharging the output. Forced PWM operation starts when the SS voltage reaches 0.58 V , forcing the converter to start. When the low-side sink current-limit threshold of 1A is reached, the low-side switch turns off before the end of the clock period. The low-side sink current limit is 1A. The high-side switch turns on until one of the following conditions is satisfied:

- High-side source current hits the reduced high-side current limit (14A). The high-side switch turns off for the remaining time of clock period.
- The clock period ends.

Reduced high-side current limit is activated in order to recirculate the current into the high-side power switch rather than into the internal high-side body diode, which can cause damage to the device. The high-side current limit is set to 14A.
Low-side sink current limit protects the low-side switch from excessive reverse current during prebiased operation.

## Enable Input

The IC features independent device enable control and power-good signal that allow for flexible power sequencing. Drive the enable input (EN) high to enable the regulator, or connect EN to IN for always-on operation. Power-good (PGOOD) is an open-drain output that deasserts when $\mathrm{V}_{\mathrm{FB}}$ is above 555 mV , and asserts low if $\mathrm{V}_{\mathrm{FB}}$ is below 530 mV .

## Programmable Soft-Start (SS)

The IC utilizes a soft-start feature to slowly ramp up the regulated output voltage to reduce input inrush current during startup. Connect a capacitor from SS to SGND to set the startup time. See the Setting the Soft-Start Startup Time section for capacitor selection details.

## Error Amplifier

A high-gain error amplifier provides accuracy for the voltage feedback loop regulation. Connect a compensation network between COMP and SGND. See the Compensation Design Guidelines section. The error amplifier transconductance is 1.4 mS . COMP clamp low is set to 0.93 V , just below the PWM ramp compensation valley, helping COMP to rapidly return to the correct set point during load and line transients.

## PWM Comparator

The PWM comparator compares COMP voltage to the current-derived ramp waveform (LX current to COMP voltage transconductance value is 25A/V). To avoid instability due to subharmonic oscillations when the duty cycle is around $50 \%$ or higher, a compensation ramp is added to the current-derived ramp waveform. The compensation ramp slope $(0.3 \mathrm{~V} \times 1 \mathrm{MHz}=0.3 \mathrm{~V} / \mu \mathrm{s})$ is equivalent to half of the inductor current down-slope in the worst case (load 2 A , current ripple $30 \%$ and maximum duty-cycle operation of $95 \%$ ). The compensation ramp valley is set to 1 V .

## Overcurrent Protection and Hiccup

When the converter output is connected to ground or the device is overloaded, each high-side MOSFET currentlimit event (14A) turns off the high-side MOSFET and turns on the low-side MOSFET. A 3-bit counter increments on each current-limit event. The counter is reset after three consecutive events of high-side MOSFET turn-on without reaching the current limit. If the currentlimit condition persists, the counter fills up reaching eight events. The control logic then discharges SS, stops both high-side and low-side MOSFETs and waits for a hiccup period (1024 clock cycles) before attempting a new softstart sequence. The hiccup-mode also operates during soft-start.

## Thermal Shutdown Protection

The IC contains an internal thermal sensor that limits the total power dissipation to protect it in the event of an extended thermal fault condition. When the die temperature exceeds $+160^{\circ} \mathrm{C}$, the thermal sensor shuts down the device, turning off the DC-DC converter to allow the die to cool. After the die temperature falls by $25^{\circ} \mathrm{C}$, the device restarts, following the soft-start sequence.

## Applications Information

## Setting the Output Voltage

Connect a voltage-divider (R1 and R2, see Figure 1) from OUT to FB to PGND to set the DC-DC converter output voltage. Choose R1 and R2 so that the DC errors due to the FB input bias current do not affect the output-voltage precision. With lower value resistors, the DC error is reduced, but the amount of power consumed in the resistive divider increases. A typical tradeoff value for R2 is $5 \mathrm{k} \Omega$, but values between $1 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$ are acceptable. Once R2 is chosen, calculate R1 using:

$$
\mathrm{R}_{1}=\mathrm{R}_{2} \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}}-1\right)
$$

where the feedback threshold voltage $\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}$.

