White LED 1x/1.5x Charge Pump for Main and Sub-Displays

The MAX1575 is available in a 16 -pin $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ thin QFN package (0.8 mm max height).

Abstract

\section*{General Description}

The MAX1575 charge pump drives up to four white LEDs in the main display and up to two white LEDs in the sub-display with regulated constant current for uniform intensity. By utilizing adaptive $1 x / 1.5 x$ chargepump modes and very-low-dropout current regulators, it achieves high efficiency over the full 1-cell lithiumbattery input voltage range. A 1 MHz fixed-frequency switching allows for tiny external components, and the regulation scheme is optimized to ensure low EMI and low input ripple. The MAX1575 uses an external resistor to set the fullscale 100% LED current. Two enable inputs, ENM and ENS, are used for simple on/off controls for the main and sub-displays, respectively. By repeatedly pulsing either enable input, the LEDs can be dimmed in multiple steps down to 5%. Once the desired brightness is set, the MAX1575 maintains that brightness setting as long as the enable input is kept high. If an enable input is kept low for more than 2 ms , the LED current for the respective display is set to zero. If both enable inputs are kept low for more than 2 ms , the MAX1575 enters shutdown.

- Powers Main and Sub-Display LEDs
- 85\% Average Efficiency (Pled / Pbatt) Over Li+ Battery Discharge
- 2\% LED Current Matching
- Up to $30 \mathrm{~mA} / \mathrm{LED}$ Drive Capability
- Adaptive 1x/1.5x Mode Switchover
- Low Input Ripple and EMI
- Individual 5\% to 100\% Dimming Through Single-Wire Serial Pulse Interface
- Low 0.1 1 A Shutdown Current
- 2.7V to 5.5V Supply Voltage Range
- Soft-Start Limits Inrush Current
- Output-Overvoltage Protection
- Thermal-Shutdown Protection
- 16-Pin Thin QFN 4mm x 4mm Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1575ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$
MAX1575ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$

+ Denotes lead-free package.
Typical Operating Circuit

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

ABSOLUTE MAXIMUM RATINGS

IN, OUT, ENM, ENS to GND \qquad-0.3V to +6.0 V -0.3 V to $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
C1P, C2P to GND.
the greater of $\left(V_{\text {OUT }}+1 \mathrm{~V}\right)$ or $(\mathrm{V}$ IN $+1 \mathrm{~V})$
OUT Short Circuit to GND

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 16-Pin Thin QFN $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. \qquad 1349 mW Junction Temperature ... $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathbb{I N}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{ENM}=\mathrm{ENS}=\mathrm{IN}, \mathrm{RSET}=6.81 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{IN}}=\mathrm{C} 1=\mathrm{C} 2=\mathrm{COUT}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IN Operating Voltage		2.7		5.5	V
Undervoltage-Lockout Threshold	VIN falling	2.25	2.45	2.60	V
Undervoltage-Lockout Hysteresis			35		mV
OUT Overvoltage-Protection Threshold	Vout rising		5		V
No-Load Supply Current	1 MHz switching in 1.5 x mode		2		mA
	No switching in $1 \times$ mode, 10% setting		0.5		
Shutdown Supply Current	ENM = ENS = OUT = GND		0.1	2	$\mu \mathrm{A}$
Soft-Start Time			2		ms
SET Bias Voltage			0.6		V
SET Leakage in Shutdown	ENM $=\mathrm{ENS}=\mathrm{GND}$		0.01	1	$\mu \mathrm{A}$
SET Current Range	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10		130	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	30		130	
SET-to-LED_ Current Ratio (ILED_/ ISET)	100% setting		234		A/A
LED Current Accuracy	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-8	± 2	+8	\%
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-9.5		+9.5	
LED-to-LED Current Matching (Note 2)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-5	± 1.5	+5	\%
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-6.5		+6.5	
Maximum LED_ Sink Current	RSET $=4.53 \mathrm{k} \Omega$	27.4	30.0		mA
LED_ Dropout Voltage	(Note 3)		60	100	mV
LED_ 1x-to-1.5x Transition Threshold	VLED falling	90	100	110	mV
LED Leakage in Shutdown	ENM $=$ ENS $=$ GND, VLED_ $=5.5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
Maximum OUT Current	VIN $\geq 3.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.9 \mathrm{~V}, 100 \%$ setting	120			mA
Open-Loop OUT Resistance	$1 \times$ mode (VIN - VOUT) / IOUT		1	2.5	Ω
	$1.5 \times$ mode ($1.5 \times$ VIN - VOUT) / IOUT		4.2	10	
Switching Frequency			1		MHz
OUT Pulldown Resistance	ENM $=\mathrm{ENS}=\mathrm{GND}$		5		$\mathrm{k} \Omega$
ENM, ENS High Voltage	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V	1.6			V
ENM, ENS Low Voltage	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V			0.4	V
ENM, ENS Input Current	$\mathrm{V}_{\text {EN_ }}=0 \mathrm{~V}$ or 5.5 V		0.01	1	$\mu \mathrm{A}$
Shutdown Delay	From falling edge of ENM and ENS	1.0	2	3.3	ms

