480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

General Description

The MAX1576 charge pump drives up to 8 white LEDs with regulated constant current for uniform intensity. The main group of LEDs (LED1-LED4) can be driven up to 30 mA per LED for backlighting. The flash group of LEDs (LED5-LED8) are independently controlled and can be driven up to 100 mA per LED (or 400 mA total). By utilizing adaptive $1 \mathrm{x} / 1.5 \mathrm{x} / 2 \mathrm{x}$ charge-pump modes and very-low-dropout current regulators, the MAX1576 achieves high efficiency over the full 1-cell lithium-battery voltage range. The 1 MHz fixed-frequency switching allows for tiny external components, and the regulation scheme is optimized to ensure low EMI and low input ripple.
The MAX1576 uses two external resistors to set the main and flash full-scale (100\%) LED currents. Four control pins are used for LED dimming by either serial control or 2-bit logic per group. ENM1 and ENM2 set the main LEDs to $10 \%, 30 \%$, or 100% of full scale. ENF1 and ENF2 set the flash LEDs to $20 \%, 40 \%$, or 100% of full scale. In addition, connect either pair of control pins together for single-wire, serial pulse dimming control.
The MAX1576 is available in a 24 -pin thin QFN, $4 \mathrm{~mm} \times$ 4 mm package (0.8 mm max height).
Camera Phones
LCD Backlights
LED Camera Flashes
Cell Phones and Smart Phones
PDAs, Digital Cameras, and Camcorders

- Powers Up to 8 LEDs

Up to 30mA/LED Drive for Backlight
Up to 400 mA Total Drive for Flash

- 85\% Average Efficiency (Pled / Pbatt) Over Li+ Battery Discharge
- 0.7\% Typical LED Current Matching
- Adaptive 1x/1.5x/2x Mode Switchover
- Flexible Brightness Control

Single-Wire, Serial Pulse Interface (5\% to 100\%)
2-Bit (3 Levels) Logarithmic Logic

- Low Input Ripple and EMI
- Low 0.1 1 A Shutdown Current
- 2.7 V to 5.5 V Supply Voltage Range
- Soft-Start Limits Inrush Current
- Output Overvoltage Protection
- Thermal-Shutdown Protection
- 24-Pin Thin QFN, 4mm x 4mm Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1576ETG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN 4mm \times $4 \mathrm{~mm}($ T2444-4)
MAX1576ETG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Thin QFN 4mm \times $4 \mathrm{~mm}($ T2444-4)

+ Denotes lead-free package.
Pin Configuration appears at end of data sheet.
Typical Operating Circuit