## Inductor Selection

A large inductor value results in reduced inductor ripple current, leading to a reduced output ripple voltage. A highvalue inductor is of a larger physical size with a higher series resistance (DCR) and a lower saturation current rating. Choose inductor values to produce a ripple current equal to $30 \%$ of the load current.
Choose the inductor with the following formula:

$$
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{OUT}}}{f_{\mathrm{SW}} \times \Delta \mathrm{I}_{\mathrm{L}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

where $\mathrm{f}_{\mathrm{SW}}$ is the internally fixed 1 MHz switching frequency, and $\Delta \mathrm{I}_{\mathrm{L}}$ is the estimated inductor ripple current (typically set to $0.3 \times \operatorname{lOAD}$ ). In addition, the peak inductor current, IL_PK, must always be below the high-side current-limit value, $\mathrm{I}_{\mathrm{HSCL}}$, and the inductor saturation current rating, IL_SAT.
Ensure that the following relationship is satisfied:

$$
\mathrm{I}_{\mathrm{L}_{-} \mathrm{PK}}=\mathrm{I}_{\mathrm{LOAD}}+\frac{1}{2} \times \Delta \mathrm{I}_{\mathrm{L}}<\mathrm{MIN}\left(\mathrm{I}_{\mathrm{HSCL}}, \mathrm{I}_{\mathrm{L} \_} \mathrm{SAT}\right)
$$

## Input Capacitor Selection

For a step-down converter, the input capacitor $\mathrm{C}_{\text {IN }}$ helps to keep the DC input voltage steady, in spite of discontinuous input AC current. Use low-ESR capacitors to minimize the voltage ripple due to ESR.

Size $\mathrm{C}_{\mathrm{IN}}$ using the following formula:

$$
\mathrm{C}_{\text {IN }}=\frac{\mathrm{I}_{\text {LOAD }}}{\mathrm{f}_{\text {SW }} \times \mathrm{V}_{\text {IN_RIPPLE }}} \times \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}
$$

Make sure that the selected capacitance can accommodate the input ripple current given by:

$$
\mathrm{I}_{\mathrm{RMS}}=\mathrm{I}_{\mathrm{O}} \times \frac{\sqrt{\mathrm{V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)}}{\mathrm{V}_{\mathrm{IN}}}
$$

If necessary, use multiple capacitors in parallel to meet the RMS current rating requirement.

## Output Capacitor Selection

Use low-ESR ceramic capacitors to minimize the voltage ripple due to ESR. Use the following formula to estimate the total output voltage peak-to-peak ripple:

$$
\Delta V_{\text {OUT }}=\frac{V_{\text {OUT }}}{f_{S W} \times L} \times\left(1-\frac{V_{\text {OUT }}}{V_{I N}}\right) \times\left(R_{\text {ESR_COUT }}+\frac{1}{8 \times f_{S W} \times C_{\text {OUT }}}\right)
$$

Select the output capacitors to produce an output ripple voltage that is less than $2 \%$ of the set output voltage.

## Setting the Soft-Start Startup Time

The soft-start feature ramps up the output voltage slowly, reducing input inrush current during startup. Size the CSS capacitor to achieve the desired soft-start time, tss, using:

$$
C_{S S}=\frac{I_{S S} \times t_{S S}}{V_{F B}}
$$

ISS, the soft-start current, is $10 \mu \mathrm{~A}$, and $\mathrm{V}_{\mathrm{FB}}$, the output feedback voltage threshold, is 0.6 V . When using large Cout capacitance values, the high-side current limit can trigger during the soft-start period. To ensure the correct soft-start time, tSS, choose CSS large enough to satisfy:

$$
\mathrm{C}_{\text {SS }} \gg \mathrm{C}_{\text {OUT }} \times \frac{\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\text {SS }}}{\left(\mathrm{I}_{\mathrm{HSCL}} \text { MIN }-\mathrm{I}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\text {FB }}}
$$

${ }^{\text {IHSCL_MIN }}$ is the minimum high-side switch current-limit value.


Figure 1. Peak Current-Mode Regulator Transfer Model

An external tracking reference with steady-state value between 0 V and $\mathrm{V}_{\mathrm{IN}}-1.5 \mathrm{~V}$ can be applied to SS . In this case, connect an RC network from external tracking reference and SS as in Figure 2. Set RSS to approximately $1 \mathrm{k} \Omega$. In this application, RSS is needed to ensure that, during hiccup period, SS can be internally pulled down. When an external reference is connected to SS, the softstart must be provided externally.