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{ENM}=\mathrm{ENS}=\mathrm{IN}, \mathrm{RSET}=6.81 \mathrm{k} \Omega, \mathrm{CIN}=\mathrm{C} 1=\mathrm{C} 2=\mathrm{COUT}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP
MLO (ENM, ENS) (Figure 1)		0.5	UNITS
tHI (ENM, ENS) (Figure 1)		0.5	$\mathrm{\mu}$
Initial thI (ENM, ENS) (Figure 1)	Only required for first EN_ pulse	50	$\mu \mathrm{~s}$
Thermal-Shutdown Threshold		$\mu \mathrm{s}$	
Thermal-Shutdown Hysteresis		+160	${ }^{\circ} \mathrm{C}$

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 2: LED current matching is defined as: (ILED - IAVG) / IAVG
Note 3: Dropout voltage is defined as the LED_-to-GND voltage at which current into the LED drops 10\% from the LED current at $\mathrm{V}_{\text {LED_ }}=0.2 \mathrm{~V}$.

Typical Operating Characteristics
$\left(\mathrm{V} I \mathrm{~N}=3.6 \mathrm{~V}, \mathrm{ENM}=\mathrm{ENS}=\mathrm{IN}\right.$, circuit of Figure $2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

Typical Operating Characteristics (continued)
$\left(\mathrm{V} I \mathrm{~N}=3.6 \mathrm{~V}, \mathrm{ENM}=\mathrm{ENS}=\mathrm{IN}\right.$, circuit of Figure $2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

STARTUP WAVEFORMS

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

Pin Description

PIN	NAME	FUNCTION
1	C2P	Transfer-Capacitor 2 Positive Connection. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from C2P to C2N.
2	OUT	Output. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from OUT to GND. Connect OUT to the anodes of all the LEDs. OUT is internally pulled down with $5 \mathrm{k} \Omega$ during shutdown.
3	SET	Current-Set Input. Connect a resistor (RSET) from SET to GND to set the maximum LED current. $\operatorname{lLED}(\mathrm{MAX})=$ $234 \times 0.6 \mathrm{~V} /$ RSET. SET is internally biased to 0.6 V . SET is high impedance during shutdown.
4	ENS	Enable and Dimming Control for LED5 and LED6 (Sub-Display). The first time ENS goes high ($50 \mu \mathrm{~s}$ min), LED5 and LED6 turn on at 100% brightness. Pulsing ENS low dims the LEDs in multiple steps. If ENS is held low for more than 2 ms (typ), LED5 and LED6 turn off. When ENM and ENS are both held low for more than 2 ms (typ), the IC goes into shutdown mode. See Figure 1.
5	ENM	Enable and Dimming Control for LED1-LED4 (Main Display). The first time ENM goes high ($50 \mu \mathrm{~s} \mathbf{~ m i n}$), LED1-LED4 turn on at 100% brightness. Pulsing ENM low dims the LEDs in multiple steps. If ENM is held low for more than 2 ms (typ), LED1-LED4 turn off. When ENM and ENS are both held low for more than 2 ms (typ), the IC goes into shutdown mode. See Figure 1.
6	LED6	Sub-Display LEDs Cathode Connection. Current flowing into LED_ is described in the ENS and SET descriptions above. The charge pump regulates the lowest-enabled LED_ voltage to 180 mV . Connect LED_ to $I N$ if the LED is not populated. LED_ is high impedance during shutdown.
7	LED5	
8	LED4	Main-Display LEDs Cathode Connection. Current flowing into LED_ is described in the ENM and SET descriptions above. The charge pump regulates the lowest-enabled LED_ voltage to 180 mV . Connect LED_ to IN if the LED is not populated. LED_ is high impedance during shutdown.
9	LED3	
10	LED2	
11	LED1	
12	GND	Ground. Connect GND as close as possible to system ground and to the ground of the input bypass capacitor.
13	C1N	Transfer-Capacitor 1 Negative Connection. Connect a 1μ F ceramic capacitor from C1P to C1N.
14	IN	Supply Voltage Input. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from IN to GND. The input voltage range is 2.7 V to 5.5 V . IN is high impedance during shutdown.
15	C2N	Transfer-Capacitor 2 Negative Connection. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from C2P to C2N.
16	C1P	Transfer-Capacitor 1 Positive Connection. Connect a 1μ F ceramic capacitor from C1P to C1N.
-	EP	Exposed Paddle. Connect the exposed paddle to GND.

Detailed Description

The MAX1575 charge pump drives up to four white LEDs in the main display and up to two white LEDs in the sub-display with regulated constant current for uniform intensity. By utilizing adaptive $1 x / 1.5 x$ chargepump modes and very-low-dropout current regulators, it achieves high efficiency over the 1-cell lithium-battery input voltage range. 1 MHz fixed-frequency switching allows for tiny external components and low input ripple.