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

ABSOLUTE MAXIMUM RATINGS

INP, IN, OUT, ENM1, ENM2, ENF1,
ENF2 to GND1 ..-0.3V to +6.0 V
SETF, SETM, LED1, LED2, LED3, LED4, LED5,
LED6, LED7, LED8 to GND1-0.3V to (VIN + 0.3V)
C1N, C2N to GND1
..- -3.3 V to (V IN +1 V)
C1P, C2P to
GND1 \qquad -0.3 V to Greater of (VoUT +1 V) or $(\mathrm{V}$ IN $+1 \mathrm{~V})$
GND2, PGND to GND1
.-0.3V to +0.3 V
OUT Short Circuit to GND
Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
24-Pin Thin QFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
above $+70^{\circ} \mathrm{C}$).
1666 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}} 1=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{PGND}}=0 \mathrm{~V}, \mathrm{ENM} 1=\mathrm{ENM} 2=\mathrm{ENF} 1=\mathrm{ENF} 2=\mathrm{IN}\right.$, RSETM $=\mathrm{R}_{\mathrm{SETF}}=6.8 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IN Operating Voltage		2.7		5.5	V
Undervoltage-Lockout Threshold	$\mathrm{V}_{\text {IN }}$ rising or falling	2.25	2.45	2.60	V
Undervoltage-Lockout Hysteresis			50		mV
Overvoltage Protection Threshold	Vout rising		5		V
Supply Current	1 MHz switching, no load, 1.5 x or 2x mode		3.8	6.0	mA
	$1 \times$ mode 10\% setting, LED5-LED8 off		0.3		
Shutdown Supply Current	ENM1 = ENM2 = ENF1 = ENF2 = GND		0.1	3	$\mu \mathrm{A}$
Soft-Start Time			2		ms
SET_ Bias Voltage			0.604		V
SET_Leakage in Shutdown	ENM1 $=$ ENM2 $=$ ENF1 $=$ ENF2 $=$ GND, $\mathrm{V}_{\text {SET }}=0 \mathrm{OV}$ or $\mathrm{V}_{\text {IN }}$		0.01	1	$\mu \mathrm{A}$
SETM Current Range		40		130	$\mu \mathrm{A}$
SETF Current Range		40		145	$\mu \mathrm{A}$
SETM to Main LED_Current Ratio (ILED / ISETM)	100\% setting, LED1-4		233		A/A
SETF to Flash LED_Current Ratio (ILED / ISETF)	100\% setting, LED5-8		708		A/A
LED_ Current Accuracy	LED1-4	-6		+6	\%
	LED5-8	-8		+8	
LED_ to LED_ Current Matching	(Note 2)	-3.5	± 0.7	+3.5	\%
Maximum LED_Sink Current	LED1-LED4, RSETM $=4.64 \mathrm{k} \Omega$	27	30		mA
	LED5-LED8, RSETF $=4.12 \mathrm{k} \Omega$	90	100		
LED_ Dropout Voltage	(Note 3)		40	90	mV
LED_ $1.5 x$ and $2 x$ Regulation Voltage			150		mV
LED_ 1 x to 1.5 x or 1.5 x to 2 x Mode Transition Threshold		90	100	110	mV
Input-Voltage-Mode Transition Hysteresis			150		mV

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}} 1=\mathrm{V}_{\mathrm{GND}} 2=\mathrm{V}_{\mathrm{VGND}}=0 \mathrm{~V}, \mathrm{ENM} 1=\mathrm{ENM} 2=\mathrm{ENF} 1=\mathrm{ENF} 2=\mathrm{IN}, \operatorname{RSETM}=\mathrm{RSETF}=6.8 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LED_Leakage in Shutdown	ENM1 = ENM2 = ENF1 = ENF2 = GND		0.1	2	$\mu \mathrm{A}$
Charge-Pump Maximum OUT Current	$\mathrm{V}_{\text {IN }} \geq 3.15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.9 \mathrm{~V}$	480			mA
Open-Loop OUT Resistance	1x mode, (VIN - VOUT) / IOUT			2.5	Ω
	$1.5 \times$ mode, ($1.5 \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$) / IOUT			5.0	
	2 x mode, (2VIN - VOUT) / IOUT			5.0	
Switching Frequency			1		MHz
EN_ High Voltage	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V	1.6			V
EN_ Low Voltage	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V			0.4	V
EN_ Input Current	$\mathrm{V}_{\text {EN_ }}=0 \mathrm{~V}$ or 5.5 V		0.01	1	$\mu \mathrm{A}$
EN_ Low Shutdown Delay tSHDN (See Figure 3)		225	470	800	$\mu \mathrm{s}$
EN_tlo (See Figure 3)		0.5		250.0	$\mu \mathrm{s}$
EN_tHI (See Figure 3)		0.5			$\mu \mathrm{s}$
Initial EN_ thl (See Figure 3)	Only required for first EN_ pulse	50			$\mu \mathrm{s}$
OUT Pulldown Resistance in Shutdown	ENM1 = ENM2 = ENF1 = ENF2 = GND		5		k Ω
Thermal-Shutdown Threshold			+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis			20		${ }^{\circ} \mathrm{C}$

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 2: LED current matching is defined as: (ILED_- IAVG) / IAVG. Matching is for LEDs within the main group (LED1-LED4) or the flash group (LED5-LED8).
Note 3: Dropout voltage is defined as the LED_ to GND_ voltage at which current into LED_ drops 10% from the value at VLED_ $=0.2 \mathrm{~V}$.