## Compensation Design Guidelines

The IC uses a fixed-frequency, peak-current-mode control scheme to provide easy compensation and fast transient response. The inductor peak current is monitored on a cycle-by-cycle basis and compared to the COMP voltage (output of the voltage error amplifier). The regulator's duty cycle is modulated based on the inductor's peak current value. This cycle-by-cycle control of the inductor current emulates a controlled current source. As a result, the inductor's pole frequency is shifted beyond the gain bandwidth of the regulator. System stability is provided with the addition of a simple series capacitor-resistor from COMP to PGND. This pole-zero combination serves to tailor the desired response of the closed-loop system. The basic regulator loop consists of a power modulator (comprising the regulator's pulse-width modulator, compensation ramp, control circuitry, MOSFETs, and inductor), the capacitive output filter and load, an output feedback divider, and a voltage-loop error amplifier with its associated compensation circuitry. See Figure 1.
The average current through the inductor is expressed as:

$$
\overline{\mathrm{I}_{\mathrm{L}}}=\mathrm{G}_{\mathrm{MOD}} \times \overline{\mathrm{V}_{\mathrm{COMP}}}
$$

where $\bar{l}_{\bar{L}}$ is the average inductor current and $G_{M O D}$ is the power modulator's transconductance.
For a buck converter:

$$
\overline{V_{O U T}}=R_{\text {LOAD }} \times \overline{I_{\mathrm{L}}}
$$

where $R_{\text {LOAD }}$ is the equivalent load resistor value. Combining the above two relationships, the power modulator's transfer function in terms of $\overline{\mathrm{V}} \overline{\mathrm{OUT}}$ with respect to $\overline{\mathrm{V}}_{\mathrm{COMP}}$ is:

$$
\frac{\overline{\mathrm{V}_{\mathrm{OUT}}}}{\overline{\mathrm{~V}_{\mathrm{COMP}}}}=\frac{\mathrm{R}_{\mathrm{LOAD}} \times \overline{\bar{L}_{\mathrm{L}}}}{\overline{\overline{\mathrm{~L}_{\mathrm{L}}}}}=\mathrm{R}_{\mathrm{LOAD}} \times \mathrm{G}_{\mathrm{MOD}}
$$

Having defined the power modulator's transfer function gain, the total system loop gain can be written as follows (see Figure 1):


Figure 2. Setting Soft-Start Time

$$
\begin{gathered}
\alpha=\frac{R_{\text {OUT }} \times\left(s_{C} R_{\mathrm{C}}+1\right)}{\left[\mathrm{s}\left(\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{CC}}\right)\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{OUT}}\right)+1\right] \times} \\
\beta=\mathrm{G}_{\mathrm{MOD}} \times \mathrm{R}_{\mathrm{LOAD}} \times \frac{\left(\mathrm{s} \mathrm{C}_{\mathrm{OUT}} \mathrm{ESR}+1\right)}{\left[\mathrm{sC} \mathrm{C}_{\mathrm{OC}}\right)\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{OUT}}\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)+1\right]} \\
\text { Gain }=\frac{R_{2}}{R_{1}+R_{2}} \times \frac{\mathrm{A}_{\mathrm{VEA}}}{R_{\mathrm{OUT}}} \times \alpha \times \beta
\end{gathered}
$$

where ROUT is the quotient of the error amplifier's DC gain, AVEA, divided by the error amplifier's transconductance, $g_{M V}$; $R_{\text {OUT }}$ is much larger than $R_{C}$.

$$
\frac{R_{2}}{R_{1}+R_{2}}=\frac{V_{F B}}{V_{O U T}}
$$

Also, $\mathrm{C}_{\mathrm{C}}$ is much larger than $\mathrm{C}_{\mathrm{C}}$, therefore:

$$
\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{CC}} \approx \mathrm{C}_{\mathrm{C}}
$$

and

$$
\mathrm{C}_{\mathrm{c}} \| \mathrm{C}_{\mathrm{cc}} \approx \mathrm{C}_{\mathrm{cc}}
$$

Rewriting:

$$
\begin{aligned}
\text { Gain }= & \frac{V_{\text {FB }}}{V_{\text {OUT }}} A_{\text {VEA }} \times \frac{\left(s C_{C} R_{C}+1\right)}{\left[s C_{C}\left(\frac{A_{\text {VEA }}}{g_{M V}}\right)+1\right] \times\left(s C_{C C} R_{C}+1\right)} \times \\
& G_{\text {MOD }} R_{\text {LOAD }} \times \frac{\left(s C_{\text {OUT }} E S R+1\right)}{\left[s C_{\text {OUT }}\left(E S R+R_{\text {LOAD }}\right)+1\right]}
\end{aligned}
$$