1x to 1.5x Switchover When VIN is higher than VoUT, the MAX1575 operates in $1 x$ mode and Vout is pulled up to Vin. The internal current regulators regulate the LED current. As VIN drops, VLED_ eventually falls below the switchover threshold of 100 mV and the MAX1575 starts switching in $1.5 x$ mode.

When the input voltage rises above VOUT by about 50 mV , the MAX1575 switches back to $1 \times$ mode.

Soft-Start The MAX1575 includes soft-start circuitry to limit inrush current at turn-on. When starting up, the output capacitor is charged directly from the input with a ramped current source (with no charge-pump action) until the output voltage approaches the input voltage. Once this occurs, the charge pump determines if $1 x$ or $1.5 x$ mode is required. In the case of $1 \times$ mode, the soft-start is terminated and normal operation begins. During the soft-start time, the output current is set to 5% of the maximum set by RSET. In the case of $1.5 \times$ mode, soft-start operates until the lowest of LED1-LED6 reaches regulation. If an overload condition occurs, soft-start repeats every 2 ms . If the output is shorted to ground (or $<1.25 \mathrm{~V}$), the part reverts to softstart and the ramped current source.

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

Setting the Output Current

The LED current at full (100%) brightness is set (up to 30 mA) by a resistor, RSET, as follows:

$$
\mathrm{R}_{\mathrm{SET}}=\frac{0.6 \mathrm{~V} \times 234}{\mathrm{l}_{\mathrm{LED}}}
$$

ENM and ENS Dimming Controls

When the LEDs are enabled by driving ENM or ENS high, the LED current initially goes to ILED_.
Dimming for the main display is done by pulsing ENM low (500 ns to 500μ s pulse width). Dimming for the subdisplay is done by pulsing ENS low (500 ns to $500 \mu \mathrm{~s}$ pulse width). Each pulse reduces the LED current by 10%, so after one pulse the LED current is $0.9 \times$ ILED. The 10th pulse reduces the current by 5% so the LED current reduces from $0.1 \times$ led_ to $0.05 \times$ leed. The 11th pulse sets the LED current back to ILED_. Figure 1 shows a timing diagram for EN_.
Because soft-start is longer than intitial thI, apply dimming pulses quickly upon startup (after initial tHI) to avoid LED_ current transitioning through full brightness. If dimming control is not required, EN _ work as simple on/off controls. Drive ENM high to enable the main LEDs, or drive ENM low to turn off the main LEDs. Drive ENS high to enable the sub-LEDs, or drive ENS low to turn off the sub-LEDs. Drive both ENM and ENS low to put the IC in low-power shutdown mode.

Shutdown Mode
When both ENM and ENS are held low for 2ms or longer, the MAX1575 is shut down and put in a low-current mode. OUT is internally pulled to GND with $5 \mathrm{k} \Omega$ during shutdown.

Overvoltage Protection

If any LED fails as an open circuit, the output voltage is limited to approximately 5 V by gating on/off the charge pump. In case any LED_ is floating or grounded, the MAX1575 operates in the same overvoltage-protection mode. To avoid overvoltage-protection mode when using fewer than six LEDs, connect any unused LED_ to IN.

Thermal Shutdown
The MAX1575 includes a thermal-limit circuit that shuts down the IC at approximately $+160^{\circ} \mathrm{C}$. The part turns on after the IC cools by approximately $20^{\circ} \mathrm{C}$.

Applications Information

Driving Fewer than Six LEDs
When driving fewer than six LEDs, connect any unused LED_ directly to IN (Figure 3). When connected in this manner, the corresponding LED driver is disabled.

Input Ripple

For LED drivers, input ripple is more important than output ripple. Input ripple depends on the source supply's impedance. Adding a lowpass filter to the input further reduces input ripple. Alternately, increasing CIN to $2.2 \mu \mathrm{~F}$ cuts input ripple in half with only a small increase in footprint. The $1 \times$ mode always has very low input ripple.

Figure 1. EN_ Timing Diagram

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

Figure 2. Functional Diagram and Typical Application Circuit

White LED 1 x/1.5x Charge Pump for Main and Sub-Displays

Figure 3. Driving Fewer than Six White LEDs

Table 1. Recommended Components

DESIGNATION	VALUE	MANUFACTURER	PART	DESCRIPTION
Cin, Cout, C1, C2	$1 \mu \mathrm{~F}$	Murata	GRM155R60J105K	$1 \mu \mathrm{~F} \pm 10 \%$, 6.3V X5R ceramic capacitors (0402)
		Taiyo Yuden	JMK107BJ105KA	$1 \mu \mathrm{~F} \pm 10 \%$, 6.3 V X5R ceramic capacitors (0603)
		TDK	C1005X5R0J105M	$1 \mu \mathrm{~F} \pm 20 \%$, 6.3V X5R ceramic capacitors (0402)
D1-D6	-	Nichia	NSCW215T	White LEDs
RSET	As required	Kamaya	-	1\% resistor
		Panasonic		

White LED 1x/1.5x Charge Pump for Main and Sub-Displays

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 MPQ7220GF-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P