480mA White LED $1 x / 1.5 x / 2 x$ Charge Pump for Backlighting and Camera Flash

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{EN}_{-}=\operatorname{IN}\right.$, Circuit of Figure 1, RSETM $=9.09 \mathrm{k} \Omega$, RSETF $=4.12 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

EFFICIENCY vs. Li+ BATTERY VOLTAGE DRIVING FLASH LED MODULE

INPUT RIPPLE VOLTAGE vs. SUPPLY VOLTAGE WITH FOUR MAIN LEDS

LED CURRENT vs. AMBIENT TEMPERATURE WITH FOUR MAIN LEDs

BATTERY CURRENT vs. SUPPLY VOLTAGE DRIVING FOUR MAIN LEDs

INPUT RIPPLE VOLTAGE vs. SUPPLY VOLTAGE WITH FLASH AND MAIN LEDs

LED CURRENT vs. AMBIENT TEMPERATURE WITH FLASH

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{EN}_{-}=\operatorname{IN}\right.$, Circuit of Figure 1, RSETM $=9.09 \mathrm{k} \Omega$, RSETF $=4.12 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OPERATING WAVEFORMS (1x MODE)

OPERATING WAVEFORMS (2x MODE)

LED CURRENT vs. Rsetf

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{EN}_{-}=\operatorname{IN}\right.$, Circuit of Figure 1, RSETM $=9.09 \mathrm{k} \Omega$, RSETF $=4.12 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN	NAME	FUNCTION
1	OUT	Output. Bypass to ground with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. Connect to the anodes of all the LEDs. OUT is internally pulled to ground through a $5 \mathrm{k} \Omega$ resistor during shutdown.
2	ENM1	Enable and Brightness Control for LED1-LED4 (Backlight). See Table 1 and Figure 3.
3	ENM2	
4	ENF1	Enable and Brightness Control for LED5-LED8 (Flash). See Table 2 and Figure 3.
5	ENF2	
6	LED8	Flash LED_ Cathode Connection and Charge-Pump Feedback. Current flowing into LED_ is based on the $E N F_{-}$logic levels and RSETF. The charge pump regulates the lowest LED_ voltage to 0.15 V . Grounding any LED_ forces OUT to operate at approximately 5 V . Connect LED_ to IN if this LED is not populated.
7	LED7	
9	LED6	
10	LED5	
8	GND2	Ground. Connect GND_ to system ground and the ground side of the input bypass capacitor as close to the IC as possible.
14	GND1	
11	LED4	Main LED_Cathode Connection and Charge-Pump Feedback. Current flowing into LED_ is based on the ENM_ logic levels and RSETM. The charge-pump regulates the lowest LED_ voltage to 0.15 V . Grounding any LED_ forces OUT to operate at approximately 5 V . Connect LED_ to IN if this LED is not populated.
12	LED3	
13	LED2	
15	LED1	
16	SETM	Bias Current Set Input for LED1-LED4. The current flowing out of SETM sets the maximum (100\%) bias current into each LED. SETM is internally biased to 0.604 V . Connect a resistor (RSETM) from SETM to ground to set the main LED current, RSETM $=(233 \times 0.604) / \operatorname{lLED}(M A X)$. SETM is high impedance during shutdown.
17	SETF	Bias Current Set Input for LED5-LED8. The current flowing out of SETF sets the maximum (100\%) bias current into each LED. SETF is internally biased to 0.604 V . Connect a resistor (RSETF) from SETF to ground to set the flash LED current, RSETF $=(708 \times 0.604) / \operatorname{lLED}(M A X)$. SETF is high impedance during shutdown.