The dominant poles and zeros of the transfer loop gain are shown below:

$$
\mathrm{f}_{\mathrm{P} 1}=\frac{\mathrm{g}_{\mathrm{MV}}}{2 \pi \times 10^{\text {AVEA }_{-} \mathrm{dB} / 20} \times \mathrm{C}_{\mathrm{C}}}
$$

## High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator

$$
\begin{gathered}
\mathrm{f}_{\mathrm{P} 2}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}}\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)} \\
\mathrm{f}_{\mathrm{P} 3}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{CC}} \mathrm{R}_{\mathrm{C}}} \\
\mathrm{f}_{\mathrm{Z} 1}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}} \\
\mathrm{f}_{\mathrm{Z} 2}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}} \mathrm{ESR}}
\end{gathered}
$$

The order of pole-zero occurrence is:

$$
\mathrm{f}_{\mathrm{P} 1}<\mathrm{f}_{\mathrm{P} 2}<\mathrm{f}_{\mathrm{Z} 1}<\mathrm{f}_{\mathrm{Z} 2} \leq \mathrm{f}_{\mathrm{P} 3}
$$

Under heavy load, $\mathrm{f}_{\mathrm{P} 2}$, approaches $\mathrm{f}_{\mathrm{Z} 1}$. A graphical representation of the asymptotic system closed-loop response, including dominant pole and zero locations is shown in Figure 3.

If COUT is large, or exhibits a lossy equivalent series resistance (large ESR), the circuit's second zero might come into play around the crossover frequency ( $\mathrm{f}_{\mathrm{CO}}=\omega / 2 \pi$ ). In this case, a third pole can be induced by a second (optional) small compensation capacitor ( $\mathrm{C}_{\mathrm{Cc}}$ ), connected from COMP to PGND. The loop response's fourth asymptote (in bold, Figure 3) is the one of interest in establishing the desired crossover frequency (and determining the compensation component values). A lower crossover frequency provides for stable closed-loop operation at the expense of a slower load and line transient response. Increasing the crossover frequency improves the transient response at the (potential) cost of system instability. A standard rule of thumb sets the crossover frequency $\leq 1 / 10$ th of the switching frequency. First, select the passive and active power components that meet the application's requirements. Then, choose the small-signal compensation components to achieve the desired closed-loop frequency response and phase margin as outlined in the Closing the Loop: Designing the Compensation Circuitry section.


Figure 3. Asymptotic Loop Response of Peak Current-Mode Regulator

## Closing the Loop: Designing the Compensation Circuitry

Select the desired crossover frequency. Choose fCO approximately $1 / 10$ th of the switching frequency fsW, or $\mathrm{f}_{\mathrm{CO}} \approx 100 \mathrm{kHz}$.
Select $\mathrm{R}_{\mathrm{C}}$ using the transfer-loop's fourth asymptote gain (assuming $f_{C O}>f_{P 1}, f_{P 2}$, and $f_{Z 1}$ and setting the overall loop gain to unity) as follows:

$$
\begin{aligned}
1= & \frac{V_{\mathrm{FB}}}{\mathrm{~V}_{\mathrm{OUT}}} \times \mathrm{g}_{\mathrm{MV}} \times \mathrm{R}_{\mathrm{C}} \times \mathrm{G}_{\mathrm{MOD}} \times \mathrm{R}_{\mathrm{LOAD}} \times \\
& \frac{1}{2 \pi \times f_{\mathrm{CO}} \times \mathrm{C}_{\mathrm{OUT}} \times\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)}
\end{aligned}
$$

Therefore:

$$
\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}} \times \frac{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{C}_{\mathrm{OUT}} \times\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)}{\mathrm{g}_{\mathrm{MV}} \times \mathrm{G}_{\mathrm{MOD}} \times \mathrm{R}_{\mathrm{LOAD}}}
$$

For RLOAD much greater than ESR, the equation can be further simplified as follows:

$$
\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}} \times \frac{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{C}_{\mathrm{OUT}}}{\mathrm{~g}_{\mathrm{MV}} \times \mathrm{G}_{\mathrm{MOD}}}
$$

where $\mathrm{V}_{\mathrm{FB}}$ is equal to 0.6 V .
Determine $C_{C}$ by selecting the desired first system zero, $\mathrm{f}_{\mathrm{Z} 1}$, based on the desired phase margin. Typically, setting $\mathrm{f}_{\mathrm{Z} 1}$ below $1 / 5$ th of $\mathrm{f}_{\mathrm{C}}$ provides sufficient phase margin.