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Pin Description (continued)

PIN	NAME	FUNCTION
18	IN	Supply Voltage Input. Bypass to ground with a $1 \mu \mathrm{~F}$ ceramic capacitor. The input voltage range is 2.7 V to 5.5 V . IN is high impedance during shutdown.
19	PGND	Power Ground. Connect PGND to system ground. PGND is used for charge-pump switching currents.
20	C1N	Transfer Capacitor 1 Negative Connection. Connect to a $1 \mu \mathrm{~F}$ ceramic capacitor between C1P and C1N. C1N is internally shorted to IN during shutdown.
21	C2N	Transfer Capacitor 2 Negative Connection. Connect to a $1 \mu \mathrm{~F}$ ceramic capacitor between C2P and C2N. C2N is internally shorted to IN during shutdown.
22	INP	Supply Voltage Input. Bypass to PGND with a $4.7 \mu \mathrm{~F}$ ceramic capacitor. The input voltage range is 2.7 V to 5.5 V . INP is high impedance during shutdown.
23	C2P	Transfer Capacitor 2 Positive Connection. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from C2P to C2N. During shutdown, if OUT > IN, C2P is shorted to OUT, and if OUT < IN, C2P is shorted to IN.
24	C1P	Transfer Capacitor 1 Positive Connection. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from C1P to C1N. During shutdown, if OUT > IN, C1P is shorted to OUT, and if OUT < IN, C1P is shorted to IN.
-	EP	Exposed Paddle. Connect the exposed paddle to ground. Connect PGND, GND1, and GND2 to the exposed paddle directly under the IC.

Detailed Description

The MAX1576 charge pump drives up to four white LEDs in the main display for backlighting and up to four white LEDs for flash with regulated constant current for uniform intensity. By utilizing adaptive $1 \times / 1.5 x / 2 x$ charge-pump modes and very-low-dropout current regulators, it achieves high efficiency over the 1 -cell lithi-um-battery input voltage range. 1 MHz fixed-frequency switching allows for tiny external components and low input ripple.

1x to 1.5x Switchover

When VIN is higher than VOUT, the MAX1576 operates in $1 \times$ mode and VOUT is pulled up to Vin. The internal current regulators regulate the LED current. As VIN drops, VLED_ eventually falls below the switchover threshold of 100 mV and the MAX1576 starts switching in $1.5 x$ mode. When the input voltage rises above Vout by approximately 50 mV , the MAX1576 switches back to $1 \times$ mode.

1.5x to 2x Switchover

When VIN is less than Vout but greater than two-thirds Vout, the MAX1576 operates in $1.5 \times$ mode. The internal current regulators regulate the LED current. As VIN drops, VLED_ eventually falls below the switchover threshold of 100 mV , and the MAX1576 starts switching in $2 x$ mode. When the input voltage rises above twothirds Vout by approximately 50 mV , the MAX1576 switches back to $1.5 x$ mode.
True Shutdown is a trademark of Maxim Integrated Products, Inc.

Soft-Start
The MAX1576 includes soft-start circuitry to limit inrush current at turn-on. Once the input voltage is applied, the output capacitor is charged directly from the input with a ramped current source (with no charge-pump action) until the output voltage approaches the input voltage. Once this occurs, the charge pump determines if $1 \mathrm{x}, 1.5 \mathrm{x}$, or 2 x mode is required. In the case of $1 \times$ mode, the soft-start is terminated and normal operation begins. In the case of $1.5 \times$ or $2 x$ mode, soft-start operates until the lowest of LED1-LED4 reaches regulation. If the output is shorted to ground or is pulled less than 1.25 V , the output current is limited by soft-start.

True Shutdown ${ }^{\text {TM }}$ Mode

When ENM1, ENM2, ENF1, and ENF2 are simultaneously held low, the MAX1576 is shut down after a 0.5 ms shutdown delay and the input is isolated from the output. OUT is internally pulled to GND with $5 k \Omega$ during shutdown.

Thermal Shutdown
The MAX1576 includes a thermal-limit circuit that shuts down the IC at approximately $+160^{\circ} \mathrm{C}$. Turn-on occurs after the IC cools by approximately $20^{\circ} \mathrm{C}$.

Applications Information

Setting the Main Output Current SETM controls LED1-LED4 bias current. Current flowing into LED1, LED2, LED3, and LED4 is a multiple of the current flowing out of SETM.

$$
\text { ILED1 }=\text { ILED2 }=\text { ILED3 }=\text { ILED4 }=\mathrm{K} \times(0.604 \mathrm{~V} / \text { RSETM })
$$

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Figure 1. Block Diagram and Typical Application Circuit

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Figure 2. Typical Application Circuit for Driving a Single HighBrightness LED

Table 1. ENM1/ENM2 States

ENM1/ENM2 STATES	BRIGHTNESS	LED1-LED4 CURRENT
ENM1 = low, ENM2 $=$ low	Shutdown	0
ENM1 $=$ low, ENM2 $=$ high	$1 / 10$ Brightness	$23 \times$ ISETM
ENM1 $=$ high, ENM2 $=$ low	$3 / 10$ Brightness	$70 \times$ ISETM
ENM1 $=$ high, ENM2 $=$ high	Full Brightness	$233 \times$ ISETM

Table 2. ENF1/ENF2 States

ENF1/ENF2 STATES	BRIGHTNESS	LED5-LED8 CURRENT
ENF1 = low, ENF2 = low	Shutdown	0
ENF1 = low, ENF2 $=$ high	$1 / 5$ Brightness	$142 \times$ ISETM
ENF1 $=$ high, ENF2 $=$ low	$2 / 5$ Brightness	$283 \times$ ISETM
ENF1 $=$ high, ENF2 $=$ high	Full Brightness	$708 \times$ ISETM

where $\mathrm{K}=23,70$, or 233 (depending upon the state of ENM1 and ENM2, see Table 1), and RSETM is the resistor connected between SETM and ground (see the Typical Operating Circuit).

Setting the Flash Output Current
SETF controls the LED5-LED8 bias current. Current flowing into LED5, LED6, LED7, and LED8 is a multiple of the current flowing out of SETF.

$$
\text { ILED5 }=\text { ILED6 }=\text { LLED7 }=\text { ILED8 }=\mathrm{N} \times(0.604 \mathrm{~V} / \text { RSETF })
$$

where $N=142,283$, or 708 (depending upon ENF1 and ENF2, see Table 2), and RSETF is the resistor connected between SETF and ground (see the Typical Operating Circuit).

Single-Wire Pulse Dimming

For more dimming flexibility or to reduce the number of control traces, the MAX1576 supports serial pulse dimming. Connect ENM1 and ENM2 (or ENF1 and ENF2) together to enable single-wire pulse dimming of the main (or flash) LEDs. When ENM1 and ENM2 (or ENF1 and ENF2) go high simultaneously, the main (or flash) LEDs are enabled at full brightness. Each subsequent low-going pulse (500 ns to $250 \mu \mathrm{~s}$ pulse width) reduces the LED current by 10%, so after one pulse the LED current is $0.9 \times$ lLED. The 10th pulse reduces the current by 5% so the LED current reduces from $0.1 \times$ ILED_ to $0.05 \times$ ILED_. The 11th pulse sets the LED current back to ILED_. Figure 3 shows a timing diagram for sin-gle-wire pulse dimming. Because soft-start is longer than the initial tH , apply dimming pulses quickly upon startup (after initial tHI) to avoid LED_ current transitioning through full brightness.

Simple On/Off Control

If dimming control is not required, connect ENM1 to ENM2 (or ENF1 to ENF2) for simple on/off control. In this case, LED current is set by the values of RSETM (or RSETF).