$$
\mathrm{f}_{\mathrm{Z} 1}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}} \leq \frac{\mathrm{f}_{\mathrm{CO}}}{5}
$$

Therefore:

$$
\mathrm{C}_{\mathrm{C}} \geq \frac{5}{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{R}_{\mathrm{C}}}
$$

If the ESR output zero is located at less than one-half the switching frequency, use the (optional) secondary compensation capacitor, $\mathrm{C}_{\mathrm{CC}}$, to cancel it, as follows:

$$
\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{CC}} \mathrm{R}_{\mathrm{C}}}=\mathrm{f}_{\mathrm{P} 3}=\mathrm{f}_{\mathrm{Z} 2}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}} \mathrm{ESR}}
$$

Therefore:

$$
\mathrm{C}_{\mathrm{CC}}=\frac{\mathrm{C}_{\mathrm{OUT}} \times \mathrm{ESR}}{\mathrm{R}_{\mathrm{C}}}
$$

If the ESR zero exceeds $1 / 2$ the switching frequency, use the following equation:

$$
\mathrm{f}_{\mathrm{P} 3}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{CC}} R_{\mathrm{C}}}=\frac{\mathrm{f}}{\mathrm{SW}} 2
$$

Therefore:

$$
\mathrm{C}_{\mathrm{CC}}=\frac{2}{2 \pi \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{R}_{\mathrm{C}}}
$$

Overall $\mathrm{C}_{\mathrm{CC}}$ detracts from the overall system phase margin. Place this third pole well beyond the desired crossover frequency to minimize the interaction with the system loop response at crossover. Ignore $\mathrm{C}_{\mathrm{CC}}$ in these calculations if $\mathrm{C}_{\mathrm{CC}}$ is smaller than 10 pF .

## Power Dissipation

The IC is available in a 20 -bump WLP package and can dissipate up to 745.5 mW at $+70^{\circ} \mathrm{C}$ board temperature. When the die temperature exceeds $+160^{\circ} \mathrm{C}$, the ther-mal- shutdown protection is activated. See the Thermal Shutdown Protection section.

## Layout Procedure

Careful PCB layout is critical to achieve clean and stable operation. It is highly recommended to duplicate the MAX15108A evaluation kit layout for optimum performance. If deviation is necessary, follow these guidelines for good PCB layout:

1) Connect input and output capacitors to the power ground plane.
2) Place bypass capacitors as close to IN and the softstart capacitor as close to SS as possible.
3) Keep the high-current paths as short and wide as possible. Keep the path of switching current short and minimize the loop area formed by LX, the output capacitors, and the input capacitors.
4) Connect IN, LX, and PGND separately to a large copper area to help cool the IC to further improve efficiency.
5) Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close as possible to the IC.
6) Route high-speed switching nodes (such as LX) away from sensitive analog areas (such as FB, COMP, SGND, and SS). See the MAX15108A EV kit layout for a tested layout example.

## Typical Application Circuit


$S=$ "SGND", FOR SMALL-SIGNAL RETURN ONLY.

## Ordering Information

| PART | TEMP RANGE | PIN-PACKAGE |
| :---: | :---: | :---: |
| MAX15108AEWP + | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | 20 WLP |

+Denotes a lead(Pb)-free/RoHS-compliant package.

## Chip Information

PROCESS: BiCMOS

## Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE <br> TYPE | PACKAGE <br> CODE | OUTLINE <br> NO. | LAND <br> PATTERN NO. |
| :---: | :---: | :---: | :---: |
| 20 WLP | W202D2Z+1 | $21-0505$ | Refer to <br> Application <br> Note 1891 |

## Revision History

| REVISION <br> NUMBER | REVISION <br> DATE | DESCRIPTION | PAGES <br> CHANGED |
| :---: | :---: | :--- | :---: |
| 0 | $6 / 13$ | Initial release | - |
| 1 | $5 / 16$ | Changed max operating temperature and added Safe Operating Area to Typical <br> Operating Characteristics section | $1-2$, |
| 2 | $1 / 20$ | Corrected the LX connections in the Functional Diagram | 6,15 |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:

## Click to view products by Maxim manufacturer:

Other Similar products are found below :
EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZREDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV


[^0]:    Ordering Information appears at end of data sheet.