Figure 3. EN_ Timing Diagram

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Figure 4. Dimming Using PWM Signal into ENM1

Figure 5. Dimming Using Filtered PWM Signal

Dimming Using PWM into ENM1
Use ENM2 for shutdown and drive ENM1 with a PWM signal. LED brightness can be varied from $1 / 10$ to full brightness based on the duty cycle of the PWM signal. The waveforms in the Typical Operating Characteristics show the response time of dimming. Drive ENM2 high to keep the IC on, eliminating any soft-start delay that would impede PWM control and allowing a PWM frequency up to 5 kHz (Figure 4).

Dimming Using a DAC or Filtered PWM

Both the main LEDs and flash LEDs allow dimming using a DAC or filtered PWM. Use a DAC output to sum a current into the SET_ node, or use a high-frequency PWM signal to drive an RCR filter on SET_ (Figure 5). With the component values shown in Figure 5, a 0\% PWM duty cycle corresponds to $20 \mathrm{~mA} / \mathrm{LED}$, while a 100% PWM duty cycle corresponds to OmA/LED. At PWM frequencies above 5 kHz , C6 may be reduced.

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Figure 6. Providing Increased LED Current per LED

Figure 7. Schematic for when Fewer than 8 LEDs is Acceptable

Driving Fewer than 8 LEDs

When driving fewer than 8 LEDs, two different connection schemes can be used. The first scheme is shown in Figures 2 and 6, where LED_ is connected to the adjacent LED_. This method allows increased current through the LED and effectively allows total LED current to be ILED multiplied by the number of pins connected. The second method of connection is shown in Figure 7, where standard white LEDs are used and fewer than 8 are connected. This scheme does not alter current
through each LED but ensures that the unused LED_ is properly terminated.

Input Ripple
For LED drivers, input ripple is more important than output ripple. Input ripple is highly dependent on the source supply's impedance. Adding a lowpass filter to the input further reduces input ripple. Alternately, increasing CIN to $10 \mu \mathrm{~F}$ cuts input ripple in half with only a small increase in footprint. The 1x mode always has very low input ripple.

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Table 3. Recommended Components

DESIGNATION	VALUE	MANUFACTURER	PART NUMBER	DESCRIPTION
CIN, COUT	$4.7 \mu \mathrm{~F}$	Murata	GRM188R60J475K	$4.7 \mu \mathrm{~F} \pm 10 \%, 6.3 \mathrm{~V}$ XR ceramic capacitors (0603)
C2, C3, C4	$1 \mu \mathrm{~F}$	Murata	GRM155R60J105K	$1 \mu \mathrm{~F} \pm 10 \%, 6.3 \mathrm{~V}$ X5 ceramic capacitors (0402)
D1-D4	-	Nichia	NSCW215T	White LEDs
D5 (D5-D8)	-	Nichia	NBCW011T	White LEDs, four LEDs in one package
RSETM, RSETF	As required	Kamaya	-	1% resistors

Typical operating waveforms shown in the Typical Operating Characteristics show input ripple in $1 \mathrm{x}, 1.5 \mathrm{x}$, and $2 x$ mode.

Component Selection
Use only ceramic capacitors with an X5R, X7R, or better dielectric. See Table 3 for a list of recommended parts.

PC Board Layout and Routing
The MAX1576 is a high-frequency switched-capacitor voltage regulator. For best circuit performance, use a solid ground plane and place CIN, COUt, C2, C3, and C4 as close to the MAX1576 as possible. There should be no vias on CIN. Connect GND1, GND2, and PGND to the exposed paddle directly under the IC. Refer to the MAX1576 evaluation kit for an example.

Chip Information

TRANSISTOR COUNT: 6679
PROCESS: BiCMOS

Pin Configuration

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

IOP VIEW

\qquad

480mA White LED 1x/1.5x/2x Charge Pump for Backlighting and Camera Flash

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

[^0] implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 MPQ7220GF-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

